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The utilization of agricultural products and residues for the production of value-added and
biobased products is a highly relevant topic in present research. Due to the natural
recalcitrance of lignocellulosic biomass against enzymatic degradation, pretreatments are
important requirement for further processes. For the raw material in this study, corn stover
(CS) as highly available agricultural residue and maize silage (MS) as model substrate for an
ensiled agricultural product were pretreated by steam refining. However, after processing a
liquid fraction and fibers are present. Subsequent to steaming the fiber fraction is well
characterized. Nonetheless, in depth characterizations of the filtrates are also important for
their subsequent utilization. Decreasing molar masses from 7,900 g/mol to 1,100 g/mol for
CS filtrates and 100.000–12.900 g/mol for MS filtrates were determined with increasing
severity. Due to their proven inhibitory effect on microorganisms weak acids, furans and
phenolic compounds within the liquid phased were analyzed. Especially formic acid
increases with increasing severity from 0.27 to 1.20% based on raw material for CS
and from 0.07 to 0.23% based on raw material for MS. Further GC/MS measurements
indicate, that up to 8.25% (CS filtrate) and 5.23% (MS filtrates) of the total peak area is
related to inhibitory phenols. Considering the data, detoxification strategies are of non-
negligible importance for filtrates after steam refining and should be considered for further
research and process or parameter optimizations. An alternative may be the application of
milder process conditions in order to prevent the formation of inhibitory degradation
products or the dilution of the gained filtrates.
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INTRODUCTION

Maize (Zeamays L.) is one of the most abundant crops in the world. Beside the utilization as food and
the usage for industrial materials it furth is a well-known model organism for several fields of
research (Strable and Scanlon, 2009). The high availability of maize and its products are displayed in
estimates for the worldwide corn production. Based on data of the Food and Agriculture
Organization of the United Nations (FAO) and literature values for the straw/kernel-ratio,
Krafft et al. (2020b) calculated an estimated annual maize production of 2.15–2.64 billion tons
for 2018. Updated FAO data for 2019 show quite similar values (FAOSTAT, 2020).

However, the usage of lignocelluloses and lignocellulosic residues in biorefinery contexts is highly
discussed and due to the aforementioned high availability, maize is focused on research. Therefore,
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two types of utilization based on maize can be distinguished: the
usage of the whole plant and the usage of components, like
kernels, straw or cob waste. Therefore, the usage of the whole
plant, mostly after ensiling to extend the storage stability for the
production of biogas is described. Further, the usage of the
kernels is reported to produce e.g., bioethanol (Lebuhn et al.,
2008; Schwietzke et al., 2009). However, the usage of these two
parts is associated with debates about land use (Graebig et al.,
2010) and the production of coarse grains for energy instead of
primary food grains (Srinivasan, 2009).

Due to these debates, the usage of agricultural post-harvest
residues is beneficial, although there are debates about sustainable
collection with consideration of soil erosion and water
conservation (Cruse and Herndl, 2009). With that in mind,
corn stover (CS) is characterized as an undervalued harvest
residue after grain threshing, which remains mainly on the
field and decomposes (Glassner et al., 1998). Nonetheless,
lignocellulosic biomass is recalcitrant against natural
biodegradation. Therefore, a pretreatment of the used CS is
necessary to reduce this known recalcitrance (Himmel et al.,
2007).

Seasonal availability and the storage of lignocellulosic biomass
is a key factor for a full-year biomass supply of a biorefinery plant.
These aspects were discussed in previous studies (Cherubini and
Strømman, 2011; Miao et al., 2012; Giuliano et al., 2016). In that
context ensiling was mentioned in literature as a suitable storage
method for biomass in biorefineries (Oleskowicz-Popiel et al.,
2011). Moreover, maize silage (MS) has a lower grade of
recalcitrance against enzymatic degradation, mainly due to
lower lignin contents, but a pretreatment is also necessary to
receive sufficient results after enzymatic hydrolysis (EH) (Krafft
et al., 2020b). In the last years steam refining was conducted for
pretreatments of wood (Schütt et al., 2011; Schütt et al., 2012),
forest residues (Janzon et al., 2014), CS (Krafft et al., 2020a), MS
(Krafft et al., 2020b) or waste medium density fiberboards (MDF)
(Hagel and Saake, 2020). Most studies were conducted to enhance
the enzymatic digestibility for the production of monomeric
carbohydrates, but attempts for MDF fiber recycling after
steam refining are reported as well (Hagel et al., 2021).

Like mentioned before, a biomass or raw material
pretreatment is a necessity for a lignocellulose biorefinery.
Beside different pretreatment methods, the most widely
described pretreatment is steam explosion, working as a
physicochemical process. Due to the knowledge, that the
explosion step is unnecessary for the enhancement of EH
(Brownell et al., 1986), several authors are currently discussing
an alternative steam pretreatment where the defibration is
conducted by a refining step. Therefore, this variant is also
called steam refining (Schütt et al., 2011; Schütt et al., 2012;
Janzon et al., 2014). The process results in two fractions, one
being a solid fiber fraction, the other being a hydrolysate.
However, in literature on steam pretreatment different terms
are used for the liquid: extract phase or fraction, liquid phase or
fraction, solubilized or (water)-soluble phase or fraction or (pre)-
hydrolysate and filtrate. All of the above equally paraphrase the
identical fraction, a clear nomenclature is yet no present.
Therefore the term “filtrate” will consequently be used

throughout this publication. While the usage of the cellulose-
rich fiber fraction is often addressed in literature, the utilization of
the hydrolysate has been less frequently investigated (Cubas-
Cano et al., 2020). A plausible explanation would be the
challenging fermentation of C5 sugars with wild-type
microorganisms and the abundance of inhibitors in the
hydrolysates (Cubas-Cano et al., 2018; Cubas-Cano et al., 2020).

The formation and liberation of degradation products from
carbohydrates and lignin and their inhibitory effect on enzymes
and bacteria is well documented (Cantarella et al., 2004).
Cantarella et al. (2004) differs three groups of toxic
compounds: low molecular weight acids, carbohydrate
degradation products and lignin degradation products. In this
context Zhang et al. (2013) compared eleven potential inhibitors
based on previous studies of Palmqvist and Hahn-Hägerdal
(2000) and Klinke et al. (2004). From early studies of Ando
et al. (1986) it is known that most of the degradation products are
soluble within the water-phase and only a few aromatic
monomers are detectable within the solid phase after
steaming. Nonetheless, Tengborg et al. (2001) report on the
inhibiting effect on EH and fermentation. Different amounts
of prehydrolysates were added to the solid phase followed by EH.
Adding prehydrolysates lowered the cellulose conversion rate
continuously. Further, the authors investigated the influence of
washing the solid fraction and came to the conclusion, that
washing is beneficial for fermentation processes (Tengborg
et al., 2001). Qureshi et al. (2010) investigated the
fermentation of CS hydrolysates to acetone butanol ethanol
(ABE) after pretreatment. No microbial growth or
fermentation products were measured in the undiluted and
untreated liquid phase. Fermentation started 40 h after dilution
and addition of sterile glucose. Further treatments, like dilution
with other hydrolysates and overliming with Ca(OH)2 were
necessary for sufficient fermentation. The authors suggest the
investigation of processes without inhibitory by-product
formation or the development of inhibitor resistant cultures
for fermentation. In the past, several studies accounting the
inhibitory content of the hydrolysates were conducted for
gardening residues (Cubas-Cano et al., 2020), trimming vine
shoots (Bustos et al., 2005), softwood (Shi et al., 2015), wheat
straw (Aulitto et al., 2017), sugarcane bagasse (van der Pol et al.,
2016) or oil palm empty fruit bunches (Ye et al., 2014). Inhibitors’
influences on the hydrolysate after steaming is to be considered
proven due to these studies. It furthermore is significant to
include this issue in contemplations of pretreatment conditions.

Former studies depict yields, characterization and utilization
of the fiber fraction after steam refining (Krafft et al., 2020a; Krafft
et al., 2020b). In this study, a detailed analytical characterization
of filtrates obtained after steam refining of CS (Krafft et al., 2020a)
and MS (Krafft et al., 2020b) will be described to complete a full
overview about the obtained fractions. Therefore, results from
carbohydrate analysis and molar mass distribution, as well as
results on organic acids and furans will be presented.
Additionally, information on inhibitory compounds obtained
by GC-MS are going to be given. All data is evaluated under
consideration of the used severity factor while steaming. All in all,
the goal was to gain a more detailed overview over the received
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filtrates after steam refining for further processes, like whole-
slurry processes or simultaneous EH and fermentation to value-
added products.

MATERIALS AND METHODS

Raw Material
The filtrates were collected from previous steam refining studies
with 200 g raw material input based on CS and MS (Bendler,
2018; Krafft et al., 2020a; Krafft et al., 2020b; Frey, 2020). Briefly,
steam refining is content-wise related to steam explosion with the
difference, that the defibration is conducted by a mechanical
defibration instead of a pressure relief. All results are recalculated
to weight percent based on the CS and MS raw material and are
denoted as % RM.

Steam refining was conducted from 160°C up to 200°C for
10 min, respectively. For a better comparability with available
literature the severity factor according to Overend and Chornet
(1987), expressed as log � R0, was calculated based on Eq. 1. A list
of temperatures, duration of exposure and corresponding severity
can be gathered from Table 1.

logR0 � log (t × e
(T−100)
14.75 ) (1)

The hydrolysate was collected by filtration through a sieve and
was afterwards freeze-dried (Alpha 2-4 LSC; Martin Christ
Gefriertrocknungsanlagen GmbH, Osterode am Harz,
Germany). A detailed description of the process is given in the
aforementioned studies. For reasons of completeness, the
carbohydrate and lignin composition of the used lyophilizates
will be shown in Table 2.

Acidic Hydrolysis
The hydrolysis of the freeze-dried steam refining filtrates was
conducted as one-step acidic hydrolysis according to Lorenz
et al. (2016). Therefore, 100 mg of the lyophilizate were added
to 10 ml demineralized water and were homogenized in an
ultra-sonic water bath. Afterwards, 1.8 ml H2SO4 was added
and the samples were hydrolyzed in an autoclave for 40 min at
120°C and 0.12 MPa. After autoclaving the samples were
cooled down to room temperature, filtered through G4
sintered glass frites and were collected for borate-HPAEC
carbohydrate analysis. The residue was collected in the
sintered glass frit and was determined gravimetrically after
drying at 105°C ± 3°C over night.

Chromatographic Methods
For the detection of carbohydrates borate-HPAEC (Dionex™
UltiMate™ 3,000, Thermo Fisher Scientific™, Waltham, MA,
United States) was used with an anion exchange resin (MCI
GEL® CA08F, Mitsubishi Chemical, Tokyo, Japan) according to
an in-house protocol. Two potassium tetraborate/boric acid
buffers (pH 8.6 and 9.5) were used in different concentrations.
Post-column derivatization was conducted at 65°C and
carbohydrate detection was performed at a wavelength of
560 nm. For more details of this method see also Lorenz et al.
(2016). Oligomers were detected as difference between total free
carbohydrates in the filtrates and total carbohydrate content after
two-step acidic hydrolysis.

Furans, here 5-HMF and furfural, were determined by RP-
HPLC directly after steaming in order to avoid secondary
degradation reactions. Therefore, 20 µL of post steaming
hydrolysate was separated at 25°C for 80 min using an
AQUASIL™ C18 column (250 × 4.6 mm × 5 μm; Thermo
Fisher Scientific™, Waltham, MA, United States). Weak acidic
water and acetonitrile were used as eluents in different
concentrations with a flow rate of 1 ml/min−1. For a more
detailed description of the used method see Krafft et al. (2020a).

Ion chromatography for organic acid detection was performed
using a Dionex™ ICS 2000 with an IonPacTM AS11-HC (2 ×
250 mm) anion exchange column (Dionex, Sunnyvale, CA,
United States). Potassium hydroxide (KOH) reaching from 1
to 70 mM was used as eluent with a flow rate of 0.38 ml/min−1

at 35°C.
Size exclusion chromatography was performed according to a

reported method for xylans by Saake et al. (2001). 3 GRAM
columns (8 × 300 mm, Polymer Standards Service) with 30, 1,000
and 3,000 Å pore size were used with a mixture of DMSO and
Water (9:1) and 0.05 mol Lithium bromide. Measurements were
conducted at 60°C and a flow rate of 0.4 ml/min−1 using a
refractive index detector (RI-71, Shodex). For molar mass
calibration pullulan standards (Polymer Standards Service)
were used.

Sample preparation for GC/MS analysis was conducted as
thermally assisted hydrolysis and methylation (THM) using
tetramethylammonium hydroxide (TMAH) according to
Becerra and Odermatt (2013). Therefore, 120 µg of the sample

TABLE 1 | List of pretreatment conditions and corresponding severity factors.

Temperature [°C] Time [min] Severity factor

160 10 2.77
170 10 3.06
180 10 3.36
190 10 3.65
200 10 3.94

TABLE 2 |Composition of the used lyophilizates in % based on the filtrate fraction.

Log R0 Gluc Xyl Arab Othersa Residue

CS

2.77 12.2 3.7 2.7 3.7 9.1
3.06 10.9 7.3 3.6 3.5 11.9
3.36 8.7 13.9 4.7 3.5 11.8
3.65 5.4 23.1 3.0 3.0 9.5
3.94 5.2 24.2 2.4 3.0 1.5

MS

2.77 59.1 3.3 2.0 0.5 2.2
3.06 55.7 6.4 2.2 0.7 3.1
3.36 51.5 9.6 2.2 1.2 5.5
3.65 52.5 9.6 1.8 1.1 5.8
3.94 47.3 8.9 1.4 1.1 7.2

aContaining Rhamnose, Galactose, and Mannose.
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were prepared with 10 µL TMAH (10% in water) and was dried
for 12 h above P2O5.

THM-GC/MS was performed using a Frontier Lab Micro
furnace Multi-shot pyrolyzer (EGA/Py-3030iD) combined with
an autosampler (AS-1020 E). The pyrolysis system was interfaced
to a GC/MS (6,890/5973N Agilent Technologies, United States).
The temperature for thermochemolysis was set at 350°C, interface
temperature at 330°C, the inlet and the GC/MS interface
temperature were kept at 320°C. A low polarity ZB-5HT
column (30 m × 0.25 mm i. d., 0.25 µm film thickness) was
used with helium as carrier gas. The split ratio was set to 30:1.
A flow rate of 1 ml/min was set for gas chromatographic
separation. Oven program starts with 4 min at 45°C, changes
to 5°C/min up to 340°C and kept 15 min at 340°C. Mass spectra
was determined by a 5973 N agilent inert MS with 70 eV electron
impact ionization energy. Scan range was 15–550 m/z. Evaluation
was performed using an in-house and NIST 20 database.
Therefore, substances were detected as methyl derivatives.

RESULTS AND DISCUSSION

Size Exclusion Chromatography (SEC)
SEC was applied in order to investigate the influence of increasing
steaming severity on the molar mass and molar mass distribution
of components dissolved in the filtrate of CS and MS. In that
context, Figure 1 and Table 3 depict the molar mass distribution
of CS and MS filtrates.

The intensity and shape of the molar mass distributions for the
CS filtrate (Figure 1A) indicated, that an increase of severity from
log R0 � 2.77 to 3.65 result into a continuous increase of the peak
area correlating with an increased amount of dissolved
components. The weight average molar mass (Mw) is
continuously reduced from 7,900 g/mol to 4,900 g/mol
(Table 3). The molar mass distribution curves are very broad
with a dispersity of 13.4 for the lowest severity (Figure 1A,
Table 3). The dispersity decreases with increasing severity
parallel to the Mw reduction. At the highest severity of log Ro
3.94 an increased degradation of extracted components is
apparent. The high molar mass shoulder in the elution profiles
disappears while low molar mass components are more
prominent. This shift results in a low molar mass of 1,100 g/
mol and a low dispersity of 2.1.

A more complex picture emerges for the molar mass
distribution of MS filtrates (Figure 1B). At the lowest severity
of log R0 � 2.77, a pronounced high molar mass peak is visible
around 21 ml. Krafft et al. (2020b) reported a starch content of
38.6% for the used rawmaterial. It can be assumed, that due to the
solubility of starch, high amounts of starch or rather big starch
fragments are present in the hydrolysate. This high molar mass
fraction in the rather broad distribution curve results in a high
Mw of 100.000 g/mol and show a high dispersity of 20.1 (Tab. 3)
as well. This starch is degrading successively with increasing
severity and the peak is shifting to higher elution volumes.

Again, with higher severity an increased peak area is indicating
a higher proportion of dissolved components. At highest severity,

FIGURE 1 | SEC elution profiles of filtrates obtained from CS (A) and MS (B).

TABLE 3 | Average molar mass (Mw) in g/mol and dispersity (Đ) measured by SEC for CS and MS filtrates.

Log R0 CS MS

2.77 3.06 3.36 3.65 3.94 2.77 3.06 3.36 3.65 3.94

Mw 7,900 7,500 6,850 4,900 1,100 100.000 60.400 59.600 44.000 12.900
Đ 13.4 10.3 8.5 5.6 2.1 20.1 20.5 28.1 30.6 13.4
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the highest proportion is attributed to low molar mass
components eluting between 30–32.5 ml again. However, in
contrast to CS, MS filtrates still contain high molar mass
components, even at the highest severity. Therefore, even at
log R0 � 3.94 the Mw and the dispersity remain high with
12.900 g/mol and 13.4, respectively (Tab. 3).

In earlier works, Puls et al. (1985) investigated the influence of
an increasing severity on the so called “hemicellulose fraction” of
birch. The authors also report a shift to lower molar masses with
an increase of the severity. Similar results were reported e.g. by
Montané et al. (1998) after steam explosion of wheat straw. The
authors performed SEC for washing water, which is similar to the
filtrate in this study. They also report a strong decrease of the
molar mass with severity, starting with anMw of around 11.000 at
a severity of log R0 � 3.39 and resulting in anMw of 400 at log R0 �
4.13. Montané et al. (1998) describe the molar mass decrease with
depolymerization reactions of compounds with higher molar
mass to oligomers and monomers. The hydrolytic cleavage of
the glycosidic bonds of cellulose and hemicelluloses during
steaming to monomers and the further degradation to e. g., 5-
HMF and furfural is therefore described in the literature (Li et al.,
2005). As main reaction of the lignin, also β-O-4′ structures are
depolymerized during steaming and the solubilized lignin occurs
in the filtrate (Montané et al., 1998; Li et al., 2007).

In summary, a decrease of Mw with increasing severity is
visible for both samples. Nonetheless, filtrates from MS
consistently show much higher molar masses compared to CS.
The primary driver for that finding is most likely starch from the
kernels in the silage fraction.

Monomer and Oligomer/Polymer Detection
The detection of free monomeric carbohydrates in the filtrates
after steaming was performed to calculate the oligomer/polymer

fraction. Therefore, the known carbohydrate content after acidic
hydrolysis was compared with the detected monomers prior to
hydrolysis. The difference between these two values represents
the oligomeric/polymeric carbohydrate fraction. Oligomers,
especially xylooligomers, are also reported as inhibitory
compounds for cellulases (Kumar and Wyman, 2009). For this
reason, oligomers are mentioned in this section (Figure 2).

Different developments are described in Figure 2. High
carbohydrate contents, as mentioned before originating from
soluble starch, were determined in the MS filtrate. The relative
oligomer/polymer proportion varies between 97.8% (log R0 �
3.06) and 94.3% (log R0 � 3.94). The highest absolute
monosaccharide content of 2.3% was detected in filtrates
treated at the highest severity. However, at this severity, also
the total carbohydrates in the filtrate are reduced, indicating
intensified degradation reactions at high pretreatment conditions.
In contrast, CS filtrates show much lower total carbohydrate
contents. Lowmonomer values are detected up to a severity of log
R0 � 3.65, with a relative oligomer/polymer proportion
approximately at 90%. At the highest severity (log R0 � 3.94),
the absolute monomer content is equal to reported for MS
filtrates. At this severity, the oligomer/polymer proportion is
around 77% of the total carbohydrates.

Several authors mention the changes of mono- and oligomer
ratios during steaming. Known mechanisms for polymer
degradation to oligomers/monomers are hydrolytic processes,
leading to a cleavage of the glycosidic bonds of the polymers, e. g.
cellulose and hemicelluloses (Li et al., 2005). Romero-García et al.
(2016) investigated olive leaves pretreated between 180 and
220°C. The authors reported the highest carbohydrate recovery
for pretreatment conditions of 180°C for 10 min. At this point,
64% of the released carbohydrates originated in the oligomeric
form. The authors found oligomer contents above 60% for all

FIGURE 2 | Effect of steaming severity on monomer and oligomer/polymer ratio in filtrates obtained from CS and MS.
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examined conditions. Sharma et al. (2015) compared the
influence of sulfuric acid impregnation on the oligomer
release from rice straw. After a pretreatment at 200°C for
10 min (log R0 � 3.94), they found 60% of the pentoses as
oligomers and 75% of the hexoses, respectively. After
impregnation with sulfuric acid and pretreatment at 180°C for
10 min, much lower values of oligomers (20.5% pentoses, 40.4%
hexoses) were determined. The authors concluded that catalyzed
steaming conditions are beneficial in order to avoid inhibition by
oligomers for subsequent processes. Nunes and Pourquie (1996)
compared steam explosion of Eucalyptus globulus (LABILL.) wood
chips with and without acid catalysts. They concluded that
higher severities are needed under non-acidic conditions for
the same carbohydrate release from the substrate and efficient
following EH. Furthermore, they reported, that an efficient
oligomer hydrolysis was not detected under non-acidic
conditions. For steam explosion experiments of sunflower stalks
without acid catalysts Ruiz et al. (2008) report an average of 90%
oligomers in the filtrates. These data is quite similar to the present
study. The authors postulate for such high oligomer contents the
necessity of a so-called “posthydrolysis” to make the oligomers
accessible for fermentation approaches. These considerations for
filtrates with high oligomer/polymer values can be adopted for the
filtrates investigated in the present study.

Detection of Inhibitors
Weak Organic Acids
Organic acids and furans are often mentioned as the main
inhibitor fractions with amounts of 82–96% of all inhibitors
(Zhang et al., 2013). However, acetic and formic acid were
identified as the main organic acids in the process. Acetic acid
originates therefore from hemicellulose-related acetyl groups.
Due to autoionization of water between 150 and 230°C,
hydronium ions are formed. These ions work as catalysts and
conduct a cleavage of the hemicellulose bonded acetyl groups.

Further, hydronium ions originating from acetic acid also act as
catalysts for the degradation of polysaccharides. Formic acid is
formed by degradation of furfural and 5-HMF, originating from
pentose and hexose degradation (Pedersen and Meyer, 2010;
Rasmussen et al., 2014). Since the dilution of the hydrolysate
differs after the steaming, all results were calculated as % RM.
Figure 3 shows acetic and formic acid calculations for both, MS
and CS filtrates.

An increase of formic and acetic acid, as main aliphatic
carboxylic acids, appears with increasing severity. Acetic acid,
originating from acetyl groups of xylan hemicelluloses in the used
CS, is increasing from 1.47% RM up to 2.79% RM. For MS, the
liberated acetic acid concentration is lower and increases from
1.03% RM up to 1.76% RM. Similar developments occur for
formic acid, although at lower levels between 0.27–1.20% RM for
CS and 0.07–0.23% RM forMS. The increase of organic acids with
an increase of the applied severity is also reported on in the area of
expertise’s literature. Hagel and Saake (2020) report similar
trends for steam refining between log R0 � 2.47 and log R0 �
3.95 of poplar and spruce wood chips. They report acetic acid
contents of 0.18–1.83% RM for poplar and 0.04–0.7% RM for
spruce, respectively. Further they report formic acid contents
between 0.02–0.37% RM (poplar) and 0.02%–0.26 (spruce).
Whereas the trends are similar, the acid contents are lower
compared to the present study. Steam explosion experiments
with sunflower stalks between log R0 � 3.05 and 4.53, reported by
Ruiz et al. (2008), show strong increases, mainly between
severities of log R0 � 3.64 and 4.23. However, whereas the
acetic acid are in an equal range, the formic acid
concentrations of Ruiz et al. (2008) are significantly higher
compare to this study. Summarizing, the trends found in this
study and in available literature, an increased formation of weak
acids for higher severities is generally reported. However, the
absolute amount of weak acids formed depends on the used
substrate.

FIGURE 3 | Effect of steaming severity on the acetic and formic acid content of CS and MS filtrates.
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Regarding the inhibitory effect of the organic acids on
enzymatic hydrolysis and subsequent fermentation to ethanol,
Cantarella et al. (2004) report, that acetic acid concentrations of
2 g/L did not affect the activity of enzymes. Feng et al. (2012) also
found no inactivation using an acetic acid concentration of 2 g/L
and Oliva et al. (2003) tested 10 g/L without reduction of the
ethanol production. Captured in Figure 3, more than 2.5% RM
(CS) and more than 1.5% RM (MS) acetic acid were found at the
highest severity and a dilution of the obtained filtrates may be
necessary. However, formic acid shows a strong influence for a
lactic acid fermentation at concentrations of 0.1 g/L using bush
clovers (Lespedeza crytobotrya MIQ.) stalks (Feng et al., 2012). In
the present data, around 1.2% RM (CS) formic acid were detected.
However, less containing formic acid were determined for the MS
samples. A dilution or detoxification of the filtrates, mainly from
CS, is therefore needed prior to fermentation.

Due to the known mechanism of hydronium ion formation,
process conditions below 150°C may be beneficial to prevent
autoionization and acetic acid formation in steam refining
processes. Nonetheless, Krafft et al. (2020b) tested steam
refining below 150°C for MS and found nearly stable values
for acetic acid. Therefore, free lactic acid in the ensiled sample
may be responsible for degradation reactions and the cleavage of
hemicellulose-bonded acetyl groups. Therefore, lactic acid is
usually not formed during steaming. Nonetheless, it is known
as inhibitor formed during fermentation processes (Cubas-Cano
et al., 2020). It is important to know that the filtrates obtained
fromMS contain relevant amounts of lactic acid originating from
the raw material. Krafft et al. (2020b) point out lactic acid
contents for the used filtrates between 5.87% RM (log R0 �
1.59) and 4.79% RM (log R0 � 4.12) with a slight decrease for
higher severities. Due to the knowledge of lactic acid naturally
occurring in MS, lowering organic acid fractions in the process
conditions being beneficial to the CS process, but superfluous
towards the MS process, seems like a plausible hypothesis.

Furan Derivatives
Further degradation products of the carbohydrates are the furan
derivatives 5-hydroxymethylfurfural (5-HMF) and furfural. 5-
HMF is known as one of the most important molecules obtained
from biomass and is reported to be formed under acidic
conditions from the dehydration of mainly monosaccharides.
Further reactions, like the formation to levulinic and formic acid
or the polymerization of 5-HMF and intermediates to humins are
reported (Souza et al., 2012). Further, Danon et al. (2014) report
mechanisms and kinetics of furfural formation from pentoses by
dehydration. However, the authors show multiple options for the
formation of furfural deriving from pentose.

Values for furan contents in the filtrates after steam refining of
CS and MS were reported by Krafft et al. (2020a) and Krafft et al.
(2020b). Due to the known instability, furans were detected
directly after steaming in the filtrates. Further a recalculation
to the biomass input was performed for better comparability.
Fufural and 5-HMF are known inhibitors. From experiments
with the filtrate of poplar, steam exploded at 210°C for 4 min,
Oliva et al. (2003) report, that furfural is twice as toxic than 5-
HMF. However, experiments indicate the relevance of these

products. They will therefore be briefly compared and
discussed for the sake of completeness.

As illustrated in Figure 4, increasing numerical values for 5-
HMF and furfural are detected. Hagel and Saake (2020) show
similar developments for the mentioned furan derivatives after
steam refining at different severities of poplar and spruce.
Therefore, furfural contents are quite similar and at the
highest severity (log R0 � 3.94) around 0.15% RM furfural is
reported for both, poplar and spruce. Much lower values for 5-
HMF are reported by the same authors, resulting in
approximately 0.05% RM 5-HMF at a severity of log R0 � 3.94.

From the known mechanism of 5-HMF and furfural
formation under acidic conditions, steaming under neutral
process conditions may be a suitable way for furan derivative
reduction. Hagel and Saake (2020) report steam refining of waste
MDF between pH 7 to 8 with nearly no measured furfural and 5-
HMF production. Due to known degradation reactions provoked
by low or high pH values, neutral conditions may be a way for
process optimization to prevent both, furan derivative formation
and cellulose/hemicellulose degradation.

Phenolic Compounds
As mentioned before, phenolic degradation products and
fragments are determined in the filtrates originating from the
plant lignin. In Figures 5A,B the relative peak areas of the
relevant inhibitory phenolics in GC/MS data after TMAH
derivatization are depicted.

Origins and formation mechanisms of the measured
compounds are commonly reported on in various
publications. Nonetheless, in regards to lignified biomass and
maize silage, containing kernels, multiple origins especially for
ferulic acid are possible. For lignified substrate, ferulic acid is
linked covalent to lignin and originates from the oxidative attack
of coniferyl alcohol (Mathew and Abraham, 2006). Ferulate esters
are reported as major linkages in grasses with the formation of
“lignin-ferulate-polysaccharide”-complexes (LFP) (Ralph et al.,
1995). Ferulic acid occurs also in maize kernels and therefore, the
kernels in the maize silage are a further origin of ferulic acid (Sen
et al., 1991). The conversion of ferulic acid to vanillin is reported
with six different pathways for conversion (Mathew and
Abraham, 2006). Vanillin is further reported as
depolymerization product of lignin, obtained e.g., by oxidation,
alkaline processes or severe temperature/pressure conditions.
However, a confirmed reaction mechanism is reported
controversial since many parameters influence the reaction
sequence (Fache et al., 2016). Also, the cleavage of β-O-4′
bonds is reported to be a mechanism for the depolymerization
of lignin to vanillin and vanillic acid (Rinesch et al., 2017).
p-coumaric acid is reported to be a naturally present
hydroxycinnamic acid in the cell walls of wood like ferulic
acid as well (Lam et al., 2001). The formation of 4-
Hydroxybenzoic acid is reported by Rasmussen et al. (2016).
The authors show a cleavage of lignin side chains and the
formation of 4-Hydroxybenzoic acid after hydrothermal
treatment. It is to be mentioned, that follow-up sequences
between other degradation products are possible. (Rasmussen
et al., 2016). Closing, 4-Hydroxybenzaldehyde is described as
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aldehyde monomer of lignin (Hu et al., 2018) and syringic acid is
reported as small phenolic degradation fragments from S and
G-type lignins (Longe et al., 2020).

As stated, ferulic acid and p-coumaric acid represent the
main phenolic molecules detectable in the filtrate. These
fractions show the most significant change in
concentrations with increasing severity. For CS, a high
proportion of p-coumaric acid is found at low severity
which decreases constantly at harsher reaction conditions.
This indicates that p-coumaric acid is easily released from the
lignin but undergoes secondary reactions, like degradation or
reactions with other degradation products, at harsher
conditions. Ilanidis et al. (2021) investigated hydrothermal

pretreatment of wheat straw and found a reduction of
p-coumaric acid at temperatures higher than 190°C. In the
present study, ferulic acid is also increasing up to a severity of
log R0 � 3.65 and is then decreasing at the point of the highest
severity. For MS both compounds show an increase up to log
R0 � 3.36 followed by a reduction at the highest severity.
However, in general these compounds were detected in much
lower levels compared to corn stover filtrates. In that context
Gong et al. (2012) also report degradation and
polymerization of phenolic compounds at higher severities.
Early works of Fiddler et al. (1967) report 4-methylguaiacol,
4-ethylguaiacol, 4-vinylguaiacol and vanillin as thermal
degradation products of ferulic acid.

FIGURE 4 | Effect of steaming severity on the concentration of furan derivatives (furfural and 5-HMF) in the filtrates obtained from CS and MS.

FIGURE 5 | Peak area % in GC/MS of the main phenolic compounds for CS (A) and MS (B). The peak area is calculated as percentage based on the area of the
whole chromatogram.
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Further lignin degradation products, like 4-
hydroxybenzaldehyd, 4-hydroxybenzoic acid, vanillin, vanillic
and syringic acid are nearly stable for CS independent
regarding the severity. These compounds were found in low
amounts below 1% peak area. For the MS filtrates after steam
refining, a more complex picture was obtained. A constant
decrease with severity increase is visible for 4-hydroxybenzoic
acid indicating secondary reactions. Syringic and vanillic acid are
slightly increasing with the increasing severity. A noticeable
increase of 4-hydroxybenzaldehyde is also reported by Ilanidis
et al. (2021) for hydrothermal pretreatment of wheat straw. The
authors suggest that phenolic degradation products with only one
carbon side chain are not as sensitive for further degradation as
compounds with longer side chains.

Zhang et al. (2013) also describe the influence of temperature
and time on the behavior of the mentioned inhibitors. With
increasing severity, they report increasing amounts of syringic
acid and 4-hydroxybenzaldehyde, while stable figures were found
for vanillin. Furthermore, a strong decrease with higher severities
was reported for p-coumaric acid. Vanillic and 4-hydroxybenzoic
acid were not found by Zhang et al. (2013).

Comparing both substrates, much lower amounts of phenolic
degradation products occur in MS filtrates (Figure 6). This is in
accordance with the different lignin content of the two raw
materials. Krafft et al. (2020a) report 19.3% lignin for the used
CS, whereas 11.9% lignin are reported for the MS (Krafft et al.,
2020b). With that in mind, higher proportion of phenolic
degradation products could be expected for CS filtrates and it
can be assumed, that the usage of substrates with low lignin
contents is beneficial for the process. However, also a
delignification of the substrate before steam refining is

conceivable and is further known to enhance the enzymatic
accessibility (Krafft et al., 2020a).

Further Compounds Detected by GC
Beside the aforementioned inhibitors, further noteworthy
compounds were detected. Propane-1,2,3-tricarboxylic acid
was detected in MS samples most likely as breakdown
product of a water soluble fumonisin. Fumonisins are known
mycotoxins in maize, originating from a contamination with the
mold fungus Fusarium verticillioides (SACC.) NIRENBERG (formerly
Fusarium moniliforme), which is a common fungal pathogen in
corn (Viquez et al., 1996; Munkvold and Desjardins, 1997;
Marasas et al., 2004). Whereas the influence of such toxins is
investigated for human beings or livestock, consuming
contaminated maize, the possible influence for
microorganism in biorefinery contexts is subject of recent
research (Salati et al., 2014; De Gelder et al., 2018; Giorni
et al., 2018) and up to now, depending on the fumonisin
concentration, no or less negative influence of mycotoxins
was found for biogas (Ferrara et al., 2021) and ethanol
fermentation processes (Bothast et al., 1992).

Further compounds which also show an increase with
increasing severity are e.g. 3,4-dihydrocoumarin-6-ol or
alginetin. 3,4-dihydrocoumarin-6-ol is also reported by Oudia
et al. (2007) in a Pyrolysis-GC/MS study of eucalyptus kraft pulps
and by Kouhi and Shams (2019) after co-pyrolysis of bagasse and
waste heavy paraffin. Alginetin is therefore reported as
“caramelization product”, originating from pentoses and
hexuronic acids after thermal treatments (Doi et al., 2020).
However, both compounds are not mentioned in the context
of inhibitory effects in the literature.

FIGURE 6 | Summarized peak area % of the main phenolic compounds detected by GC/MS for CS and MS filtrates. The peak area is calculated as percentage
based on the area of the whole chromatogram.
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CONCLUSION

Concluding this studies data, several inferences can be
highlighted. Firstly, the obtained SEC data show a decrease of
the molar mass of both samples with increasing severity. High
molar masses around 100.000 g/mol were determined at the
mildest condition for MS filtrates, with a reduction to
12.900 g/mol at the highest severity of log R0 � 4.12. Values
for CS filtrates are much lower but a decrease of the determined
molar mass with an increase of the severity is observed as well.
The reason for the significant difference between MS and CS
filtrates can be most likely attributed to starch from the kernels in
the MS sample. The decrease in the molar mass is provoked by
degradation reactions due to increasing severity and the resulting
pH reduction induced by liberated organic acids in the filtrate.

The analysis of the ratio of monomers vs. oligomers/polymers
in the obtained filtrates revealed that only for corn stover, treated
at the highest severity, a significant amount (23% of the available
carbohydrates) is obtained as monomers. All other conducted
pretreatments lead to an oligomer/polymer content higher than
90%. Most of the carbohydrates are therefore not accessible for
microorganisms. An EH prior to fermentation is a mandatory
requirement for the obtained filtrates. However, processes like
biogas production can be considered for the utilization of the
filtrates, too.

Several observations were made for inhibitors in the
filtrates. For the weak, organic acids mainly acetic and
formic acid are in the focus for causing inhibitory effects.
From the literature it is known that already concentrations of
0.1 g/L formic acid cause inhibitory reactions and a reduction
of microbial activity. In the present study, relevant formic
acid amounts were detected in the filtrates. Therefore, for the
highest concentration (CS, log R0 � 3.94) a dilution is
required to prevent effects, caused by the formic acid.
Moreover, a detoxification or dilution of the obtained
filtrates is necessary for further process steps in the
context of a biorefinery concept. Considering the found
furan derivatives and phenolic compounds, relevant
amounts of both were found in the analyzed filtrates.
Furfural increased up to 0.14% RM (CS) and 0.10% RM
(MS). 5-HMF show an increase up to 0.14% RM (CS) and
0.24% RM (MS). Both compounds result from the
degradation of pentoses and hexoses. A total amount of
approximately 8% peak area can be put down to
inhibitory, phenolic compounds for CS and 4–5% for MS,
respectively. MS was proven to contain less phenolic
compounds, mainly due to lower lignin contents in the
raw material. However, the inhibitory activity on model
organisms is subject to further research where steam
refining filtrates must be tested in the context of EH and
fermentation. Nonetheless, a direct fermentation is reported
as insufficient, and a detoxification of similar filtrates was
reported as a necessity within the literature.

Comparing both substrates, MS is beneficial with view to
inhibitory degradation products in the filtrates. Formic acid

concentrations are much lower and fewer contaminations with
phenolic compounds were obtained as degradation products
from lignin. Besides of fewer inhibitors the MS filtrates have
higher carbohydrate fractions. Indicating them to be more
attractive compared to the CS filtrates. For further research, a
comparison of MS and CS with CS silage is a topic of interest. CS
silage might combine the benefits of both substrates investigated
in this study, precisely a high accessibility of the substrate, the
declaration as agricultural residue and the possibility of storage
and full-year biomass supply.
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