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Conduction in the Heart Wall: 
Helicoidal Fibers Minimize  
Diffusion Bias
Tristan Aumentado-Armstrong1, Amir Kadivar   1,4, Peter Savadjiev1,2, Steven W. Zucker3 & 
Kaleem Siddiqi1

The mammalian heart must function as an efficient pump while simultaneously conducting electrical 
signals to drive the contraction process. In the ventricles, electrical activation begins at the insertion 
points of the Purkinje network in the endocardium. How does the diffusion component of the 
subsequent excitation wave propagate from the endocardium in a healthy heart wall without creating 
directional biases? We show that this is a consequence of the particular geometric organization of 
myocytes in the heart wall. Using a generalized helicoid to model fiber orientation, we treat the 
myocardium as a curved space via Riemannian geometry, and then use stochastic calculus to model 
local signal diffusion. Our analysis shows that the helicoidal arrangement of myocytes minimizes the 
directional biases that could lead to aberrant propagation, thereby explaining how electrophysiological 
principles are consistent with local measurements of cardiac fiber geometry. We discuss our results in 
the context of the need to balance electrical and mechanical requirements for heart function.

The heart can be viewed as a mechanical device or as an electrical device, and these must work in concert for 
billions of pumping contractions over an average lifetime. During every beat, the cardiac fiber geometry must 
support safe propagation of the electrophysiological contraction signal, or irregular patterns in the conduction 
wave could lead to potentially deadly arrhythmias1. In the ventricular system, the earliest activation sites are asso-
ciated with the entry points of the Purkinje network in the sub-endocardium2. In the present article, our aim is to 
study how the excitation wave propagates from these sites without introducing directional biases in its diffusion 
component. The answer, we shall show, lies in the helicoidal arrangement of heart wall myofibers.

The heart is largely composed of locally parallel bundles of contractile cardiac muscle cells embedded in an 
extracellular matrix3. Analysis methods from differential geometry have shown that the orientations of these 
fibers approximate a minimal surface in 4, the generalized helicoid model (GHM)4. Such helicoidal fiber geom-
etry affords great mechanical strength5, as the club-like appendages of the mantis shrimp6 and the tough dermal 
armor of certain fish7 illustrate; indeed, the enhanced damage tolerance is leading to applications in material 
science as well8,9.

The organization of the cardiomyocytes (i.e. their local orientation) determines a number of essential proper-
ties of the heart, including the diffusive propagation of the contraction signal and mechanical efficiency10. Several 
studies have postulated mechanistic reasons for the local helicoidal geometry (e.g.11,12) and, from an evolutionary 
perspective, it seems to emerge with the need for high blood pressure in mammals and birds13. Mechanical con-
siderations alone do not suffice, however; cardiac tissue is unique in that mechanical resilience must coexist with 
active contraction and signal propagation.

Electrophysiologically, the cardiomyocyte fibers exert a powerful local effect on the rate of signal propagation: 
diffusion within fibers (and between them via end-to-end connections), is much faster than in directions orthog-
onal to the fibers14–16. Based on this, heart tissue has been modeled as a Riemannian manifold with the metric 
tensor determined by the local fiber direction. An important result17, which we confirm, is that the tissue can be 
approximated by a manifold with negative scalar curvature. Mathematically, this enhances diffusion in abstract 
manifolds18,19 and in the walls of the ventricles17; it also plays a role in models of molecular diffusion20,21.
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In more detail, the effect of the cardiac fiber architecture on diffusion of the contraction signal has important 
physiological and biomedical implications. Disturbances in the signal propagation can lead to ventricular fibril-
lation and death, and the transmural rotation of the fibers can lead to wave breakup and chaotic behavior of wave 
filaments. Taken together, this implies that the fiber geometry could be a potentially dangerous source of destabi-
lization22–26. How the heart wall fiber geometry balances the competing mechanical need for efficient contraction, 
with the electrophysiological requirement that irregular wave patterns be avoided, is an open question.

Classically, the propagation of the excitation signal is described by a reaction-diffusion equation, where the 
diffusion component is anisotropic and spatially varying27,28. Because we are interested in the local behavior 
around the insertion points of the Purkinje network in the endocardium, we focus on the diffusion term and 
introduce the effect of local fiber geometry via a GHM (see Fig. 1). The duality between the diffusion equation and 
Brownian motion (BM) allows us to move beyond the average ensemble behavior to individual sample functions 
and their variance (see Fig. 2). We analyze the properties of BM as an Ito process on the cardiac manifold, and our 
key results are that (i) there is an acceleration effect on the diffusion process due to the GHM structure, (ii) the 
GHM structure minimizes local directional biases in the diffusion component of the conduction wave, and (iii) 
within the heart wall tangent plane, the stochastic component of diffusion, i.e., its variance, becomes isotropic 
very quickly. All three results require that there be transmural rotation of fiber orientation in the heart wall. In 
the end, then, the helicoidal fiber geometry supports efficient mechanical operation11,29 while also reducing direc-
tional biases in electrical signal propagation.

Model
The Generalized Helicoid Model.  To first approximation, the fiber geometry in the left ventricle has long 
been empirically known to show a transmural rotation through the wall, essentially irrespective of position30,31. 
This forms the basis of rule-based models of the ventricular fiber structure as well32. To model this, one can define 

Figure 1.  Left: a rat left ventricle, with a slice of fiber data from diffusion MRI (color denotes transmural 
position). Middle: displays the fiber field (from the white cube of the left inset), as well as a local GHM fit 
(shown as the larger, thicker curves). Right: shows the diffusion behavior in the planes of corresponding border 
color from the central inset (where columns represent times t = 0.02, 0.3, 1.0) using the GHM parameters from 
the local fit (see Fig. 5 for further details).

Figure 2.  Three examples of Brownian motions (BMs) in the GHM manifold, under various speed settings, 
for t = 0 to 0.5 (with 1200 integration steps) with kB = 0.9 and kN = kT = 0. Projections of each trajectory are 
shown on the axial planes in lighter shades. Simulation was computed via an order 1.0 Stochastic Runge-
Kutta algorithm54,55. Left: vf = 3, vt = 1. Right: vf = 1, vt = 1. The line segments on the left represent the local 
fiber directions along the z-axis. Notice that the anisotropic case (left) leads to spatially skewed diffusion, in 
comparison with the behavior of the isotropic case (right). This is particularly noticeable along the x axis, which 
coincides with the fiber orientation at the origin, where each trajectory begins.
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the z-axis to lie along the transmural direction, and define an orientation (or fiber angle) function θ(x, y, z), which 
describes the angle of rotation of the local myofiber at the given position.

The full expression for the orientation function of the GHM may be written as4:

θ =

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
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where kB, kT, kN ∈  are constants (see Fig. 3 for an illustration). The GHM is a local model, which assumes the 
fibers have no component out of the local tangent plane to the wall (i.e. no imbrication angle). It describes a series 
of “planes” of fibers along the transmural axis, corresponding to the local heart wall. Thus, the orientation func-
tion above allows defining the GHM as a vector field33 v : 3 3 → :

θ θ=v x y z x y z x y z( , , ) (cos( ( , , )), sin( ( , , )), 0) (2)

which is illustrated for several parameter values in Fig. 4 using 3D streamlines.
Recent works using diffusion imaging suggest that |kN| and |kT| are quite small across species, whereas kB is 

always distinctly non-zero4,33. In the present article, therefore, we also analyze a GHM where the in-plane curva-
tures vanish (i.e. kT = kN = 0).

Stochastic Calculus on the Cardiac Manifold.  Previous work by Young and Panfilov17 has mod-
eled diffusion propagation of the electrophysiological signal responsible for cardiomyocyte contraction using 
Riemannian geometry. The essence of this approach is to consider distance measures in the heart wall to be 
warped by the local anisotropy of the fibers.

Let  g( , )3  be a Riemannian manifold. Consider the following moving frame field to be a basis for the tangent 
space:
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Then, in this dynamic frame, the metric tensor is given by:

 = − − −g v v vdiag([ , , ]) (4)f t t
2 2 2

which is the inverse of the diffusivity tensor D∼ in local coordinates. In keeping our notation consistent with prior 
work17, we denote the diffusivity entries along the local fiber direction and in the plane orthogonal to the local 
fiber as vf

2 and vt
2, since they are proportional to the squares of the conduction velocities (e.g.34). We further note 

that previous work utilized an orthotropic metric tensor, with a third diffusion speed constant accounting for the 
propagation rate within the laminar sheets of the heart17. Here, we have simplified our analysis by considering 
only one speed in directions transverse to the fiber. Empirical measurements35 showing that the difference 
between vf and transverse propagation speeds were much larger than the difference in speeds within the trans-
verse plane suggest that this simplification is reasonable.

Intuitively, the metric tensor describes infinitesimal lengths and distances on a manifold. In this case, g 
describes the curved space in which the signal moves, where the warping is caused by the presence of the fibers. 
In other words, instead of explicitly modeling the fibers, we model space itself as being intrinsically curved, such 
that the same movement in different directions leads to different distances being covered (with movement faster 
along fibers than orthogonal to them).

On the cardiac manifold, it is possible to describe diffusion as a continuous space-time stochastic process 
using the Ito calculus, which generalizes classical calculus to handle random variables. This is in contrast to the 
standard method of analyzing diffusion in the heart via partial differential equations (PDEs), as it allows probabil-
istic interpretations of propagation behavior that deterministic approaches do not. Informally, the PDEs approach 
describes the macroscopic behavior of diffusion, while the stochastic representation describes the nature of a sin-
gle infinitesimal member of the ensemble that combines to generate the macroscopic average behavior. Another 
advantage is that the stochastic description of diffusion can permit intuitive and analytic understanding, whereas 
the PDEs model is generally analytically intractable.

First, the Laplace-Beltrami operator on a Riemannian manifold (the analogue of the Laplacian in Euclidean 
space) can be defined in local coordinates by

∆ =
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where gij are elements of the inverse metric tensor g−1. Note that the Einstein summation convention is used to 
sum over repeated indices. Then, diffusion on a Riemannian manifold is a stochastic process with an infinitesimal 
generator given by = ∆ /2g 36,37. Further, define the drift coefficient = Γb gi jk

jk
i  and diffusion coefficient 

g 1σ = − , where Γ jk
i  are the Christoffel symbols. Then the following system of stochastic differential equations 

(SDEs) describes a diffusion process on the manifold37,38:
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where i ∈ {1, 2, 3} and Bt is a three-dimensional Wiener process, i.e. B t(0, )t
i ∼ . The Ito process defined by this 

system of SDEs describes the behavior of diffusion on the cardiac manifold.

Diffusion on the Cardiac Manifold.  Classically, the propagation of the contraction signal in the heart can 
be modeled as a reaction-diffusion equation, with a spatially varying diffusion tensor D (with components Dij) 
depending on the local fiber orientation27,28, via
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where Ψ
→

, Φ are non-linear reaction functions describing the cardiomyocyte electrophysiology, while u and v→ 
track cellular activation state variables, and the first term is generated by the standard anisotropic diffusion gen-
erator =
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 . Such studies tend to convert between the diffusion PDE and Riemannian geometric rep-

resentations by defining the metric to be the inverse diffusivity tensor, with components Dij. However, from a 
stochastic perspective, it can be shown that a more natural approach is to consider the metric tensor to be the 
adjugate matrix of the diffusion tensor39,40, as it expresses isotropic diffusion in the curved space as anisotropic 
diffusion in Euclidean space.

There is a deep duality between the heat (isotropic diffusion) equation and BM on the cardiac manifold: the 
heat kernel, i.e. the fundamental solution to the heat equation ( )u 0

t
− =∂

∂
, is exactly the transition density 

function of BM on the manifold38,41. More intuitively, we can formalize the notion that the heat equation describes 
the expected behavior of an ensemble of BM processes by noting that = u t x f X( , ) [ ( )]t x,  solves the manifold 
heat equation with initial conditions u(0, x) = f(x), where Xt,x is a BM on the manifold starting from x37,42. Thus, 
analysis of the Ito diffusion process above corresponds to understanding the heat equation on the manifold, 
which comprises the diffusion term in the reaction-diffusion equation above. Figure 5 illustrates how the curved 
GHM space affects diffusion from a point in a helicoidal medium, such as from an excitation site of the Purkinje 
network in the endocardium2.

Figure 4.  Illustration of GHM parameter values via streamline plots. Parameters (kN, kT, kB) for each column 
are given left to right as (0.02, 0, 0.7), (0, −0.02, 0.7), and (0, 0, 0.7). Planes (green, red, and blue) are at fixed 
points on the z-axis (i.e. normal to the transmural direction z, in the heart). Notice the in-plane fanning and 
bending effects, respectively, of the in-plane curvatures kN and kT, and the transmural turning induced by kB.

Figure 3.  An illustration of an exemplar GHM, including a depiction of the local transmural direction (i.e. the 
z-axis, parallel to the unit vector k̂), as well as the meaning of the local θ value, determined by the GHM 
orientation function. In this example kT = kN = 0.
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Herein, we focus on the behavior of diffusion on the manifold from a stochastic perspective, to understand 
how the GHM affects contraction signal propagation.

Results
The GHM Manifold Possesses Negative Ricci Curvature.  As noted above, the cardiac tissue can be 
considered a Riemannian manifold with a metric tensor defining spatial distances on the manifold g, warped 
by the presence of the fibers. For any such manifold, the curvature of the space can be measured via the Ricci 
curvature scalar R, which in the case of the GHM is given by (see Supplemental Information (Derivations): Ricci 
Curvature of the Cardiac Manifold)

R
k v v

v

( )

2
,

(8)

B f t

f

2 2 2 2

2=
− −

in agreement with previous calculations by Young and Panfilov17. Since the scalar curvature is spatially constant 
and always negative, it accelerates diffusion propagation on the manifold.

As also noted in previous work17,43, this acceleration can be seen in the fact that, for small t, the volume of 
activated tissue grows as
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where Bt is a metric ball at time t. We note another connection to the speed of diffusion lies in considering the 
short-time asymptotic expansion of the heat kernel p(t, q1, q2), the fundamental solution of the diffusion equation 
( )u 0

t
− =∂

∂
  on the manifold, where t ∈  and ∈q q,1 2

3 . For the GHM manifold, it can be shown that the 
autodiffusion function ht(q) = p(t, q, q) can be expanded as42,44
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when t is small, showing that the local Ricci scalar curvature dominates the local behavior of diffusion on such 
time scales. Recalling that p is the transition density of the Ito diffusion defining BM on the manifold, we again 
see the duality between the stochastic and PDE formulations of the signal diffusing. One can thus interpret ht(q) 
as either the flow of a quantity from a point to itself or the probability of BM staying at q over time. Informally, if 
the probability of staying near a start point q (i.e. ht(q)) is lower, then the diffusion is flowing away from its start 
point q more quickly. As such, in the case that R < 0, notice that the curvature term decreases the value of ht(q), 

Figure 5.  A visualization of the diffusion equation u/2u
t g= ∆∂

∂
 on the GHM manifold, with parameters 

kN = 0.2, kB = 0.9, kT = 0, vf = 3, vt = 1. In this example, values of u are shown (both in color and in vertical 
height) for an excitation given by a delta function at (0, 0, 0), approximated by a Gaussian with σ = 0.01, placed 
at a site on the endocardium (bottom row, z = 0) for t = 0.1, 0.4, 0.8 (left to right), and for a nearby location just 
above it in the heart wall (top row, z = 1) for t = 0.2, 0.6, 1.0. Black lines are the local streamlines of the GHM 
fibers at that z-slice. The vertical height axis is from 0 to 2.5 for the bottom left 3D inset and from 0 to 0.5 for the 
rest. The horizontal domain in all cases are x, y ∈ [−4, 4] × [−4, 4]. Notice the elongating effect of the fibers on 
the behavior of the propagating signal, as well as the asymmetric spreading due to the fiber fanning due to non-
zero kN (e.g. in the lower-right inset).
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meaning that the term is encouraging the diffusion flow to move faster from its start point. Hence, negative R 
relates directly to faster diffusion from a point.

A natural question is whether the GHM optimizes the Ricci curvature in the variational sense, which would 
imply a maximization or minimization of the curvature-derived acceleration of the diffusion rate. Using the 
calculus of variations, we treat the Ricci curvature as a functional on the space of orientation functions. Akin 
to classical calculus, the first variation shows whether an input is an extremal point in function space, while the 
second variation classifies its type. We consider two different function spaces: the set of “planar” fiber fields (with 
no imbrication angle) and the space of general 3D unit vector fields.

Using variational techniques, it can be shown that the GHM lies at a stationary point of the Ricci curva-
ture scalar, in the planar case (see Supplemental Information (Derivations): Variational Analysis of the GHM Ricci 
Curvature). In contrast, in the general space, only the GHM with kN = kT = 0 has vanishing first variation; the full 
GHM is not a stationary point for other parameter values. However, the stationary point is neither a minimum 
nor a maximum, as it fails to satisfy the Legendre condition, which is a necessary requirement for the function to 
lie at an extremum45.

We note that the variational status of the GHM as a stationary point with respect to the Ricci curvature in the 
full space requires the vanishing of the in-plane curvatures (kN and kT). Recent imaging studies with GHM fits 
confirm that these curvatures are small in magnitude4,33. Another example of the importance of the vanishing of 
these curvatures will be shown in the next section, with respect to the drift vector of diffusion on the manifold.

In summary, corroborating previous analyses17, the GHM has a constant negative Ricci curvature, which has 
an accelerating effect on the diffusion process. Our variational analysis of the GHM shows that it always lies at 
a stationary point in the planar space of fiber angle functions, but it is only stationary in the full space when the 
in-plane curvatures (kN, kT) vanish. It is interesting that the GHM lies only at a stationary point, rather than a 
minimum or maximum, perhaps indicating a balance between competing factors, such as wave speed and stabil-
ity. We note that previous studies22,23,26 suggest that increased rate of transmural rotation (determined by kB) may 
be linked to cardio-electrophysiological instability. Hence, although increasing |kB| would accelerate the signal 
propagation, this may not be beneficial to the organism overall.

The Diffusion Drift is Minimized by the Helicoidal Architecture.  The Ito diffusion process of BM on 
a manifold is described by a system of SDEs that is parametrized by a diffusion coefficient σ = −g 1  and drift 
coefficient b gi jk

jk
i= Γ . For the GHM, the former is given by

σ
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where ς = vf + vt and δ = vf − vt, while the latter can be written as
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and b3 = 0, where γ = +k kN T
2 2, which intuitively measures the total local in-plane fiber curvature, 

α1 = −β2 = kN + γx, and α2 = β1 = kT − γy. Thus, to determine when the drift components vanish across the man-
ifold, consider the Euclidean magnitude (i.e. sum of squared components) of the drift vector for the GHM:

b
v v
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γ

γ
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−
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so that b 02
2 =  clearly implies + =k k 0N T

2 2 , which holds only when kN = kT = 0. As such, mathematically, the 
drift vector is zero across the manifold if and only if kN = kT = 0, assuming vf > vt. Hence, the empirical observa-
tion4,33 that kN and kT are small in nature (essentially equivalent to the assumptions of the rule-based model32) can 
be interpreted as a vanishing of the drift vector (i.e. deterministic bias) in the Ito process.

The calculus of variations can also provide insight into the minimization of the magnitude of the drift vector. 
It can be shown (see Supplemental Information (Derivations): Variational Analysis of the Ito Diffusion Drift on the 
GHM Manifold) that, in its most general form, the GHM does not satisfy the Euler-Lagrange equations for the 
Riemannian norm of the drift vector. Yet, if the in-plane curvatures vanish (i.e. kN = kT = 0), the GHM does lie at 
a minimum, since the drift is identically zero. Hence, in the space of fiber angle functions, the minimization of 
the diffusion drift is linked to the vanishing of the in-plane curvatures, similar to the case of the Ricci curvature.

Thus, we have shown two results linking the in-plane curvatures of the GHM to the drift vector. The first 
shows that the drift vector is identically zero across the cardiac manifold generated by the GHM if and only if the 
in-plane curvatures vanish. The second is a complementary result, showing that the full GHM (i.e. with arbitrary 
in-plane curvatures) is not generally a variational minimizer of the drift magnitude, unless kN and kT vanish. As 
such, the empirical findings4,33 that the curvature parameters kT, kN in the tangential plane to the mammalian 
heart wall are small relates also to the minimization of the Ito drift.

In-Plane Variance Becomes Isotropic Exponentially Quickly.  The results above suggest that several 
special properties of the GHM rely on the vanishing of the in-plane curvatures, kT and kN. In this section, we 
restrict to this case, and focus on the interpretation of the transmural rotation parameter kB.
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Although there is no deterministic drift (or convection) component to the GHM encountered empirically (i.e. 
that with vanishing in-plane curvatures, or kN = kT = 0), there is still a stochastic bias in the components of the 
variance vector so that diffusion in some directions is favored over others. We show that for the GHM, as long as 
kB ≠ 0, in the heart wall tangent (xy) plane, this bias is removed exponentially quickly. We also show that the case 
of kB = 0, corresponding to no transmural rotation, is biologically problematic, because then the variance vector 
has a strong constant bias in the fiber direction x.

For the GHM with kN = kT = 0, we obtain the following system of SDEs:

dX k X dB k X dB
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2
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= + +
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See Fig. 2 (left) for sample trajectories obtained by numerically integrating the SDE above. One can see the 
influence of fibers on the diffusion processes, analogous to the acceleration along fibers seen in Fig. 1 (right).

It can be shown (see Supplemental Information (Derivations): Moments of the GHM Stochastic Diffusion 
Process) that the variance of the stochastic process described by these SDEs is given by:
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where =c k v2 B t
2 2 and that the expected value is /constant at zero. See Fig. 6 for plots of the numerical convergence 

of the moments of the process. Notice that the first term of the variance vector has identical components in the 
two in-plane directions x, y in the heart wall tangent plane, with a smaller component in the transmural direction 
z. The second term has components with identical magnitudes in the fiber direction x and the in-plane direction 
y, but with the latter having a minus sign. This causes an increase in variance in the x direction with a correspond-
ing decrease in the y direction. Since the first term in the variance equation above has no dependence on kB, it is 
in fact the second term that relates to the directional bias to the variance vector caused by the transmural rotation 
of fibers.

Now, recall that the variance of a diffusion process can be interpreted as being related to the expected growth 
(movement) of the diffusion in that direction. For instance, the variance of BM in 1D isotropic Euclidean space 

Figure 6.  Variance (solid lines) and means (dashed lines) over time for the x (red/left), y (blue/middle), and 
z (green/right) directions, respectively. Black lines are theoretical predictions. Top row: vf = 3, vt = 1; bottom 
row: vf = 1, vt = 1 (i.e. isotropy). Shaded regions are 99% confidence intervals using large-sample normal 
approximations to the sampling distributions of the sample mean and variance. Simulation parameters are the 
same as in Fig. 1 (bottom right), run 5000 times.
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() is =B t[( ) ]t
2 ; i.e. linear in time. Hence, we can gain intuition about the behavior of diffusion on the GHM 

by examining the asymptotics of the variance as we vary some of the parameters of the GHM diffusion model. As 
a simple case, suppose that vf = vt. Then, as one would expect,  X tv[ ] [1, 1, 1]t t

T2= , meaning the directional 
anisotropy in the variance vector disappears. In particular, if vf = vt = 1, we get the classical result for Brownian 
diffusion in 3. Next, consider the case where kB → 0, so that there is no transmural rotation of fibers in the heart 
wall. It can be shown (see Supplemental Information (Derivations): Moments of the GHM Stochastic Diffusion 
Process) that X t v v vlim [ ] [ , , ]k t f t t

T
0

2 2 2
B

=→  , meaning that growth in the variance vector is accelerated in the fiber 
direction x, whereas it is not in y and z.

We next consider the asymptotic behavior of the terms of the variance vector in time. As t increases, the first 
variance term grows linearly, while the second converges exponentially fast to a constant. This can be interpreted 
as an isotropic linear growth of the variance vector in the heart wall tangent plane (xy) in time, with a reshaping to 
increase the variance of the diffusion process along fibers in the direction x while decreasing it across them in the 
direction y. However, the effect of this reshaping becomes quickly negligible as time increases. We also observe 
that this effect is identical to that of increasing kB, the helicoidal fiber rotation rate. Intuitively, a larger kB means 
greater homogeneity in x and y, converging to a growth averaging the diffusion rates in the fiber and non-fiber 
directions. Thus:

 ≈
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t
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as long as kB, vt, vf ≠ 0.
Hence, in the heart wall tangent plane, the diffusion variance asymptotically expands at the average of the 

accelerated and non-accelerated squared rates, v v( )/2f t
2 2+ ; i.e. growth expands at the same rate in the x and y 

directions. Intuitively, the fibers create a local directional bias initially, but this vanishes exponentially fast into an 
isotropically accelerated propagation pattern in the heart wall tangent plane. We also showed that the bias of the 
variance vector grows linearly in time when kB → 0, which is the case where all fibers lie along the x-axis (i.e. no 
transmural turning). There is strong empirical evidence that kB is non-zero (i.e. that there is always transmural 
turning of fibers)4,31–33. Thus, similar to how the empirical minimization of kT and kN can be interpreted as mini-
mization of the drift vector b, the presence of non-zero kB can be viewed as reducing the bias of the variance vec-
tor within the heart wall plane.

Our expression for the variance function allows us characterize the timescale of the exponential convergence. 
We can consider the difference between the x and y components of the variance as the in-plane stochastic bias: 
 X X ct k v[ ] [ ] [1 exp( )]/(2 )t x t y B t

2 2δς− = − − . This difference can be seen to converge to a constant 
c k v/(2 )B t

2 2δς=∞  in time, with exponential coefficient c k v2 B t
2 2= . Thus, the time constant of decay is given by 

τ = c−1. To give biophysically plausible values, we use past fits of GHM parameters in the human heart4, which 
show that kB = −0.17 rad/mm, and measurements of cardiac conduction velocities, which suggest a ratio of diffu-
sivities (i.e. ratio of squared wave velocities along vs across fibers) of approximately 4 in the ventricles46. We used 
a diffusivity along fibers of v 3 10f

2 4= × −  m2/s, following a previous model34, so that v v /4 7 5 10t f
2 2 5= = . × −  m2/s. 

As a caveat, we note that measurement of the conductivities is itself a difficult problem, and there is variability in 
the values reported in the literature47,48 as well as spatially in the heart wall46. With these values, we can estimate 
that c∞ = 5.19 × 10−5 m2 and τ = 0.23 s. This result suggests that, while the shrinking of the in-plane stochastic 
bias is exponential, it seems plausible that at least some effect on the wave front due to the anisotropy can persist 
for a non-trivial fraction of the heartbeat. Uncertainty in the measurement of diffusivities as well as their spatial 
variation preclude surety in our conclusion. After approximately τ = 0.23 seconds have passed, the ratio of the 
magnitude of the x (or y) component of the first term in the variance equation to the magnitude of the x (or y) 
component of its second term, is 2.63, meaning that the first (isotropic) term dominates.

In summary, based on our results concerning the drift vector, we restricted our attention to the GHM with 
vanishing in-plane curvatures, and considered the variance of the diffusion process, which can serve as a measure 
of its growth rate along each dimension. We showed the stochastic bias of this process in the heart wall tangent 
plane vanished exponentially quickly, as long as kB ≠ 0. In combination with our results showing the vanishing of 
the deterministic bias (i.e. Ito drift), the shrinking of the anisotropy of the variance vector in the heart wall tan-
gent plane suggests that the helicoidal fiber geometry found in mammalian hearts4,33, where kN, kT ≈ 0 and kB ≠ 0, 
minimizes the diffusion bias.

Discussion
The contraction of myocytes in the heart wall is controlled by current flowing through an elaborate Purkinje net-
work, which raises the question of how current diffuses through the wall around the insertion points. Classically, 
the propagation of the contraction signal is represented using a reaction-diffusion equation with the inverse 
diffusivity tensor as its metric17,27,28. We combined this Riemannian approach with a minimal surface model of 
the cardiac fiber geometry, the generalized helicoid model (GHM)4, and exploited the Ito calculus to describe and 
analyze diffusion on it.

Among our results, we showed that the helicoidal structure of cardiac fibers minimizes local biases in the 
diffusion, both deterministic (embodied by the Ito drift vector) and stochastic (derived from differing x and y 
components of the second moment of the Ito diffusion SDEs). Since the GHM is a local approximation anywhere 
in the left ventricular wall4, one would expect it to not favor biased flow in a particular direction. In line with these 
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theoretical expectations, we find that the GHM with kN = kT = 0 minimizes the Ito drift, providing a natural inter-
pretation for the recent imaging studies that suggest |kN| and |kT| are relatively small across species4,33. Moreover, 
using the variance of the Ito diffusion on the cardiac manifold with vanishing in-plane curvatures, we also show 
that stochastic bias in the heart wall tangent plane shrinks exponentially fast in time, becoming isotropic with a 
rate given by averaging the squares of the speeds along and across fibers.

This solution is also good in a functional analytic sense, for both the drift and Ricci curvature. Using the 
calculus of variations, we showed that the GHM lies at a stationary point of the Ricci curvature in the space of ori-
entation functions, provided the in-plane curvatures are zero. However, it is neither a minimum nor a maximum. 
One might speculate that this is because increased negativity of the Ricci scalar, equivalent to increased transmu-
ral rotation rate (or |kB| for the GHM) could lead to cardiomyopathic disturbances in the signal wavefront as it 
propagates26, such as scroll wave turbulence22,23. On the other hand, there are a number of potential mechanical 
reasons for the presence of the helicoidal structure, including shear wave filtering49,50, energy dissipation6, and 
mechanical efficiency11,29. Thus, the competing effects of changing kB must be balanced to allow safe and fast wave 
propagation, as well as mechanical efficacy. Physical constraints, such as the myocyte size and necessary accom-
panying extracellular matrix structure, which idealized models often do not capture, also affect the structure.

While we have considered a number of properties conferred upon the heart by its helicoidal geometry, there 
are a few limitations inherent to our approach. Currently, we consider only local, static fiber geometry within 
the left ventricle. Our analysis also only considers the diffusion term in the reaction-diffusion contraction wave 
propagation equation, since this is the term that is affected by myocyte orientation and it largely governs the 
local spreading of the signal. In addition, we do not consider the effect of cardiomyocyte laminar sheets, which 
may contribute to both the electrophysiology17,51 and mechanics52 of the heart. Our approach provides useful 
insights, despite these approximations, because the effect of the fibers on diffusion of the contraction signal has 
been empirically shown to be much greater than that of the sheets35. Lastly, the GHM assumes that fibers lie in 
planes tangent to the heart wall. Although this is an acceptable local approximation4,33, some studies suggest that 
the presence of fibers with an out-of-plane component may play a role in cardiac function53. Finally, exploring the 
link between local diffusion bias and long-term wave propagation in the heart is a promising avenue for future 
work.

In the end, our analysis reveals that the GHM arrangement minimizes any in-plane directional biases in the 
diffusion process, provided that there is transmural rotation and small in-plane curvature of the fibers in the heart 
wall. Normally, one might have thought about the orientation of fibers from a purely mechanical perspective. 
However, given the ubiquity of helicoidal arrangements in biology and artificial composites5–9, it should perhaps 
not be a surprise that nature has used this geometry to satisfy both the mechanical and electrical requirements 
of the heart.
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