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The complexity of the eukaryotic protein synthesis
machinery is partly driven by extensive and diverse
modifications to associated proteins and RNAs. These
modifications can have important roles in regulating
translation factor activity and ribosome biogenesis and
function. Further investigation of ‘translational modifications’
is warranted considering the growing evidence implicating
protein synthesis as a critical point of gene expression control
that is commonly deregulated in disease. New evidence
suggests that translation is a major new target for oxidative
modifications, specifically hydroxylations and demethylations,
which generally are catalyzed by a family of emerging
oxygenase enzymes that act at the interface of nutrient
availability and metabolism. This review summarizes what is
currently known about the role or these enzymes in targeting
rRNA synthesis, protein translation and associated cellular
processes.

Introduction

Ribosome biogenesis and protein synthesis are highly orches-
trated and dynamically regulated cellular processes that are
tightly controlled by the modification of key regulatory factors.
Modification of chromatin at rDNA loci controls rRNA produc-
tion,1 the rate limiting step of ribosome biogenesis. rRNA is itself
heavily modified by base and ribose methylation and pseudouri-
dylation, which together likely promote rRNA stability and
translation efficiency.2 Ribosomal proteins and translation factors
are modified by phosphorylation, methylation, hypusination,
dipthamide modification, and others types of modification.3-7

Such a complex array of diverse modifications have likely evolved
to optimize ribosome biogenesis and translational efficiency, to
promote heterogeneity in ribosome populations destined for
alternative tasks,8 and to allow fine control of protein synthesis
rate in response to nutrient availability and stress.9

Growing interest in a family of oxygenases that catalyze
diverse oxidative modifications to DNA, RNA and protein has
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led to the recent discovery that the cellular machinery controlling
rRNA and protein synthesis and protein translation are the target
of hydroxylation and demethylation. This review aims to intro-
duce the family of oxygenase enzymes thought to be predomi-
nantly responsible for such modifications and to summarize what
is currently known about the role of oxygenases in protein
synthesis.

2-Oxoglutarate-oxygenases

Oxygenases whose activities depend on Fe(II), oxygen, and the
Krebs cycle intermediate 2-oxoglutarate (2OG) (‘2OG-oxygen-
ases’) form a family of relatively poorly characterized enzymes
consisting of more than 60 members in mammals.10 2OG-oxy-
genases catalyze site-specific modifications, with specificity being
driven by primary and secondary sequence constraints in the sub-
strate and structural determinants within the enzyme. The cata-
lytic domain of 2OG-oxygenases consists of a ‘double-stranded b
helix’ (DSBH), a structural arrangement that has evolved to pres-
ent specific amino acid side chains within the active site to opti-
mally co-ordinate co-factors and substrate.11 A ‘facial triad’ of
amino acids belonging to the conserved HXD/E. . .H motif
orchestrates iron coordination (Fig. 1A). In the presence of
molecular oxygen, oxidative decarboxylation of 2OG releases
succinate and carbon dioxide and generates a highly reactive Fe
(IV)-oxo intermediate that drives hydroxylation of the prime sub-
strate12 (Fig. 1A). In eukaryotes, currently described modifica-
tions catalyzed via this mechanism are thus far limited to
hydroxylation, and demethylation catalyzed via a hydroxylation
reaction.10 Hydroxylation of a methyl group generally results in
the formation of a highly labile hydroxymethyl intermediate that
rapidly decomposes releasing formaldehyde with consequent
reversal of the methyl modification (Fig. 1B). 2OG-oxygenases
catalyzing demethylation include the JmjC histone demethylases,
important epigenetic modifiers widely implicated in develop-
ment, physiology and disease.13

Possibly the most well-known examples of stable hydrox-
ylation catalyzed by 2OG-oxygenases are prolyl and lysyl
modification of the extracellular matrix protein collagen,14

together with the role of hydroxylation in hypoxia signaling
mediated by the Hypoxia Inducible transcription Factor
(HIF).15 In the latter example, three hydroxylases (PHD1-3)
modify two conserved prolyl residues in the HIFa subunit
that targets it for rapid proteasomal destruction. The activi-
ties of HIFa prolyl hydroxylases are compromised under
conditions in which the availability of the essential co-factor
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oxygen is limited (hypoxia), leading to HIFa protein stabili-
zation.15 Thus, a relatively low affinity for molecular oxygen
imparts an oxygen sensing role on the HIFa hydroxylases,
allowing HIFa stabilization and activation in hypoxia to
drive transcriptional programs that have evolved to bring

about adaption to this important
physiological and pathological stress.15

The role of the HIF hydroxylases in
regulating transcription has highlighted
the potential for gene expression control
by 2OG oxygenases. Indeed, it has since
become apparent that these enzymes tar-
get the cellular machinery governing
gene expression at multiple levels. For
example, several 2OG oxygenases with
nucleotide hydroxylase activity have now
been identified, including the ALKBH
family (see below) and the TET family
that hydroxylate and demethylate 5-
methylcytosine.16 The JmjC histone
demethylases mediate both transcrip-
tional activation and repression at the
level of chromatin.10,13 JMJD6 catalyzes
5-lysyl hydroxylation of mRNA splicing
factor U2AF65, and modulates mRNA
splicing.17-20 This review will focus on
recent literature describing protein syn-
thesis as a major new target of 2OG-
oxygenases.

2OG-oxygenases Target Protein Synthesis

Emerging evidence indicates that in
addition to their role in controlling gene
expression at the stages outlined above,
2OG oxygenases are also involved in
translational control via modification of
rDNA loci, RNAs, ribosomal proteins
and translation factors.

Histone Demethylases Regulate
rRNA Transcription

rDNA transcription is under the con-
trol of several chromatin modifiers,
includingmembers of the 2OG-oxygenase
family.1 KDM2A is a mono and dimethyl
histone H3 lysine 36 (H3K36me1/2)
demethylase (Figs. 2 and 3) localized to
the nucleolus where it binds to the rDNA
promoter and represses rDNA transcrip-
tion.21 KDM2B is a nucleolar H3K4Me3
demethylase (Figs. 2 and 3) that represses
rDNA transcription and cell growth and
suppresses tumorigenesis22 (Table 1). In
contrast, PHF8 is a H3K9me1/2 deme-
thylase (Fig. 2 and 3) that binds to the
promoter region of rDNA to promote

rDNA transcription.23 Thus, the earliest step in ribosome biogene-
sis and protein synthesis is under the control of opposing histone
demethylases of the 2OG-oxygenase family. An intriguing possibil-
ity is that the JmjC demethylases could also act at later stages of

Figure 1. 2-oxoglutarate-oxygenase catalysis. (A) Catalytic cycle. Catalysis requires essential co-fac-
tors Fe(II), molecular oxygen (O2), and the Krebs cycle intermediate 2-oxoglutarate (2OG), together
with the ‘2-His 1-carboxylate’ motif (His-Asp-His) within the active site of the enzyme. Note that one
atom of oxygen from molecular oxygen is incorporated into the product, and that the reaction gener-
ates succinate and carbon dioxide. (B) 2OG-oxygenases catalyze stable hydroxylation (blue box) and
demethylation via hydroxylation (green box) of DNA, RNA, lipid and protein. Note that ascorbate is
required for full activity of a subset of 2OG-oxygenases (hence the smaller font). Hydroxylation of a
methyl group generally creates a highly unstable hydroxymethyl intermediate that decomposes into
formaldehyde (CHOH) and the unmodified residue. The fate of the formaldehyde is not known, but
may be metabolized by formaldehyde dehydrogenase. Note that in some chemical contexts hydrox-
ylation of a methyl group can create a stable hydroxymethyl product, such as that catalyzed by TETs.
The oncometabolite 2-hydroxyglutarate (2HG) can interfere with 2OG-oxygenase function by acting
as an activating co-substrate in some instances, or as a 2OG competitive inhibitor in others. Succinate
and fumarate inhibit 2OG-oxygenases by product inhibition and 2OG competition, respectively.
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ribosome biogenesis. For
example, ribosomes and chro-
matin both consist of charged
nucleic acids in complex with
small basic proteins that are
often rich in lysine and argi-
nine. Similar to histones, ribo-
somal proteins are subject to a
range of methylations includ-
ing arginine and lysine. There-
fore, it is possible that
nucleolar JmjC demethylases
could target methylated ribo-
somal proteins in addition to
histones. Consistent with this
speculation, non-histone tar-
gets have been identified for
JmjC histone demethylases.24

Nucleotide Oxygenases
AlkB is a highly conserved

2OG oxygenase in Escherichia
coli that removes methylation
adducts in DNA using a
hydroxylation mechanism.25,26

It has 8 human homologues,
termed ALKBH1-8. Of these,
3 have currently been impli-
cated in targeting the protein
synthesis machinery. ALKBH2
promotes rDNA transcription
by repairing alkylation damage
associated with rapid transcrip-
tion (Fig. 3).27 ALKBH5
demethylates N6-methylade-
nosine (m6A) (Figs. 2 and 3),
one of the most prevalent
nucleotide modifications in
mRNA and long noncoding
RNA.28,29 N6-methyladeno-
sine is recognized by specific
RNA-binding proteins that
modulate RNA stability, and
mediates widespread gene reg-
ulation.30,31 The function of
ALKBH5 m6A-demethylation
may be related to nuclear
RNA export, perhaps consis-
tent with its nuclear localiza-
tion.29 Loss of ALKBH5 is
associated with defective sper-
matogenesis in mice, consis-
tent with its enriched
expression in the testes.29

Interestingly, m6A is also a tar-
get of the 2OG-oxygenase

Figure 2. Modifications catalyzed by 2OG-oxygenases in ribosome biology. 2OG-oxygenases are in bold above
the arrows, with the corresponding substrate in brackets underneath. Upper panel: Modifications to protein. The
modifications presented in the top row represent histone lysine demethylation by various JmjC histone demethy-
lases. H3KDHistone H3 lysine. meDmethyl group. The second and third rows in this panel represent stable
hydroxylation of amino acid side chains by the indicated 2OG-oxygenases. Lower panel: Modifications to RNA.
Presented in the same format as the upper panel. 5mCD5-methylcytosine. 5hmCD5-hydroxymethylcytosine.
mcm5UDmethoxycarbonylmethyluridine. mchm5UDmethoxycarbonylhydroxymethyluridine. yWDwybutosine.
yW-72Dwybutosine minus 72Da. OHyW*Dundermodified hydroxywybutosine. OHyWDhydroxywybutosine,
formed by attachment of methyl and methoxycarbonyl groups to the aminocarboxyl side chain of OHyW* by
TYW4.
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Table 1. 2OG-oxygenases with targets in ribosome biology and protein synthesis are frequently implicated in disease, particularly cancer. It should be noted
that other substrates of these enzymes may exist in other biological contexts and that the critical targets of these enzymes involved in disease are often
unclear, but may include the translational targets listed. The role of JmjC family 2OG-oxygenases in disease was recently reviewed by Oppermann and
colleagues10

Translational Oxygenase Translation target Diseases

KDM2A rDNA promoter (H3K36me1/2) cancer
KDM2B rDNA promoter (K3K4me3 and H3K36me1/2) cancer
PHF8 rDNA promoter (H3K9me1/2) cancer, mental retardation
ALKBH2 rDNA 1-meA and 3-meC cancer
ALKBH5 mRNA N6-methyladenosine obesity
FTO mRNA N6-methyladenosine obesity, cancer, alzheimer’s, cardiovascular
TET1-3 rRNA 5-methylcytosine cancer, neurodegeneration
ALKBH8 Arg-/Glu-tRNA (mcm5U) —
TYW5 Phe-tRNA (yW-72) —
MINA53 Rpl27a cancer, asthma, autoimmunity
NO66 Rpl8 cancer
OGFOD1 Rps23 –
Jmjd4 eRF1 cancer

Figure 3. Hydroxylation and demethylation events in eukaryotic ribosome biogenesis and protein translation. ALKBH2 is a demethylase that repairs
alkylated rDNA. 3-meCD3-methylcytosine. 1-meAD1methyladenine. KDM2A/B and PHF8 are nucleolar histone lysine demethylases that target rDNA.
MINA53 and NO66 are nucleolar histidyl hydroxylases of the large ribosomal subunit. Ogfod1 is a nuclear prolyl hydroxylase of the small ribosomal sub-
unit. FTO and ALKBH5 are m6A RNA demethylases. TYW5 and ALKBH8 hydroxylate the anti-codon loop of the indicated tRNAs. The ‘?’ under ALKBH8
denotes an as yet unidentified mcm5U hydroxylase. Jmjd4 is a hydroxylase of the translational termination factor eRF1. Note that hypoxia (red box) sub-
stantially regulates translation. Inhibition of prolyl hydroxylases in hypoxia indirectly represses EIF4E (via HIF-dependent mTOR inhibition) while activat-
ing the translation of specific transcripts via an RBM4/HIF2a/eIF4E2 cap-dependent mechanism. The orange ball represents the cap.
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FTO.28 A common variant in the FTO gene was originally identi-
fied as a risk factor for increased BMI and predisposition to obe-
sity32 (Table 1). Gene knockout studies suggest that FTO targets
a specific subset of m6A-containing mRNAs.33 FTO may target
other methylated nucleotides under specific conditions, although
the function of these modifications is not yet known.28,34 Since
FTO is primarily expressed in the brain, and ALKBH5 in the tes-
tes, tissue-specific expression of these enzymes may avoid func-
tional redundancy.

The TET family of 2OG-oxygenases (TET1-3) mediate epi-
genetic DNA modification by converting 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC).16,35 Subsequent,
oxidation to 5-formylcytosine (5fC) and 5-carboxylcytosine can
also bring about full reversal of the methylation. These cytosine
modifications are thought to mediate their biological effects by
modulating DNA duplex stability and DNA-protein (transcrip-
tion factor) interactions,16 which in turn may in part explain the
role of this subfamily of 2OG-oxygenases in cancer and neurode-
generation36 (Table 1). However, it is possible that other targets
of TET enzymes could also be involved. Of interest here is the
fact that 5mC, 5hmC and 5fC are described in databases of
RNA modifications.37 Furthermore, recent evidence suggests
that TET enzymes can indeed catalyze the formation of 5hmC in
RNA38 (Fig. 2), raising the possibility that this class of 2OG-oxy-
genases could also be novel regulators of protein synthesis.

The anticodon stem and loop region of tRNA is subject to a
variety of modifications that optimize tRNA folding, prevent fra-
meshifting and ensure accurate codon selection.39 For example,
the uridine at position 34 at the wobble position of the antico-
don loop in specific tRNAs is modified to 5-methoxycarbonyl-
methyluridine (mcm5U).40 This modification is mediated by the
action of the methyltransferase domain of ALKBH8 on 5-carbox-
ymethyluridine (cm5U).41,42 Interestingly, ALKBH8 is a bifunc-
tional enzyme that also encodes a 2OG-oxygenase domain which
hydroxylates mcm5U to 5-methoxycarbonylhydroxymethyluridine
(mchm5U)43,44 (Figs. 2 and 3). Through its action on tRNA
modification ALKBH8 is proposed to improve decoding of non-
cognate codons44 and to enhance the translation of proteins
enriched in arginine and glutamic acid residues, including key
DNA damage response proteins.41,45 Indeed, loss of ALKBH8
confers sensitivity to DNA damage.41,45 However, the impor-
tance of the 2OG-oxygenase domain in this pathway is unclear,
and will require structure-functional analyses involving comple-
mentation of ALKBH8 null cells with hydroxylase defective
mutants. Recently described transgenic mice with ‘knock-in’
alleles of either methyltransferase- or oxygenase-mutant ALKBH8
will allow such studies.44 Interestingly, this mouse model identi-
fied that mchm5U exists in 2 diastereomers and that only one of
these is catalyzed by ALKBH8. Therefore, an independent
hydroxylase also targets mcm5U, perhaps a different member of
the ALKBH1-8 family.

The gaunosine at position 37 of phenylalanine tRNA is modi-
fied to a tricyclic base with a bulky side chain known as Wybuto-
sine.46 Similar to the cm5U modifications described above,
Wybutosine suppresses frame-shifting and maintains transla-
tional fidelity.47 Wybutosine derivatives include

hydroxywybutosine, formation of which is catalyzed by the
2OG-oxygenase TYW548 (Figs. 2 and 3). However, the function
of hydroxywybutosine is currently unclear. Knockdown of
TYW5 did not confer a gross phenotype in HeLa cells, suggesting
this modification does not play a critical role in bulk translation
or cell growth, at least under normal growth conditions.48 It is
interesting to speculate that TYW5 may be required for the effi-
cient translation of phenylalanine-rich proteins involved in spe-
cific biological process (e.g. nucleoporins), akin to the role of
ALKBH8 in the DNA damage response.

Ribosomal Oxygenases
MINA53 is a 2OG-oxygenase that was recently assigned as a

histidyl hydroxylase of the 60S large subunit protein Rpl27a49

(Fig. 2 and 3). MINA53 was first identified in a microarray
screen for novel Myc target genes, and was subsequently shown
to be required for tumor cell proliferation.50 MINA53 is overex-
pressed in some tumors relative to normal tissues, and high level
of MINA53 expression may be associated with poor patient prog-
nosis in some contexts51-55 (Table 1). However, other studies
have reported that MINA53 overexpression is associated with
favorable prognosis in early stages of lung cancer.52 Therefore,
the exact role of MINA53 in tumorigenesis remains unclear, but
could be highly context specific. MINA53 has also been indepen-
dently studied in other contexts in addition to cancer, including
allergy56 and immunity, where it appears to regulate T-cell differ-
entiation57,58 (Table 1). However, in both cases the molecular
mechanisms involved remain unclear. Although MINA53 was
reported to be a demethylase of H3K9me3,59 detailed biochemi-
cal and structural analyses have raised questions about its bio-
chemical activity.49,60 More recently, unbiased proteomics
coupled to in vitro peptide screening identified Rpl27a as a bona
fide substrate of MINA53.49 Rpl27a is hydroxylated in a
MINA53-dependent manner on a specific histidine residue at
position 39 within a HHH motif (where the hydroxylated resi-
due is underlined) (Fig. 2). Endogenous Rpl27a purified from
human and mouse cell lines, normal mouse and human tissues,
and tumors is hydroxylated to near completion.49 The abun-
dance of the modification may argue against a signaling role and
may be more consistent with a structural function. The modified
residue is located on a disordered loop that extends into the core
of the ribosome. However, higher resolution ribosomal structures
and functional studies are required to pinpoint the role of the
HHH motif and its hydroxylation in Rpl27a function. Interest-
ingly, Rpl27a H39 is adjacent to the residue implicated in cyclo-
heximide binding and sensitivity in yeast,61 although these effects
were not manifest in mammalian cells defective for MINA53 (Dr
Adam Zayer, personal communication). Furthermore, MINA53
knockout mice are viable and fertile,56 suggesting that Rpl27a
hydroxylation is not essential for normal development and
reproduction.

NO66 is closely related to MINA53, sharing 39% sequence
homology overall and 57% homology within the catalytic
domain.62,63 Like MINA53, NO66 is also found in the nucleo-
lus63 and is implicated in cancer cell growth, particularly in non-
small cell lung carcinoma64 (Table 1). Proteomic screens coupled
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to in vitro peptide screening identified the 60S large ribosomal
subunit Rpl8 as a NO66 substrate49 (Figs. 2 and 3). Consistent
with the sequence conservation with MINA53, NO66 is also a
histidyl hydroxylase, modifying Rpl8 at position 216 within a
motif similar to Rpl27a (HQH) (Fig. 2). Endogenous Rpl8 puri-
fied from human and mouse cell lines, normal mouse and human
tissues, and tumors is hydroxylated to near completion.49 Similar
to Rpl27a, the hydroxylated residue is within a disordered loop
that extends into the ribosome, but in this case it is proximal to
the peptidyl-transferase center (PTC), perhaps suggestive of an
important role in translation. Mutation of the corresponding res-
idue in yeast Rpl8 (Rpl2) affects peptidyl-tRNA binding, PTC
activity and confers resistance to the antibiotic sparsomycin.65

However, chronic NO66 knockdown in human cells does not
appear to drastically affect polysome profiles, cell growth or spar-
somycin sensitivity in our hands (Tianshu Feng, personal com-
munication). This disparity could reflect the difference between
non-conservative mutation and a relatively subtle modification.
However, it does suggest that PTC activity is unlikely to be
grossly affected by Rpl8 hydroxylation. Perhaps NO66 activity
and Rpl8 hydroxylation regulate the translation of specific
mRNA’s or simply fine tune the structural integrity of the ribo-
some in the vicinity of the PTC.

In prokaryotes, a 2OG oxygenase named YcFD that is highly
related to NO66 catalyzes argininyl hydroxylation of the 60S
ribosomal protein L16 at position 8149 (Fig. 2). Structural and
phylogenetic analyses indicate that NO66 was likely evolved
from YcFD, and MINA53 from NO66 in a much later gene
duplication event.49,60 Similar to MINA53 and NO66, the func-
tion of Rpl16 hydroxylation is unknown. Rpl16 R81 hydroxyl-
ation is essentially complete in wildtype strains and absent in
YcFD gene knockouts.49 Surprisingly, both knockout and over-
expression of YcFD are associated with reduced growth potential
under some circumstances.49,66

In addition to NO66 and MINA53, a third eukaryotic ribo-
somal protein hydroxylase was recently identified. The 2OG-oxy-
genase OGFOD1 is distantly related to the HIF prolyl
hydroxylases, and catalyzes hydroxylation of an evolutionary con-
served prolyl residue in Rps23, a component of the 40S small
subunit67,68 (Figs. 2 and 3). Interestingly, Rps23 is doubly
hydroxylated by the OGFOD1 ortholog in yeast and algae,69 but
only singly hydroxylated in higher eukaryotes.67,68 Similar to
Rpl27a and Rpl8, Rps23 hydroxylation is essentially complete in
all cells and tissues. The target prolyl residue, corresponding to
Pro62 in humans, is located at the apex of a loop that projects
into the decoding center of the ribosome, which led to the postu-
lation that hydroxylation is required for optimal translational
accuracy.68,69 Using reporters of stop codon decoding as a mea-
sure of translational accuracy it was shown that the inhibition of
OGFOD1 orthologs has variable effects on stop codon read-
through.68,69 OGFOD1 inhibition modestly enhances transla-
tional termination in human and Drosophila cells,67,68 whereas
more dramatic effects were observed in yeast in a bidirectional
manner that was highly context-specific.69 Despite observing no
measurable loss in translational termination efficiency, inhibition
of OGFOD1 in Drosophila and human cells is often associated

with marked translational arrest phenotypes including: reduced
protein synthesis; increased eIF2a phosphorylation; stress gran-
ule formation and autophagy.67,68 Therefore, the role of altered
translational termination in the phenotypes reported was ques-
tioned. It would be of interest to investigate whether other meas-
ures of translational accuracy and decoding might explain the
growth deficits observed. Conversely, the deletion of OGFOD1
ortholog Tpa1 in yeast resulted in substantial changes in transla-
tional termination.69 Although associated growth alterations
were not reported, Tpa1 knockout cells are viable, which suggests
that levels of endogenous stop codon readthrough were compati-
ble with growth in this context.

Further investigation is required to determine whether
deregulated ribosomal hydroxylase activity drives diseases associ-
ated with these enzymes (such as cancer), or explains the complex
phenotypes associated with enzyme ablation in eukaryotes. Some
2OG-oxygenases have multiple substrates, raising the possibility
that other targets may also exist that contribute to the role of
these enzymes in physiology and disease.

Translation Factor Hydroxylases

The first example of a hydroxylated translation factor was dis-
covered in the context of hypusine, a uniquely modified amino
acid only found in eIF5a70 (Fig. 3). Hypusine is formed by the
transfer of an n-butylamine group from spermidine to the lysyl
side chain, followed by hydroxylation.70,71 In this case hydroxyl-
ation is catalyzed by a unique enzyme that is structurally distinct
to 2OG-oxygenases. Deoxyhypuysine hydroxylase is a HEAT-
repeat-containing dinuclear iron enzyme that catalyzes the final
step in hypusine formation in an oxygen- and Fe(II)-depen-
dent,72,73 but 2OG-independent,74 manner.

Consistent with a fundamental role in protein synthesis,
eIF5a has been shown to promote elongation and the translation
of polyproline motifs.75,76 Importantly, the hypusine modifica-
tion of eIF5a is essential for its function,75-78 perhaps related to
the proximity of the modification to the acceptor stem of the P-
site tRNA.75 The importance of eIF5a in protein synthesis and
eukaryotic development and viability is underscored by its evolu-
tionary conservation, with a homolog also present in bacteria
(EF-P). Interestingly, the lysine residue that is modified to hypu-
sine in eIF5a is conserved in EF-P, where it is also subject to an
unusual modification.79 Lysine 34 is post-translationally modi-
fied by a b-lysine residue. Importantly, EF-P and eIF5a modifi-
cations share additional similarities. Following lysinylation,
lysine 34 is modified by a hydroxylase termed YfcM,80 which is
distinct from the eIF5a HEAT-repeat metalloenzyme and struc-
turally unrelated to 2OG-oxygenases.81 Similar to eIF5a, EF-P
has been implicated in elongation and translation of polyproline
tracts.82,83

Recent evidence suggests that the regulation of elongation fac-
tors by hydroxylation extends beyond EF-P/eIF5a: Structure-
directed bioinformatics analyses identified a 2OG-oxygenase in
Pseudomonas related to the HIF prolyl hydroxylases, which was
subsequently shown to target the EF-Tu elongation factor84

(Fig. 2). EF-Tu delivers aminoacyl-tRNA to the ribosome and
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releases tRNA in response to codon recognition.85 Although the
Pseudomonas PHD hydroxylates the Switch I loop of the EF-Tu
GTPase domain,84 no change in GTP hydrolysis was observed
following hydroxylation. Consistent with this, no difference in
global translation rate was detected in a Pseudomonas strain with
a mutation in the EF-Tu hydroxylase. Perhaps hydroxylation reg-
ulates other aspects of EF-Tu functions in translation. Interest-
ingly, EF-Tu hydroxylase mutant Pseudomonas strains exhibit
reduced growth in the presence of iron chelators,84 which may be
consistent with a role of this 2OG-oxygenase in iron sensing and
regulation.

EF-Tu and its structural homolog EF-G share almost
identical binding sites on the ribosome and act sequentially
in the elongation cycle. EF-G is the evolutionary ancestor of
eukaryotic eEF2, an essential factor for eukaryotic protein
synthesis due to its role in promoting the GTP-dependent
translocation of the ribosome.86 As such, eEF2 activity is sub-
ject to tight regulation, including by phosphorylation at thre-
onine 56 within its GTPase domain.87 The eEF2 Kinase is
activated in response to cellular stress such as nutrient and
oxygen starvation by AMP Kinase.87 Interestingly, PHD2,
the oxygen sensing HIF hydroxylase (see above), is implicated
in a pathway that regulates eEF2 T56 phosphorylation in
response to acute hypoxia (Figs. 2 and 3). PHD2 siRNA and
2OG-oxygenase inhibition with a 2OG competitor both
mimicked acute hypoxia by inducing eEF2 T56 phosphoryla-
tion.88 Although the authors of this study speculate that
eEF2 could be a novel PHD2 substrate, PHD2 appears not
to hydroxylate peptide sequences derived from the Switch I
loop,84 and is therefore unlikely to be analogous to the EF-
Tu system in Pseudomonas. Further investigation is required
to unravel the role of PHD2 in regulating signaling to eEF2
phosphorylation.

Taken together, the work outlined thus far in this section
implicates translational elongation factors as highly conserved
targets of structurally distinct hydroxylase enzymes. However, a
recent study also implicates translational termination as a target
of 2OG-oxygenases.89 Jmjd4 is a 2OG-oxygenase whose catalytic
domain is most similar to the splicing factor lysyl hydroxylase
Jmjd6. In contrast to Jmjd6, Jmjd4 is predominantly expressed
in the cytoplasm, suggesting an alternative function. Indeed,
proteomic pulldowns did not identify splicing factors, and
instead identified the eukaryotic translational termination factor
eRF1 as a specific interactor that bound to Jmjd4 in an activity-
dependent manner.89 eRF1 is responsible for decoding the stop
codon in the A-site of the ribosome. Together with the GTPase
eRF3A, eRF1 stimulates peptidyl-tRNA hydrolysis to release the
mature polypeptide.90 Mass spectrometry (MS) sequencing of
endogenous eRF1 identified the hydroxylation of K63 (Figs. 2
and 3), which was dependent on Jmjd4 activity. Similar to ribo-
somal protein hydroxylation, quantitative MS suggested that
eRF1 K63 hydroxylation is essentially complete in the steady
state.89 Furthermore, the fact that eRF1 K63 hydroxylation was
highly conserved and ubiquitous across multiple tissues and cul-
tured cell lines suggests a fundamental role in eRF1 function.
K63 is located within a highly conserved NIKS motif within a

domain of eRF1 implicated in stop codon decoding and its cou-
pling to peptidyl-tRNA hydrolysis (the N-domain, or domain-
1).91-95 Interestingly, cross-linking experiments suggest that K63
contacts the invariant uridine in stop codons.96 Consistent with a
direct role for the NIKS motif in stop codon recognition, a recent
structure of the eukaryotic ribosome in complex with eRF1/
eRF3A localized the NIKS sequence in direct proximity of the
stop codon.97 Importantly, inhibiting Jmjd4 activity increases
stop codon readthrough, as measured using a bicistronic Renilla/
STOP/Firefly reporter vector.89 Reduced translational termina-
tion efficiency was observed in response to loss of Jmjd4 activity
in a range of tissue culture cells and with a variety of stop codon
contexts89 (Tianshu Feng, personal communication). Impor-
tantly, comparing the in vitro release factor activity of recombi-
nant wildtype or K63R mutant eRF1 exposed to Jmjd4 allowed
the effects of Jmjd4 activity in vivo to be specifically localized to
eRF1 K63 hydroxylation.89

Decoding: A Key Target of 2OG-oxygenases
in Translation?

Although the hydroxylation and demethylation events
reviewed here have been discovered across ribosome biology,
common roles may be emerging in elongation and decoding.
With respect to decoding, 3 hydroxylation events described above
are directly linked to translational fidelity; (i) Rps23 proline 62
hydroxylation (OGFOD1), (ii) anti-codon loop hydroxylation of
tRNAs (TYW5, ALKBH8), and (iii) N-domain hydroxylation of
eRF1 (Jmjd4). It is of interest to highlight the latter 2 examples,
where independent hydroxylases target the codon reading
domains of tRNA and a peptidyl tRNA mimic. Thus, at least
within the limits of the studies published to date, 2 hydroxyla-
tions may be present in the decoding center of the ribosome at
any one time, with hydroxylated Rps23 proline 62 in the proxim-
ity of eRF1 K63 hydroxylation or tRNA hydroxylated at wybuto-
sine (TYW5) or mcm5U (ALKBH8). Interestingly, an obligate
partner of the methyltransferase activity of ALKBH8
(Trm112)42 is also required for the activity of a methyltransferase
that targets eRF1,98 raising the possibility that there may be
cross-talk between eRF1 and tRNA modifications. Considering
that an unidentified tRNA mcm5U exists44 (see above), and
many members of the 2OG-oxygenase family remain poorly or
completely uncharacterised,10 it is possible that other examples
of hydroxylation targeting decoding may emerge.

Decoding is considered to be a major determinant of biologi-
cal ‘fitness’ and as such is a highly evolved process.99,100 Decod-
ing requires fast and accurate selection of the correct tRNA from
a pool of competitors and involves conformational changes to
both the ribosome and the tRNA (or its mimic). Perhaps oxygen-
ases have allowed evolution to fine tune the architecture of the
ribosome using hydroxylation, a relatively subtle modification,
which could optimize protein-protein and protein-RNA interac-
tions, efficient codon recognition and/or conformational rear-
rangements. Alternatively, the oxidative modifications described
here may allow decoding to sense nutrient availability via oxygen-
ase activity. Interestingly, reduced translational fidelity can be
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advantageous under some circumstances. For example, decoding
errors can promote adaption in response to stress in bacteria.101

Perhaps a collective reduction in decoding center hydroxylation
under conditions of stress (e.g., amino acid starvation, metabolic
flux, and/or hypoxia) could reduce translational fidelity to signal
adaptive responses. In such a scenario, the oxygenases would be
acting as sensors relaying changes in nutrient availability and
metabolism to ribosomal decoding.

Translational Oxygenases as Sensors

The cofactor requirements of 2OG-oxygenases (2OG, Fe(II),
O2) place them at a unique interface between nutrient availability
and metabolism (Fig. 1). Enzymes with a relatively low affinity
for one or more co-factors have the potential to act as sensors of
that nutrient (and its metabolic predecessors). The clearest exam-
ple of a sensing role thus far is for the hypoxia-responsive HIF
system, as outlined above. Indeed, hypoxia is well-known to have
multiple profound effects on translation control9 (Fig. 3). There
is a substantial decrease in eIF4E-driven cap-dependent transla-
tion in hypoxia, at least partly due to mTOR inhibition via HIF-
dependent and -independent pathways.102,103 Translation of pro-
teins involved in the adaptive response to hypoxia is maintained
via IRES control9 and a novel eIF4E2-mediated cap-dependent
mechanism that involves direct binding of HIF2a104. Therefore,
HIF hydroxylases may contribute to translational control indi-
rectly via HIF regulation, and perhaps more directly via alterna-
tive substrates (such as those regulating eEF2 phosphorylation).

HIF-independent but oxygen-sensitive mechanisms of transla-
tional control could be of interest with respect to the wider family
of 2OG-oxygenases. Examples of translational oxygenases acting
as oxygen sensors are currently lacking however. Although
MINA53, NO66, OGFOD1 and Jmjd4 all require oxygen for
hydroxylation of their respective substrates they can maintain
efficient catalysis under conditions of severe hypoxia.49,68,69,89

Whether other enzymes discussed here (e.g. RNA hydroxylases/
demethylases) could be more sensitive to oxygen starvation is not
yet known. For those enzymes that have been tested and found
to be relatively insensitive to hypoxia it is possible that a concur-
rent reduction in one or more other co-factors could cause a
more dramatic loss in activity. It is interesting to note that the
EF-Tu prolyl hydroxylase of Pseudomonas may have a relatively
high Km for Fe(II),84 raising the possibility that this and perhaps
other translational hydroxylases may sense Fe(II), and thereby
link Fe(II) availability to translational control. Furthermore,
some 2OG-oxygenases are competitively inhibited by intermedi-
ates of the TCA cycle such as fumarate and succinate
(‘oncometabolites’, Fig. 1B), which are elevated in diseases asso-
ciated with fumarate hydratase and succinate dehydrogenase defi-
ciency, respectively.105,106 Neomorphic mutations in isocitrate
dehydrogenases lead to 2-hydroxyglutarate production (Fig. 1B)
in glioblastomas and acute myeloid leukemia cancers, which is
associated with variable effects on the activity of some 2OG-oxy-
genases.105-108 It is possible that translational oxygenases might
also communicate these metabolic disturbances to gene expres-
sion control at the level of protein synthesis. Such disturbances in

co-factor availability and metabolism could cause a significant
reduction in a specific hydroxylation or demethylation event
within translation, or perhaps more modest effects on multiple
modifications that collectively modulate protein synthesis.

Since many of the oxidative modifications described here go to
near completion (e.g., ribosomal proteins and eRF1), how quickly
would a reduction in 2OG-oxygenase activity due to reduced co-
factor availability lead to a loss of the modification and a biologi-
cal response? Reversal of some post-translational modifications
can lead to rapid loss of the modification in the absence of the
forward reaction. However, although theoretically feasible, a
reversal enzyme for hydroxylation has yet to be described. Isotopic
labeling and mass spectrometry experiments indicated that
hydroxylation catalyzed by a HIF asparaginyl hydroxylase is
unlikely to be reversed.109 Therefore, a reduction in hydroxylation
following co-factor depletion would rely on natural turnover of
the substrate, with relatively stable substrates only eliciting altered
biological responses following chronic nutrient depletion (such as
those found in pathological conditions for example).

Future Perspectives

Taken together, the literature reviewed here supports protein
synthesis as a major new target of 2OG-oxygenases. Since many
of these enzymes remain uncharacterized, and those that have
been studied have the potential to target multiple substrates, it
seems likely that the list of translational oxygenases will continue
to grow. These may also be complemented by novel classes of
hydroxylases as exemplified by the eIF5a HEAT-repeat hydroxy-
lase and the YfcM hydroxylase of EF-P. Although current exam-
ples of hydroxylases targeting the translational machinery appear
to be enriched within elongation and decoding, it is possible that
oxygenases will also be discovered that target other key regulatory
steps such as initiation and recycling.

2OG-oxygenases are commonly deregulated in disease10 (see
also Table 1), likely due to their action at the interface of nutri-
ent availability and metabolism, and their common role in gene
expression and growth control. These enzymes have small drug-
gable active sites that are amenable to small molecule inhibi-
tion.110 As such, 2OG-oxygenases are attracting significant
interest as novel therapeutic targets. Considering the role of pro-
tein synthesis in disease, further work characterizing the role of
2OG-oxygenases in translation and their potential as drug targets
is warranted. This should include attempts to clarify the function
of those modifications reviewed here where the physiological sig-
nificance remains unclear, together with efforts aimed at discov-
ering novel translational oxygenases.
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