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Abstract: Mesenchymal stem/stromal cells (MSC) remain a promising tool for regenerative medicine
as the efficacy of MSC-based cell therapy has been demonstrated for a broad spectrum of indications.
Their therapeutic potency is mainly associated with their ability to secrete multiple factors critical
for tissue regeneration. Due to comparable effects along with superior safety MSC conditioned
medium (MSC-CM) containing a complex of MSC-secreted products is considered a reasonable
alternative to cell therapy. However, the lack of standards regulating bioprocessing, use of proper
auxiliary materials, and quality control complicates the development of MSC secretome-based
therapeutics. In this study, we suggested several approaches addressing these issues. We
manufactured 36 MSC-CM samples based on different xeno-free serum-free chemically defined media
(DMEM-LG or MSC NutriStem® XF) using original protocols and considered total concentrations of
regeneration-associated paracrine factors secreted by human adipose-derived MSC at each time-point
of conditioning. Using regression analysis, we retrospectively predicted associations between
concentrations of several components of MSC-CM and its biological activity to stimulate human
dermal fibroblast and endothelial cell migration in vitro as routine examples of potency assays for
cell-based products. We also demonstrated that the cell culture medium might affect MSC-CM
biological activity to varying degrees depending on the potency assay type. Furthermore, we showed
that regression analysis might help to overcome donor variability. The suggested approaches might be
successfully applied for other cell types if their secretome was shown to be promising for application
in regenerative medicine.

Keywords: regenerative medicine; mesenchymal stem/stromal cells; conditioned medium;
secretome; growth factors; manufacturing; quality control; regression analysis

1. Introduction

The application of mesenchymal stem/stromal cells (MSC) in regenerative medicine has been
intensively studied in hundreds of clinical trials as these cells represent a promising source of
multipotent adult stem and progenitor cells for cell therapy and tissue engineering [1,2]. However,
excessive MSC heterogeneity hampers profound cell characterization [3–7]. Several safety concerns
related to MSC transplantation still remain because of the potential risk of immune reactions and
cancer development [8]. Furthermore, poor engraftment and insufficient viability of transplanted cells
restrict their therapeutic efficacy [9–12].
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Therapeutic effects of MSC are generally mediated by various secreted cytokines, growth factors,
extracellular matrix proteins and factors involved in matrix remodeling as well as different types
of extracellular vesicles [13–17]. MSC-CM that contains cell-secreted products has demonstrated
therapeutic benefit for the treatment of ischemic diseases such as myocardial infarction, stroke and
acute and chronic hindlimb ischemia, neurodegenerative diseases, spinal cord injury, alopecia, acute
and chronic wounds, acute liver injury/failure, lung injury, periodontal tissues injury, male infertility,
soft tissue and bone defects [18–23]. There are several clinical trials including the use of MSC-CM
for hair follicle regeneration [24], fractional carbon dioxide resurfacing wound healing [25] as well
as for inflammatory arthritis [26], and multiple sclerosis [27]. MSC-secreted extracellular vesicles
that carry regulatory noncoding RNAs were also used as therapeutic agents to stimulate tissue
regeneration [28–32]. Thus, MSC secretome is suggested as a novel cell-free medicinal product that can
recapitulate the beneficial effects of MSC and has various advantages in overcoming the limitations
and risks associated with cell-based therapy [33,34].

However, significant variability of approaches to MSC-CM bioprocessing has a serious impact
on experimental outcomes [34,35]. Particularly, the need for disease-specific identity and potency
testing due to undefined mechanisms of action of MSC secretome makes development of this
class of biopharmaceuticals more complicated, expensive and precarious [1,34,36]. Additionally,
the composition of MSC-CM is significantly influenced by donor variability and tissue of MSC
origin [37,38] and it should be considered during MSC-CM bioprocessing. In this study, we analyzed
how several manufacturing features such as duration of cell conditioning or selection of particular
growth medium might influence the composition of human adipose-derived MSC-CM as well as its
biological activity in several potency assays routinely used for the development of cell-based therapy
products. We then performed regression analysis to estimate power to predict biological activity of
MSC-CM samples despite high donor variability and complex composition of MSC-CM.

2. Results

2.1. Characterization of Mesenchymal STEM/Stromal Cells

Culturing of cells harvested from subcutaneous adipose tissue in the medium supporting
the growth of undifferentiated MSC allowed us to get a population of fibroblast-like cells with
characteristics of MSC according to criteria from the International Society for Cellular Therapy
Statement at the 2nd to 3rd passages [39–41]. MSC expressed CD73, CD90, CD 105, and did not express
CD14, CD20, CD34, and CD45 (Figure S1). The isolated cells demonstrated bone mineralization and
neutral lipid accumulation in the appropriate culture medium and conditions, thus confirming the
ability to differentiate into osteogenic and adipogenic lineages (Figure S2).

2.2. Development of MSC-CM Bioprocessing Protocol

Two growth media were selected for producing MSC-CM. First, chemically defined low glucose
DMEM (DMEM-LG) was chosen as a conventionally used medium for MSC culture. Second, among
commercially available media designed to specifically support growth of undifferentiated MSC we
selected a defined, xeno-free, serum-free MSC NutriStem medium (Biological Industries, Israel). It
is important to note that only basal media without nutrimental supplements (FBS or NutriStem
supplement) were used for MSC conditioning.

To develop the original MSC-CM bioprocessing protocol, we firstly assessed cell viability
dynamics during long-term conditioning. Both media supported appropriate viability of MSC during
long-term conditioning in supplement-free conditions (all cultures contained ≥ 70% of viable cells at
least for 12 days) (Table 1). The level of cell proliferation in these culture conditions was relatively low
due to the lack of supplements and did not differ between the media.
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Table 1. Viability of mesenchymal stem/stromal cells during long-term conditioning in two basal
media. The data from three independent experiments have been presented as means ± SD.

Time, Days/
Growth Medium 3 Days 5 Days 7 Days 10 Days 12 Days 14 Days

DMEM 80.3 ± 1.5 77.0 ± 2.6 78.3 ± 3.2 71.7 ± 3.8 90.7 ± 6.7 59.7 ± 11.7

Nutri Stem 76.0 ± 4.0 77.3 ± 5.0 73.3 ± 11.2 72.0 ± 8.5 73.7 ± 13.1 76.0 ± 5.2

To determine the appropriate period of MSC conditioning, we analyzed total concentrations of
selected growth factors in MSC-CM on certain days. According to the literature data and our previous
results [42–44], we chose four key growth factors, which were shown to substantially contribute to
positive effects of MSC on reparative and regenerative processes in damaged tissues, namely vascular
endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF2),
and angiopoetin-1 (Angpt-1). Peak factor concentrations were mostly reached at days 7 or 10 in both
media (Figure 1). Due to minor differences between the concentrations of growth factors at days 7
and 10 and the substantial reduction of MSC-CM manufacturing duration, the 7-day protocol of MSC
conditioning was selected for further experiments.
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Figure 1. Total growth factor concentrations in DMEM- (blue lines) and NutriStem-based (red lines)
MSC-CM samples (n = 3) collected independently at each timepoint of MSC conditioning. The data
are presented as mean concentrations in pg/mL ± SD. MSC-CM samples were analyzed in three
independent replicates for both media. Only MSC-CM samples based on the same medium were
compared. * p < 0.05 compared to the factor concentration at day 3, # p < 0.05 compared to the factor
concentration at day 7.

To establish whether MSC growth medium may have influenced the composition of MSC-CM,
we compared factor concentrations in MSC-CM samples (n = 36) manufactured using DMEM-LG
or NutriStem. Pigment-epithelial derived factor (PEDF) was also included in the analysis as
overrepresented MSC-CM protein possibly counterbalancing its angiogenic effects. The concentration
of VEGF and PEDF were higher in DMEM-LG conditioned medium while HGF and Angpt-1
concentrations were higher in NutriStem MSC-CM samples (Figure 2). Thus, a possible impact
of the cell culture medium on MSC-CM composition was considered in further experiments. It is worth
noting that the means of growth factor concentrations in the 36 analyzed samples differed from the
values presented in Figure 1, which obviously indicates the reason for analyzing large sample groups.



Int. J. Mol. Sci. 2019, 20, 1656 4 of 16
Int. J. Mol. Sci. 2019, 20, x 4 of 16 

 

 
Figure 2. Comparison of growth factor concentrations in MSC-CM based on different MSC culture 
media at day 7. The data are presented as mean concentrations in pg/mL ± SD. *- p < 0.05 after 
Student’s t-test analysis. All manufactured 36 MSC-CM samples were analyzed. 

2.3. Evaluation of MSC-CM Functional Activity in Vitro 

To assess functional activity of MSC-CM samples, we used two well-established in vitro models 
reflecting important processes for tissue repair. Firstly, non-directional migration of human dermal 
fibroblasts stimulated by MSC secreted products were analyzed in the scratch assay. Secondly, 
directional migration of human endothelial cells stimulated by MSC-CM was measured using the 
automated xCELLigence system to allow real-time registration of the process. Both the studied MSC-
CM types stimulated human dermal fibroblast migration as well as human endothelial cell migration, 
however, the effects of NutriStem MSC-CM samples were less expressed (Figures 3,4). 

DMEM Nutri Stem
0

200

400

600

800

1000

1200

DMEM Nutri Stem
0

500

1000

1500

2000

DMEM Nutri Stem
0

1

2

3

4

5

6

7

8

9

10

DMEM Nutri Stem
0

200

400

600

800

1000

1200

DMEM Nutri Stem
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

VEGF HGF FGF2

Angpt-1  PEDF

    *   *

    *       *

A    B    C

D    E

C
on

ce
nt

ra
t io

n  
of

 fa
ct

o r
s,

 p
g /

m
l

C
on

ce
nt

r a
tio

n 
of

 fa
c t

or
s,

 p
g/

m
l

Figure 2. Comparison of growth factor concentrations in MSC-CM based on different MSC culture
media at day 7. The data are presented as mean concentrations in pg/mL ± SD. * p < 0.05 after
Student’s t-test analysis. All manufactured 36 MSC-CM samples were analyzed.

2.3. Evaluation of MSC-CM Functional Activity in Vitro

To assess functional activity of MSC-CM samples, we used two well-established in vitro models
reflecting important processes for tissue repair. Firstly, non-directional migration of human dermal
fibroblasts stimulated by MSC secreted products were analyzed in the scratch assay. Secondly,
directional migration of human endothelial cells stimulated by MSC-CM was measured using the
automated xCELLigence system to allow real-time registration of the process. Both the studied
MSC-CM types stimulated human dermal fibroblast migration as well as human endothelial cell
migration, however, the effects of NutriStem MSC-CM samples were less expressed (Figures 3 and 4).
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Figure 3. Human dermal fibroblast migration (scratch wound assay) stimulated by MSC-CM obtained
after 7 days of long conditioning in DMEM-LG or NutriStem. Graph: DMEM neg—basal medium
DMEM-LG (n = 5), DMEM pos—DMEM-LG + 10% FBS (n = 5), Nutri neg—basal NutriStem medium
(n = 5), Nutri pos—NutriStem + 10% NutriStem Supplement (n = 5), DMEM 7d (n = 12) and Nutri 7d
(n = 15)—MSC-CM samples obtained after conditioning of MSC for 7 days. After the scratch was made,
either samples or controls were added to the cells for 24 h. Data are presented as medians and 25th-,
75th percentiles of human dermal fibroblast migration in um/h. * p < 0,05; ** p < 0.01; n.s.—p = 0.08.
Low panel: Scratch wound closure at the start point (0 h) and after 24 h; scalebar marks 200 um.
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Figure 4. Directional migration of human endothelial cells EA.hy926 over a period of 4 h toward
MSC-CM samples obtained after 7 days of long conditioning. Neg. Contr—basal medium DMEM-LG
(n = 3), Pos. Contr—DMEM-LG + 10% FBS (n = 3), DMEM 7d (n = 6) and Nutri 7d (n = 4)—MSC-CM
samples. Basal DMEM-LG was used as a negative control for all the CM samples due to a lower
relative potency of NutriStem supplemented medium compared to basal medium (1.59 fold; data are
not presented). The relative cell migration velocity is presented. The data is displayed as medians and
25th, 75th percentiles. * p < 0.05.
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2.4. Development of the Prediction Model for MSC-CM Potency Using Regression Analysis

To define the factors associated with the potency of MSC-CM samples in the studied in vitro
models, we performed regression analysis. It is important to note that the type of MSC growth medium
was also considered as a possible predictor of the potency due to its discrepant influence on factor
concentrations. Surprisingly, we showed that Angpt-1 concentration was the most potent predictor of
human dermal fibroblast migration stimulated by MSC-CM. MSC growth medium was not considered
a reliable predictor (p = 0.448). Using only Angpt-1 concentrations we divided MSC-CM sample into
groups with differing potency (p < 0.086) (Table 2, Figure 5).

Table 2. Prediction model for MSC-CM sample potency to stimulate human dermal fibroblast migration;
n = 24 for train group, n = 12 for validation group.

Predictor. Coefficient P-Value 95% Conf. Interval

Intercept 0.58 0.53 −1.9; 1.25

VEGF 0.67 0.46 −1.35; 0.99

HGF 0.80 0.27 −0.82; 1.62

FGF2 0.67 0.44 −0.74; 2.53

Angpt-1 −1.83 0.08 −3.81; 0.78

PEDF 1.14 0.15 −0.48; 1.64

Medium type −1.17 0.45 −2.69; 2.62

Single factor analysis

Predictor Coefficient P-value 95% Conf. Interval

Intercept 0.09 0.85 −0.85; 1.03

Angpt1 −1.16 0.11 −2.59; 0.27
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Figure 5. Comparison of two groups of MSC-CM samples that differed in potency. The data are
presented as medians, 25th, and 75th percentiles, p < 0.086 between these groups, n = 10 for High
potency group, n = 2 for Low potency group.

It was found that neither analyzed factors were untrustworthy to predict the potency of MSC-CM
to stimulate endothelial cell migration (Table 3). Therefore, considering possible associations of more
than one factor with MSC-CM effects and the ambiguous influence of the cell growth medium on
their concentrations, we performed regression analysis for DMEM-LG and NutriStem-based MSC-CM
samples separately.
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Table 3. Prediction model for MSC-CM sample potency to stimulate human endothelial cell migration;
n = 20 for train group, n = 11 for validation group.

Predictor Coefficient P-Value 95% Conf. Interval

Intercept 2.75 0.61 −7.7; 13.2

VEGF 2.76 0.31 −2.52; 8.04

HGF 0.66 0.72 −2.96; 4.29

FGF2 8.78 0.69 −34.11; 51.67

Angpt1 −1.46 0.70 −9.01; 6.09

PEDF 0.89 0.54 −1.99; 3.77

Medium type −4.10 0.70 −24.8; 16.58

It was demonstrated that FGF2 concentration analysis was sufficient to classify DMEM-LG
MSC-CM samples on the basis of their potency to stimulate the migration of human endothelial cells
(Table 4, Figure 6A). However, the potency predictors of NutriStem MSC-CM were not discovered
(Table 5, Figure 6B).

Table 4. Prediction model for DMEM-LG MSC-CM sample potency to stimulate human endothelial
cell migration; n = 8 for train group, n = 5 for validation group.

Predictor Coefficient P-Value 95% Conf. Interval

Intercept 17.70 0.44 −26.83;62.23

VEGF −1.12 0.78 −8.93;6.69

HGF −1.18 0.68 −6.81;4.46

FGF2 60.19 0.44 −92.44;212.81

Angpt1 1.21 0.89 −15.59;18

PEDF 0.81 0.66 −2.82;4.44

Single factor analysis

Predictor Coefficient P-value 95% Conf. Interval

Intercept 13.08 0.17 −5.7;31.86

FGF2 48.78 0.14 −15.7;113.27
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Figure 6. Comparison of two groups of MSC-CM samples that differed in potency to stimulate human
endothelial cell migration. A—Samples manufactured using DMEM-LG, n = 1 for High potency group,
n = 4 for Low potency group; B—NutriStem, n = 1 for High potency group, n = 4 for Low potency
group. The data are presented as means ± SD.
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Table 5. Prediction model for NutriStem MSC-CM sample potency to stimulate human endothelial cell
migration; n = 7 for train group, n = 5 for validation group.

Predictor Coefficient P-Value 95% Conf. Interval

Intercept −1.04 0.95 −30.57;28.49

VEGF 4.81 0.76 −25.56;35.17

HGF −0.72 0.96 −28.07;26.63

FGF2 −1.73 0.91 −32.6;29.13

Angpt1 2.54 0.81 −18.66;23.8

PEDF 0.45 0.98 −37.8;38.7

Single factor analysis

Predictor Coefficient P-value 95% Conf. Interval

Intercept −0.06 0.99 −10.79;10.67

VEGF 7.68 0.42 −10.84;26.2

Taken together, the use of regression analysis might allow for the prediction of the potency of
MSC-CM samples using only concentrations of a restricted number of secreted factors. This could
simplify MSC-CM quality control as well as the donor selection procedure.

However, during analysis one should take into account possible interactions between distinct
growth factors. In this study, several interactions were considered based on discovered significant
rank correlations between HGF release and FGF2, VEGF, PEDF concentrations. Nevertheless, their
inclusion in the model did not change the results of the analysis seriously.

3. Discussion

According to the current concepts, MSC could orchestrate tissue development, maintenance
and repair, mostly by producing multiple secretory factors [45–51]. Therefore, the application of
MSC-CM might be an effective strategy for regenerative medicine. To date, several MSC-derived
conditioned media were tested on various diseases and many of them showed positive results [22].
An additional benefit is that MSC-CM might be an off-the-shelf material that could be used to treat
patients promptly without MSC isolation and subsequent culture. However, despite the clear benefits
of using MSC-CM for regenerative medicine, several issues must be addressed before its successful
clinical application. Among them, one of the most important is a lack of common recommendations
or standards for bioprocessing and quality control of MSC secretome-based therapeutics [52]. In this
study, we suggested universal approaches that might help to overcome these issues and, finally,
optimize the development of MSC-CM based products in general.

To develop the MSC-CM bioprocessing protocol we selected two growth media for MSC
conditioning: DMEM due to its wide application in the manufacturing of MSC-based cell products,
including the clinical trials [53] and NutriStem as one of the specific media with great potential to
support growth and functional properties of undifferentiated human MSC. Both media were chemically
defined, available as GMP-grade media and appropriate for cell manufacturing. It is critical to note that
we used only basic media for MSC conditioning without adding the specific nutrimental supplements,
because of their high risk influence on the biosafety of a final product and serious challenges for further
clinical translation [54]. We showed that both media supported appropriate viability of MSC during
the long-term conditioning in supplement-free conditions.

Due to complex composition of MSC-CM, it was necessary to focus on components that would
reflect its regenerative potency for a specific condition. In our study, we selected several factors
crucial for MSC secretome-mediated tissue regeneration, which was also confirmed by our previous
data [42–44]. VEGF, an important pro-angiogenic and neurotrophic factor [43], is produced by MSC
and served as one of the main mediators in MSC interaction with endothelial cells. Particularly,
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VEGF expression by MSC was associated with the stimulation of angiogenesis and endothelial cell
proliferation in both small and large animal studies [55], and blocking of VEGF in MSC-CM resulted
in significant reduction in its ability to stimulate angiogenesis [42,44]. On the contrary, PEDF, another
factor highly represented in MSC secretome [56], has anti-angiogenic effects; the ratio of VEGF/PEDF
produced by MSC may indicate the ability of the cells to stimulate angiogenesis [57]. MSC also
secretes HGF, a factor with angiogenic, anti-apoptotic and immune modulating activity shown to be
critical in several in vitro and in vivo therapeutic effects of MSC [43,58]. FGF2, a strong mitogenic and
pro-migratory factor for fibroblasts, has the potential to promote angiogenesis and to increase survival
and proliferation of stem cells in vivo [59,60].

Obviously, the panel of factors evaluated in MSC-CM may vary depending on potential
therapeutic mechanisms for a specific disease. Particularly, in several injury models, either a complex
of growth factors from MSC-CM as well as other bioactive components of MSC secretome (i.e.,
extracellular vesicles) might confer the principal potency for restoration [61]. The components of
MSC-CM also might differ by their accumulation dynamics in cell growth medium, so we considered
the peak concentrations of several factors to improve the performance of the bioprocessing protocol.
Importantly, it was demonstrated that the type of a cell growth medium affected secretory potential of
MSC, which was in accordance with literature data [62,63].

To optimize specific biological activity testing of MSC-CM, we suggested to perform regression
analysis. Based on initial results of the testing on biological models, this approach can help to select
MSC-CM factors, which concentrations are closely associated with the specific biological activity of
MSC-CM. This might make possible to predict specific activity using precise instrumental analysis, thus
bypassing expensive and laborious biological assays. Accordingly, the estimation of the concentrations
of irrelevant MSC-CM factors might be omitted.

In this study, we demonstrated that FGF2 concentration in MSC-CM was associated with
DMEM-based CM-stimulated endothelial cell migration velocity. Importantly, these results were
concordant with the mechanisms of action of this factor [60]. However, the similar results were not
obtained for NutriStem-based MSC-CM samples possibly due to direct substantial influence of the
basal medium on the potency. Unexpectedly, it was also demonstrated that Angpt-1 concentration in
MSC-CM was inversely associated with CM-stimulated fibroblast migration velocity independently of
the type of cell culture medium. Indeed, it did not fit with the well-established superior pro-migratory
potential of FGF2 [59]. Nevertheless, these results might be interpreted as evidence that Angpt-1
concentrations predicted activity to stimulate fibroblast migration for the set composed of DMEM and
NutriStem MSC-CM samples, even despite lack of established biological associations. Use of such an
approach allows to make MSC-CM bioprocessing protocols more flexible in relation to the choice of
raw materials.

Noteworthy, regression analysis used in this study has several limitations. It is impossible to
consider all the interactions of soluble factors in MSC-CM. Furthermore, the analyzed components
of MSC-CM could have synergistic or antagonist effects on each other which might distort their
real impact on biological activity of MSC-CM, but couldn’t be revealed by mathematical modeling.
Nevertheless, use of the regression analysis might be rational. We interpreted the release of
factors as endpoints that might vary due to donor-associated heterogeneity or influence of other
MSC-CM components. The obtained results would reflect associations of factor concentrations
with specific biological activity of a sample considering its variability but possibly irrelevant to
its biological function.

Taken together, our results have demonstrated the applicability of the approaches to MSC-CM
bioprocessing and quality control optimization. Despite hurdles associated with the development
of MSC secretome-based products, we tried to circumvent the high variability between donors and
indicate a practical way to the choice of relevant quality control criteria. We suggest that these
approaches might be adapted for other cell types and their secretomes promising for application in
regenerative medicine.
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4. Materials and Methods

4.1. Patients

Thirty patients were included in the study. They underwent surgery because of general surgical
pathology, kidney and bladder revision. Exclusion criteria included any patient aged less than 18
years and more than 70 years, autoimmune pathologies, cancer (even in the past history), acute or
chronic inflammatory disease, type 2 diabetes mellitus, acute myocardial infarction in the previous six
months, long-term hormone or antibiotics therapy, hematological disorders, stroke or craniocerebral
injury in the previous 12 months, polyvalent allergy and pregnancy. The clinical features of the patient
cohort are presented in Table S1. All procedures performed with tissue samples from patients were in
accordance with the Declaration of Helsinki and approved by the Ethics Committee of Lomonosov
Moscow State University (IRB00010587), protocol #4 (2018). Each donor participated in the study,
signed an informed written consent form for harvesting and using adipose tissue samples as well as
for handling clinical data for research purposes.

4.2. Isolation of Adipose-Derived MSC

Subcutaneous adipose tissue samples (0.5–5 mL) harvested during surgery were homogenized
and digested in collagenase I (200 U/mL, Worthington Biochemical) and dispase (40 U/mL, Sigma,
St. Louis, MO, USA) solutions under agitation for 30–40 min at 37 ◦C. Then tissue was centrifuged at
200 g for 10 min; supernatant was discarded. Erythrocytes were removed from the MSC pellet by a
brief hypoosmotic shock. Then, cell suspension was filtered through a sieve (BD Falcon Cell Strainer,
100 um, Franklin Lakes, NJ, USA) and centrifuged at 200 g for 10 min. The final pellet was resuspended
in culture medium. The cells were cultured in standard conditions (5% CO2; 37 ◦C) in Advance Stem
Cell Basal Medium (ASCBM, HyClone, Marlborough, MA, USA) with 10% of Advance Stem Cell
Growth Supplement (HyClone), and 100 U/mL penicillin/streptomycin (HyClone). Unattached cells
were washed off 24 h after isolation, and then, medium was changed every 3 to 4 days. The yield of
cells was 4–7 × 104 of attached cells per ml of tissue. Cells were passaged at 70% confluency using
HyQTase solution (HyClone).

4.3. Collection of MSC conditioned medium

MSC at 4–5th passages were seeded with a density of 3 × 103 cells/cm2 on uncoated culture
plastic (Corning) and were cultured to 70–80% confluence in 100 mm culture dishes. Then MSC were
washed thoroughly 3 times using 10 mL of HBSS without Ca2+ and Mg2+, and replenished with MSC
NutriStem XF Basal Medium (Nutristem, Biological Industries, Beit-Haemek, Israel) or DMEM with
low glucose (DMEM-LG, HyClone). Cells were cultured in standard conditions (5% CO2; 37 ◦C) for
different time periods. Then, conditioned media samples were collected, centrifuged at 3000 rpm for
10 min at 4 ◦C to remove cell debris, then frozen in aliquots at −70 ◦C. 36 MSC-CM samples were
manufactured (n = 21 for DMEM-LG, n = 15 for NutriStem).

4.4. Analysis of Cell Viability

The quantity and viability of MSC were assessed at the end of the experiment by staining with
trypan blue solution. Cell viability was interpreted as the ability of viable cells to eject the trypan blue
stain. The amount of viable (bright) and dead (blue) cells was evaluated using the automated cell
counter Countess (Invitrogen, Carlsbad, CA, USA). Cell viability was determined as a ratio of viable
cells to the total cell amount. To estimate cell viability during long-term conditioning, the cells were
grown in separate dishes and were analyzed in certain time points independently.
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4.5. MSCs Immunophenotyping and Differentiation Assays

To confirm that MSC were multipotent mesenchymal stromal cells we analyzed their
immunophenotype according to the published criteria [39]. Cells were stained with anti- CD73,
CD90, CD105, CD14, CD20, CD34, CD45 antibodies and appropriate isotype control antibodies (MSC
Phenotyping Kit, Miltenyi Biotec, Bergisch Gladbach, Germany) and analyzed using flow cytometry.

The potential of MSC for osteogenic and adipogenic differentiation was tested using standard
techniques in vitro. Briefly, osteogenic differentiation was induced by plating 6 × 104 MSC on a 24-well
plate and incubated in an Advance Stem Cell Osteogenic Medium (HyClone) containing 10% Advance
Stem Cell Supplement and 100 U/mL penicillin/streptomycin for 21 days. Differentiation efficiency
was analyzed using Alizarin Red S staining for calcium accumulation. Adipogenic differentiation was
induced by the incubation of MSC in Advance Stem Cell Adipogenic Medium (HyClone) containing
10% Advance Stem Cell Supplement and 100 U/mL penicillin/streptomycin for 18 days. Cells
accumulated intracellular lipids were analyzed using Oil-Red-O staining.

4.6. Analysis of Concentrations of Growth Factors in MSC-Conditioned Medium by ELISA

The concentrations of VEGF, HGF, FGF2, Angpt-1 and PEDF in MSC-CM samples were analyzed
using ELISA (R&D Systems) according to the manufacturer’s instructions. Factor concentrations were
determined in conditioned medium collected from independent cell culture plates. The cells isolated
were seeded on cell culture dishes. Then, the medium was collected, centrifuged and frozen. The total
release of factors was calculated based on the analysis of secretome samples at every time point.

4.7. Migration of Fibroblasts in the Scratch Assay

Scratch assay is a specific test with an artificial wound scrapped mechanically in a confluent cell
monolayer. Fibroblasts activated by an empty plastic area move from the edge to the center of the
wound up to wound closure. Several factors like FBS or other factors, contained in MSC-CM, might
have an influence on cell motility. Human skin fibroblasts were grown to confluent in 24-well plates in
DMEM-LG containing 10% of the FBS. Then, fibroblasts were deprived in DMEM with 0% FBS for
24 h. Cell monolayers were scratched with a 1 mL pipette tip and briefly rinsed. Then, the sample of
MSC-CM or DMEM-LG supplemented with 10% FBS as a positive control or serum-free DMEM-LG as
a negative control were added. Following this, culture plates were transferred onto the microscopic
stage of a motorized Nikon Ti inverted microscope (Nikon, Japan) equipped with the 5x objective,
on-stage culture box, temperature controller set to 37 ◦C and continuous carbogen administration
unit. The time-lapse series was continuously acquired every 15 min over 24 h using a cooled CCD
camera (Nikon, Tokyo, Japan) and the “Mark and Find” application in NIS Elements (Nikon, Japan)
to achieve simultaneous image acquisition in all 24 wells of the plate. This frequency ensured that in
each series two successive displacements of a cell were resolved and all cell divisions were captured to
be excluded from the analysis later on. The time series were analyzed by manual tracking of all cells
on the edge of the experimental wounds and their velocity was measured in two randomly chosen
positions of the wounded areas using free ImageJ software, Madison, WI, USA. Routinely, 50 cells
were tracked for each data point.

4.8. Endothelial Cell Migration Analysis in the xCELLigence RTCA DP System

To analyze endothelial cell migration using the CIM-Plate 16, human endothelial cells EA.hy926
were cultured in DMEM with high glucose supplemented with 10% FBS; cells were deprived in
serum-free DMEM for 6 to 8 h prior to the experiment and seeded 30 × 104 cells in 50 uL of serum-free
DMEM per well into the upper chambers of the CIM-Plate 16. Samples of MSC-CM (160 uL per
well) were placed into the lower chambers. DMEM supplemented with 10% FBS was used as a
positive control and serum-free DMEM served as a negative control. Then CIM-Plate 16 was placed
in the RTCA DP Instrument (Roche, Basel, Switzerland) equilibrated in a CO2 incubator. Endothelial
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cell migration was continuously monitored using the RTCA DP Instrument. MSC-CM provided a
strong chemoattractant signal, which induced the directional migration of endothelial cells through the
micropores of the CIM-Plate 16. Migrating cells were detected by the electronic sensing microelectrodes,
producing changes in the measured Cell Index values. Time-dependent cell migration was monitored
over 4 h. All experiments were performed in duplicates. The RTCA Software 1.2 was used to calculate
Cell Index values for MSC-CM-mediated endothelial cell migration.

4.9. Regression Analysis

The samples were randomized to training and validation groups prior to analysis (2:1 for fibroblast
migration and initial endothelial cell migration, 1.5:1 for cell growth medium-specific endothelial cell
migration). Growth factor concentrations in MSC-CM samples were standardized prior to regression
model building. We used the Python StatsModels library and the Logit model, to perform regression
analysis. For fibroblast scratch assay we categorized our data into two groups according to their
specific activity: The first group consisted of samples with below median activity (n = 18), the second
group included samples with equal to or above median activity (n = 18). For endothelial cell migration
we split our data into two groups similarly: The first group consisted of 20 samples, the second
included 11 more potent samples. We selected factor concentrations as well as the type of cell culture
medium as independent variables.

4.10. Statistical Analysis

Statistical analysis was performed using RStudio. The normality was tested using the
Shapiro–Wilk test. Normally distributed data were compared using a Student’s t-test; data that
were not normally distributed were compared using the Mann–Whitney U-test or the Kruskal–Wallis
test. Multiple comparisons were made using the Kruskall–Wallis test with subsequent application of
Dunn criteria. Correlations were calculated using the Hmisc R package. Statistical significance was
defined as p-value <0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/7/
1656/s1.
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