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Abstract

The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against
infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid
viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia
potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies
on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D
DIGE) analyses of human oral gingival epithelial cell (HOEC) lysates were carried out; this identified 61 differentially
expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected
subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g.,
heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein) as well as proteins involved in redox homeostasis
and detoxification (e.g., Gstp1, Prdx1, and Ero1). Up regulated proteins include: protein disulfide isomerases, proteins whose
expression is negatively regulated by Hsp90 (e.g., Ndrg1), and proteins that maintain cellular integrity (e.g., Vimentin). In a
verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway
Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery
findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced
heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy
provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic
side effects of HAART and/or HIV chronicity silence expression of multiple proteins that in healthy subjects function to
provide robust innate immune responses and combat cellular stress.
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Introduction

Oral lesions occur in a high percentage of HIV infected subjects

on highly active antiretroviral therapy (HAART). These lesions

are initiated at oral mucosal surfaces and are due to opportunistic

co-viral, bacterial, and fungal infections that promote, periodon-

titis, candidiasis, salivary gland disease, apthous ulcers, and oral

warts [1,2]. Although the severity of several HIV-related oral

complications has decreased, while life expectancy has increased

with the advent of HAART, certain oral complications remain

[3,4]. In fact, the incidence of some oral complications including

oral warts, and salivary gland diseases among HIV infected

subjects appears to have increased following the introduction of

HAART, while others such as candidiasis, periodontitis and caries

persist [5,6,7,8]. The fact that some oral sequelae are on the rise,

while others persist in optimally treated HIV infected individuals

poses major problems in patient management.

HAART can profoundly suppress HIV replication and

reconstitutes CD4+ cell counts thus partially preventing HIV-

associated oral opportunistic infections such as candidiasis [9,10].

However, the increases in the occurrence of co-viral initiated

infections such as human papilloma virus (HPV) and its associated

oral warts, epstein-barr virus (EBV) initiated oral hairy leukoplakia

(OHL), and salivary gland diseases with persistent use of HAART

[6,7,11] is troubling and unexpected. There is no evidence to

suggest that these viruses behave differently in HIV-infected

compared to non HIV-infected individuals. However, the lesions

caused by these viral co-infections persist and progress into

malignant phenotypes among HIV-infected individuals [5,12]. In

fact a recent meta-analysis reported an increased risk for infection

related cancers; i.e., HPV, in two immuno-compromised cohorts;

HIV-infected on HAART subjects and renal transplant subjects

[13]. It is therefore possible that the restoration of the immune

system by HAART may be functionally incomplete and, therefore,

its effectiveness in repelling different pathogenic micro-organisms

may vary [14,15,16] or, alternatively, that toxicity associated with

HAART may contribute to oncogenesis. However, this has not

been explored completely [17,18], particularly in the setting of
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HAART use over prolonged periods of time. Furthermore, the

limited beneficial effects of HAART towards secondary lesions

might also be due to damage at the molecular level that may have

occurred in the host epithelium during HIV infection and/or

infections prior to initiating HAART, that possibly allows the

comorbid infection to initiate and persist despite CD4-cell count

improvement following initiation of therapy.

HIV and/or HAART mediated changes at the molecular level

in oral epithelium of HIV infected on HAART subjects are poorly

understood and limited to the genome level [5]. Although mRNA

expression analyses have revealed significant changes in host gene

expression, it remains unclear what consequences these changes

bring about at the protein level. Therefore, we pursued the

opportunity to advance our molecular understanding of oral

lesions in HIV-infected on HAART subjects by directly measuring

proteome expression changes in human oral epithelial cells

(HOECs). The present study was undertaken to elucidate the

host proteome response in HOECs from HIV-infected on -

HAART vs. control individuals, thereby providing a detailed

understanding of likely functional changes in cellular processes

that may contribute to comorbid infections. Differential protein

analysis was carried out in a discovery phase using Two

Dimensional Difference Gel Electrophoresis (2-D DIGE) coupled

with mass spectrometry identification, and a subsequent verifica-

tion analysis (using Western blotting) was carried out to identify,

compare and confirm proteins that are changing in HIV-infected

on -HAART subjects vs. HIV-negative individuals.

To leverage the protein abundance changes, identified targets

were used as inputs for bioinformatics analysis of pathways likely

involved in the disease process [19,20]. Thus, we analyzed the

targets identified by the 2-D DIGE experiment using Ingenuity

Pathway Analysis (IPA) to infer potential master regulators of the

processes of interest [21]. IPA analyses provided additional

molecular targets relevant to disease, and some of these

hypothesized targets were also confirmed by Western blotting.

With this integrated approach we have identified a number of

differentially expressed proteins that provide valuable mechanistic

insights into the molecular changes that are precursors for

comorbid oral pathogen infections in HIV-infected on HAART

subjects.

Results

CD4+ cell count and viral load in HIV-infected subjects
A total of 11 HIV-infected male subjects averaging 46.468.7

years of age and 10 healthy donors averaging 22.966.5 years of

age and including both sexes were included in this study. Although

there is a systematic age difference between HIV-infected and

health controls, all subjects are adults ranging from 18 to 58 years

old. Data on the CD4 cell counts and viral load for the HIV-

infected on HAART subjects are shown in Table S1. All HIV-

infected subjects are on HAART except subjects 8 (fully HAART

naı̈ve) and 11 (3 months off HAART at time of tissue collection).

CD4 cell counts at time of tissue collection compared to nadir

CD4 indicate that there was a overall 4-fold recovery of CD4 after

HAART treatment for HAART treated subjects. Nadir CD4

averaged ,160 indicating that all patients suffered significant

drops in immune function at some point during the course of their

disease. Also, nadir CD4 was very similar for the discovery (mean

,150 cells/mL) and validation groups (mean ,168), showing

consistency between the discovery and validation cohorts. Viral

loads averaged less than 20,000 copies/mL blood for the four

subjects used for discovery proteomics studies. Viral loads

averaged under 3000 copies/ml of blood for the HIV-infected

patient samples used for verification analysis except for the two

HAART naı̈ve patients who had much higher level of virus, as

expected.

Proteome expression profile and statistical analysis
The initial discovery experiment was designed and performed to

monitor statistically significant changes in proteome expression in

HIV-infected HOECs while minimizing individual patient based

systematic variations by pooling samples from the two separate

patient groups. Although this reduced inter-patient variation it

eliminated the ability to examine patient specific responses. The

average CD4+ cell count per mL of the HIV-infected group for

discovery (subjects 1–4) was 517 while that for validation (subjects

5–10) was 770 (not significantly different), compared to nadir CD4

which averaged less than 170, indicating a significant response to

HAART treatment. Immunological recovery is considered by

many investigators to be above 700 cells/mL and accumulating

evidence suggests levels of CD4+ recovery are dependent on

whether treatment is started before CD4+ counts fall too low [22].

The two lowest CD4+ counts are for the two HAART naı̈ve

patients, as expected.

The oral (gingival) tissue extracted from subjects, typically

during dental procedures such as molar extractions, is heteroge-

neous, and expansion of cells (without passage) was performed to

promote overgrowth of epithelia. This provided a primary and

homogenous cell population for proteomics analysis. Expansion

also increased the material available for proteomics analysis, as the

gingival tissue from subjects is limited. In the absence of the

expansion step, proteomic results could not be attributed to a

specific tissue type. Thus, HOEC samples consisted of expanded

cells from 4 HIV-infected subjects and from 4 healthy controls

where the cells from each group were pooled after expansion.

Then, the cells from each group were divided into replicates of 4

and an internal standard composed of an equal amount of all

samples was generated as well, such that 4 gels were run with 3

samples (including an internal standard) included in each (Table 1).

Sample size for this study was estimated from power analysis

that was performed using previous 2D-DIGE datasets [20], and

(Yohannes et al, unpublished data). Power curves, (Figure S1),

were generated per hypothesis of the two-sided t-test as a function

of sample size to detect 50% change in protein expression with

Type I error probability a= 0.05 or 0.001 using datasets from

technical and biological replicates. It is clear from these curves that

variance (technical and/or biological), significance level, and

sample size have significant effect on power. For pooled samples,

Table 1. Experimental design for 2-D DIGE proteome
profiling.

Gel Cy3 Cy5 Cy2

1 N-1 HIV-1 Pooled sample (N-1 to N4 + HIV-1 to HIV-4)

2 HIV-2 N-2 Pooled sample (N-1 to N4 + HIV-1 to HIV-4)

3 N-3 HIV-3 Pooled sample (N-1 to N4 + HIV-1 to HIV-4)

4 N-4 HIV-4 Pooled sample (N-1 to N4 + HIV-1 to HIV-4)

Biological replicate samples for each group were pooled (HIV1-4; HIV-infected
on HAART, N1-4; healthy controls) and the pool was split into four 50 mg of
aliquots of technical replicates that were then labeled with Cy3 or Cy5. Each gel
contained the pooled standard (Pooled Std; mix of equal aliquots of each
sample in all experimental groups) and two other subject samples. Thus, the 8
samples were analyzed in triplicate by running four gels. (For detail descriptions
refer ‘‘Materials and Methods section.’’).
doi:10.1371/journal.pone.0027816.t001

Proteomic Signatures in HOECs of HIV+ Subjects
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the within variance among replicates arises from technical noise

only. Thus as sample numbers are limiting, the power curve from

the technical replicate at a= 0.05 is considered and from this

curve it is clear that using three technical replicates results in

.80% chance of detecting a 50% change. Thus, we designed a

study with pooled samples and four technical replicates (over 90%

power). Accordingly spots with 1.5 and above or 21.5 and below

fold changes and exhibiting statistical significance (T-test P-

value,0.05), were retained as spots of interest in this study. Out of

the total number of spots detected, 1413 were matched in all 12-

gel images (essentially 80% of the total) and the spots deemed

significant were carefully checked for correct matching in every

gel. One hundred fifty three spots, which passed all these criteria,

were considered to be significantly different between the two

experimental groups, and were further investigated.

The subsequent FT-MS/MS analysis on a total of 153 spots of

interest successfully derived sequence data from 131 spots, whereas

the digest for the rest of the 22 spots either did not reveal any

peptides or identified keratin. A total of 20 spots contained

isoforms for 8 proteins due to either post-translational modification

or proteolysis. As the overall expression patterns of the observed

isoforms were similar, duplicates were omitted from the list in

Table S2. Moreover, for 58 spots, more than one protein per spot

passed our stringent filtering criteria and the results for these spots

were also excluded from the list (Table S2) as the average ratio

observed corresponds to the combination of all the proteins

present for a particular spot and individual changes are not

conclusive. Thus we report a total of 61 unique proteins along with

the fold changes that are summarized in Table S2 and detailed

identification information is provided in the Table S3.

A 2D-map of a representative deep purple stained gel is shown

in Figure 1. On this map the pick location of proteins whose

expression is significantly different based on the variance of the

mean change between the groups (P#0.05) are shown. In some

cases, the same protein was identified in different spots across the

2D gel, suggesting the occurrence of post-translational modifica-

tions. The protein abundance changes we report as significant

(Table S2) are for the proteins that have $1.5 or #21.5 changes

Figure 1. The 2D map of deep purple-labeled oral epithelial cellular proteome indicating pick location of a subset of proteins that
changed in response to HIV and/or HAART. Orientation of the pH gradients is indicated on the horizontal axes from 3 pH units (left) to 10 pH
unit (right), and approximate apparent molecular mass ranges are indicated along the vertical axes 10 kDa (bottom) to 200 kDa (top).
doi:10.1371/journal.pone.0027816.g001

Proteomic Signatures in HOECs of HIV+ Subjects
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in expression in the HIV-infected compared to HIV-negative

control subjects. A significant portion of these proteins are down

regulated in HIV-infected subjects compared to the healthy

controls.

Principal component analysis. Global relationships among

samples were visualized by performing a principal component

analysis on the expression data (Figure 2). Before dimensional

reduction, each spot map existed in multi-dimensional space (one

dimension for each of the expression values for a spot). The spot

map comparisons were plotted in two-dimensional space,

corresponding to the first and second principal components of

variation. The first principal component for each spot map is the

weighted linear combination of intensity values that shows

maximum variation, whereas the second principal component is

a weighted linear combination orthogonal to the first component

that has maximum variance. For the spots that are present in more

than 80% of the gels, the 1st principal component distinguished

84.8% of the variance with 8.6% additional variation distinguished

by the second principal component. This unsupervised principal

component analysis (PCA) demonstrated that the four technical

replicate samples per experimental group generally segregated into

two groups indicating that the variance contributed by the

experiment is smaller than the variance between the two

experimental groups. One would not expect the individual

samples to cluster in a way our experimental groups are

clustered, shown in Figure 2, if the fold changes for the

individual proteins reported in Table S2 arose by chance. In this

way, the PCA further demonstrated the statistical significance of

the fold changes for the proteins reported in Table S2.

Pathways related to protein abundance changes
To understand the relationship of these proteins and the effects

of these changes in the context of their cellular function, to identify

potentially co-regulated partner proteins, and to ascertain their

interactions with other proteins in known networks, the identified

proteins were analyzed using a web-based entry tool developed by

Ingenuity Systems, Inc. (http://www.ingenuity.com). Pathway

analyses revealed that Nrf2 mediated stress response was the

major pathway dysregulated in the comparison of experimental

groups. Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a

transcription factor which regulates the expression of many cyto-

protective genes. In addition, lipid antigen presentation (relate to

innate immunity), and acute phase response (related to inflam-

mation) were additional major pathways dysregulated between the

Figure 2. PCA of the proteins mediated by HIV and/or HAART. The protein expression profiles of experimental groups were visualized in two-
dimensional Euclidian space, by using extended data analysis module of DeCyder software as described under ‘‘Materials and Methods.’’ The PCA
distinctly clustered the 8 individual samples into two experimental groups (HIV-infected on HAART and healthy control subjects).
doi:10.1371/journal.pone.0027816.g002

Proteomic Signatures in HOECs of HIV+ Subjects
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two groups (Table 2). These data clearly suggest that stress

responses, innate immunity, and inflammation responses are

dysregulated in HIV-infected on HAART HOECs, however these

data lack molecular detail as to the sub-pathways that are

specifically altered, which would provide specific biomarkers or

molecular targets for therapy. To provide a greater degree of

molecular detail, de novo network construction using IPA

produced a sub-network of interactions shown in Figure 3 (with

a P value of ,10278) that included almost 50% of the total

proteins imported into IPA. The proteins in this network are

annotated primarily with respect to three biological functions

namely, protein folding, post-translational modification, and cell

assembly and organization. On this network, nodes (proteins) with

the red and green highlights are the specific proteins identified in

the current study, while the nodes (proteins) not in color have been

added by IPA to maximize the network connectivity. The red and

the green colors represent the direction of change in protein

expression, with red indicating up-regulated and green indicating

down regulated proteins respectively in HIV-infected subjects as

reported by 2-D DIGE. The edges with the arrowheads described

the direct or indirect (solid or dotted line) nature of the interaction

of these proteins. The solid line without the arrowheads refers to a

known binding interaction based on the IPA database annotations.

Every protein interaction in this network is based on published

research articles. The interactions described by this network

provide a framework for evaluating our targets, and enables us to

identify significant new functional modules that are coordinately

dysregulated. For instance, on the network it is clear that HOEC

responses in these chronically ill HIV-infected subjects include

suppression of protein modules that are essential for stress

responses (such as heat shock proteins). It is also clear that IPA

analysis predicts the involvement and activation of major signal

transduction complexes in controlling the expression changes for

many of the proteins such as the MAPK pathway. As proteins do

not function in isolation, pathway analysis may help uncover the

concerted changes of protein modules in revealing dysregulated

host proteins that may contribute to prediction for secondary co-

viral infections.

Verification by Western blotting. To verify both the

direction and fold changes identified by the 2-D DIGE analysis,

Western blot analysis was carried out for representative proteins

on an independent set of twelve patient samples (six HIV-infected,

Table S1, and six healthy controls) not used in the initial 2-D

DIGE discovery experiments. The oral tissue for these

experiments was also expanded to provide a homogeneous

epithelial cell population (as for the discovery experiments) but

the patient samples were not pooled, thus individual patient

variation was assessed as well. In the first verification study using

three HIV-infected subjects (Table S1, subjects 5–7) and three

healthy controls, we chose to verify key pathway elements; these

included protein disulfide isomerase precursor 1 and 3 (Pdia1,

Pdia3), to measure responses to stress; interleukin 1 receptor

antagonist isoform 1 (Il1nr), to measure inflammatory response;

Cystatin A and B (Csta, Cstb), to measure protease inhibitor

functions; Vimentin (Vim), to measure cytoskeleton integrity;

Serine/threonine-protein phosphatase 2A 65 kDa regulatory

subunit A alpha isoform (Ppp2r1a) to measure effects on

signaling, cell growth and division; and proteasome subunit beta

type-6 (Psmb6), to measure proteasome expression. The relative

fold changes for these proteins were computed using ImageQuant-

TL v2005 software and are summarized in Table 3 with statistical

significance computed using student’s T-test. Overall, our Western

blotting results were in agreement with the directionality of the

abundance changes reported by 2-D DIGE, with the exception of

CstA (Figure 4 and Table 3). This protein exhibited a decrease in

abundance in HIV-infected on HAART subjects as reported by 2-

D DIGE analysis, but the decrease was not statistically significant

with Western blotting (Table 3). Alternatively the results for CstB

were in good agreement between the two approaches. For other

proteins validated by Western blot, Il1rn showed close agreement

by the two methods in terms of direction and fold change, while

the fold changes for Ppp2r1a were lower by Western than 2D

DIGE (21.53 vs. 22.75), and the fold changes were much higher

by Western for Psmb6 (210.3 vs 22.6), although the direction of

change was identical.

In addition, the 2-D DIGE results for Pdia1, for which the spot

was sequenced, were not considered conclusive and this protein

was not reported in Table S2 as the relevant spot also included

Tubb4. A Western blot analysis of Pdia1 identifies statistically

significant four-fold induction of Pdia1 in HIV-infected on

HAART subjects compared to the healthy controls. A major

difference was also observed between HIV-infected on HAART

subjects and healthy controls blots probed for vimentin (Figure 4).

The intensities of the bands for full-length vimentin appeared to be

similar for cell extracts from both HIV-infected on HAART and

healthy control samples. However, very intense lower molecular

weight products appeared in extracts from HOECs of HIV-

infected on HAART subjects. The molecular weight ranges and

the band patterns are similar to the band sizes and patterns

reported for authentic primary and secondary vimentin cleavage

products produced when vimentin is incubated with HIV-protease

[23] or in cells transformed by sarcoma virus [24] and/or when

astrocyte maturation is induced by thyroid hormone [25], or

during oxidized low density lipoprotein induced macrophage

apoptosis [26].

We observed decreases in the heat shock related proteins

Hspb1, Hspd1, Hsp40, Hsp56 and Trap (Hsp90L) in HIV-

infected subjects (Table S2) and pathway analysis suggested

potential involvement of Hsp70 (Figure 3). To determine if the

suppression of heat shock proteins may be mediated through a

common transcriptional factor, we assessed the endogenous level

of Heat shock factor protein 1 (Hsf1) in HOECs from HIV-

infected and healthy controls. In eukaryotes, the key regulatory

molecule in stress response is the heat shock transcriptional factor

(HSF). There are multiple HSF isoforms, with HSF1 being a

major regulator of heat shock protein transcription [27]. As clearly

delineated in Figure 4, multiple isoforms of HSF1 (possibly

unmodified, phosphorylated and/or sumolyated [28]) are observ-

able in the normal subjects, while only the lower molecular weight

form of HSF1 is seen, and only at a low level, in one of the HIV-

infected subjects. The overall intensity reduction for the HIV-

infected on HAART subjects with all bands integrated is 12.5 fold

(p-value 0.04). The suppression of HSF1 in HIV-infected on

HAART subjects compared to the healthy controls suggests that

Table 2. Cellular pathways with greater-than-chance
representation by signature proteins.

Pathways Expectation

NRF2-mediated oxidative Stress Response 8.84E-04

Lipid Antigen Presentation by CD1 2.99E-03

Selenoamino Acid Metabolism 4.0E-03

Acute phase Response Signaling 5.68E-03

Pentose Phosphate Pathway 7.37E-03

doi:10.1371/journal.pone.0027816.t002

Proteomic Signatures in HOECs of HIV+ Subjects
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down regulation of the several heat shock proteins may be

mediated through HSF1 repression. In unstressed cells, HSF1

exists as inactive monomer forming complexes with a variety of

different multimeric proteins, many of which contain either

HSP40/HSP70 or HSP90 [29,30]. In response to stress or other

stimuli the inactive HSF1 undergoes trimerization, and hyperpho-

sphorylation, followed by nuclear localization and activation to

elicit transcriptional activation of heat shock proteins [27].

Although HSF1 is essential to attenuate stress in chronic disease,

our analysis of total HOEC lysates verifies significant losses of

HSF1, reducing the cells’ ability to respond to stress. The reduced

levels of HSF1 may have influences beyond the heat shock/stress

response of HOEC cells as HSF1 has many other non-stress

targets of transcriptional activation, including cytokines and

chemokines [31] highlighting the dysregulation of inflammatory

pathways in the cells from HIV-infected on HAART subjects.

Verification for Mitogen-Activated Protein Kinase
pathway

IPA predicted involvement of major signal transduction mole-

cules that act as potential master regulators. To validate this

prediction (Figure 3), we assessed the endogenous level of phospho-

c-Jun N-terminal kinases (phospho-JNK), as it directly interacts with

glutathione-S transferase 1 (GSTP1), one of our significantly down

regulated targets, and phospho-MEK1/2 (MAP kinase kinase, the

upstream activator of ERK) via Western blot on HOEC lysates

from four HIV-infected patients; two on HAART (patients 9, 10;

Table S1) and two HAART naı̈ve (patients 8, 11; Table S1) and

three healthy controls. Figure 5 and Table 4 show that HOEC

lysates from HIV-infected subjects have 3.1-fold more phospho-

MEK1/2 than those of the healthy controls (p-value 0.009) while

total MEK is reduced (1.4-fold) but the change is not significant.

Phospho-JNK is seen to be higher in HIV-infected patients but the

change is not statistically significant while total JNK is unchanged.

The ratios of p-MEK/MEK and pJNK/JNK were also examined;

p-MEK/MEK increases five-fold in HIV infected patients (p value

0.05, data not shown) while the change in the ratio of p-JNK/JNK

is not significant. The data from the HAART naı̈ve patients 8 and

11 (HIV+, lane 1, 4) are not significantly different from the patients

on HAART (data not shown). The p-JNK level is quite variable in

the HIV-infected and control lysates and is likely influenced by

other factors than purely HIV-infection.

Figure 3. Protein networks associated with the proteins differentially expressed in response to HIV and/or HAART. The network was
generated by Ingenuity pathway analysis (IPA) software using the list of differentially expressed proteins identified by 2-D DIGE/MS analysis.
Individual proteins are represented as nodes, and the different shapes of the nodes represent the functional class of the proteins. The edges define the
relationships of the nodes: the arrowheads indicate the direction of the interaction.
doi:10.1371/journal.pone.0027816.g003

Proteomic Signatures in HOECs of HIV+ Subjects

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e27816



GSTP1 is decreased significantly in the HIV-infected discovery

samples compared to controls and has been shown to bind and

inhibit the activity of JNK [32,33]. Activation of JNK would be

consistent with suppression of GSTP1 in HIV-infected on

HAART subjects. Usually, JNK activation is accompanied by

ERK deactivation or vice versa. It has been well established that

JNK plays a pro-apoptotic function in response to various cellular

stress, whereas ERK is primarily involved in proliferative response

[34,35]. However, a recent study by Kins et al demonstrated a

parallel activation of both JNK and ERK through PP2A inhibition

[36]. From both 2-D DIGE and verification Western analysis on

Ppp2r1a, we detected statistically significant suppression of

Ppp2r1a, a regulatory sub unit of PP2A, in HIV-infected on

HAART subjects compared to healthy controls. Thus, similar to

the reports of Kins et al, phospho-MEK1/2 in diseased subjects

suggests that activation of MEK1/2 could be mediated through

suppression of Ppp2r1a.

Discussion

HAART ameliorates several pathological features of HIV in

human oral epithelial mucosa such as candidiasis. However, the

prevalence of multiple comorbid related infections related to HIV

do not necessarily appear to decrease concomitantly with

HAART. An examination of molecular changes in oral tissue

upon HIV infection and in the context of HAART is necessary to

understand these comorbidities. In this study we have focused on

proteomic expression changes in oral epithelia, to understand the

possible mechanisms and/or host responses that are responsible

for comorbid infections and we have identified changes in

expression for multiple proteins of HIV-infected subjects com-

pared to HIV- control individuals. Interestingly, many of these

proteins have been shown to interact with HIV proteins and/or

whose expression is HIV related [37,38].

Table 3. Relative fold changes for selected proteins that were
identified either by 2-D DIGE/MS and/or by network analysis
as determined by verification immunoblot analysis.

Protein HIV-infected/normala p-value (t-test)

Ppp2r1a 21.53 0.0061

Pdia3 4.30 0.0013

Pdia1 4.46 0.0073

Psmb6 210.3 0.0003

Il1rn 22.30 0.0393

Vim (upper band) 3.28 0.0238

Vim (lower band) 6.93 0.0065

CstA 1.31 0.156

CstB 21.36 0.031

HSF1 212.5 0.0425

The mean values of the fold change and the t-test are based on the
independent measurements from Figure 4.
aThe fold changes is expressed as a ratio between the mean intensity of
immunoblot for the HIV-infected on HAART and healthy controls after
normalization to beta-actin.

doi:10.1371/journal.pone.0027816.t003

Figure 4. Protein abundance for representative proteins assayed by immunoblotting. Twenty micrograms of HIV-negative healthy control
and HIV-infected on HAART subjects protein extracts was loaded per lane, each lane representing one of the three replicates per experimental group.
The resulting blots were probed with antibodies that are specific to:- Ppp2ra1, PDIA3, PDIA1, Vim, PSMb6, IL1RN, CSTA, CSTB, and HSF1, as well as b-
actin as a loading control. Relative -fold changes for these proteins in HIV-infected on HAART subjects compared to the healthy controls are given in
Table 3. N1_3, healthy controls; H1_3, HIV-infected on HAART subjects (Table S1, subjects 5–7).
doi:10.1371/journal.pone.0027816.g004
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Predominant protein down regulation themes
It is evident that a significant portion of the proteins we report

in this study (Table 2), are down regulated in HIV-infected

compared to HIV- control subjects. The molecular drivers of this

down-regulation are of interest. The direct presence of virus in

oral epithelial cells is debatable and has been addressed in only a

few in vitro studies [39,40,41]. Although HIV is most likely not

epitheliotropic, host infection with virus affects epithelial homeo-

stasis and function in a number of ways. The epithelium is

continually exposed to a number of oral pathogens and related

stimuli. These stimuli include HIV-infected CD4+ T cells,

monocytes, and macrophages, lymphocytes, and dendritic cells

that come in contact with the epithelium. Upon host cell lysis,

actively secreted HIV and HIV-induced pro-inflammatory

cytokines are released. This state of chronic immune activation

may mediate some or all of the changes in protein expression we

see in these studies and may drive susceptibility to comorbid

infections [42,43].

At present we have no unbiased discovery proteomics data

available from HOECs of HAART naive HIV-infected subjects. It

is possible some of the down-regulation themes are due to the

antiviral therapy [44,45]. Thus, although the precise source of the

dysregulation cannot be entirely established at this time, protein

expression changes in separate HIV-infected on HAART HOEC

subject samples were consistently observed. Moreover, we were

able to show that for MAP kinase-kinase phosphorylation, the

effects of HAART do not appear to be significant. Many of the

down-regulated proteins have been linked to pro- and anti-

inflammatory responses and oxidative stresses [46,47]. The list

includes, but is not limited to, proteins that are involved in protein

folding and trafficking as well as in both pro- and anti-

inflammatory responses (e.g., Hspb1, Dnajc7 (Hsp40), Fkbp4

(Hsp56), Hspd1 (Hsp60), Trap1 (Hsp90L), Calr, and Cryab2),

proteins that are involved in redox homeostasis (e.g., Gstp1,

Prdx1, and Ero1), and proteins that are involved in limiting the

inflammatory responses (e.g.; IL-1RA, Galectin-3-binding protein,

annexin III, and VI). Thus, the ability of oral epithelial cells of

HIV-infected on HAART subjects to respond to stress is

significantly attenuated compared to HIV- control subjects.

Heat shock proteins (Hsps) play an essential role as molecular

chaperones by assisting the correct folding, assembly, and

transport of proteins, as well as mediating degradation of

polypeptides that are damaged due to various types of stress.

Figure 5. Endogenous levels of MEK1/2, JNK1/2, p-MEK1/2, and p-JNK, predicted to be activated by IPA, assayed by
immunoblotting. The blots were probed with antibodies specific to MEK1/2 and JNK and phosphospecific antibodies to their phosphorylated
counterparts in the total lysates indicated from left: Healthy controls (1–3); HIV+ (1–4), HIV-infected subjects, with subjects in HIV+ lanes 1 and 4
HAART naı̈ve while 2 and 3 are on HAART (see also Table S1, subjects 8–11).
doi:10.1371/journal.pone.0027816.g005

Table 4. Relative fold changes assayed by Western blotting
for representative proteins that were predicted to be
activated by network analysis.

Protein HIV-infected/normala p-value (t-test)

p-MEK1/2 3.13 0.0090

MEK 21.37 0.3523

P-JNK-54 1.80 0.3446

P-JNK-46 1.24 0.7387

JNK-54 21.03 0.6401

JNK-46 21.09 0.4672

The mean values of the fold change and the t-test are based on the
independent measurements from Figure 5.
aThe fold changes is expressed as a ratio between the mean intensity of
immunoblot for the HIV-infected on HAART and healthy controls after
normalization to beta actin.

doi:10.1371/journal.pone.0027816.t004
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Depending on the nature of the Hsp itself, the source of the

accompanying stress related antigen, the local concentration of the

Hsp, the nature and concentrations of other Hsps and the

microenvironment in which the Hsp is encountered, these proteins

can mediate both pro- and anti-inflammatory immune responses

[46], suggesting that these molecules play a key role in the

maintenance of immunological homeostasis. Heat shock proteins

exhibit pro-inflammatory functions when they are expressed and

released from cells where damage occurs and are exported either

to the cell surface or to extra-cellular body fluids including blood

[47]. Under normal physiological conditions, Hsps induce pro-

inflammatory adaptive immune responses. A current report by

Kebba et al, has shown significantly higher surface expression of

heat-shock protein receptor CD91 on monocytes of HIV infected,

long-term non progressors, suggesting that HIV antigen uptake

and cross-presentation mediated by CD91 may contribute to host

anti-HIV defenses and play a role in protection against HIV

infection [48]. The concurrent suppression of a number of heat

shock proteins, heat shock factor protein 1(HSF1), and known

anti-inflammatory responses of the immune system, such as

interleukin 1 receptor antagonist, and galectin-3-binding protein

in oral epithelium of HIV chronically infected subjects, suggest

that a sustained presence of HIV infection eventually leads the

immune system into a state of immunological tolerance towards

multiple antigens. A similar pattern of protein expression change is

found in HIV-infected on -HAART subject samples used for

verification experiments. This result supports the notion that

HAART only provides partial immune recovery, especially to the

peripheral but not to the local immune system, in HIV-infected

individuals. The observed suppression of these immune modula-

tors could also be caused by prolonged usage of HAART. In this

regard, it will be interesting to examine the expression status of

heat shock proteins in HAART naive HIV-infected subjects.

Furthermore, our results also point to the crucial role for local, oral

mucosa-specific, innate-immune functions in controlling comorbid

infections.

Suppression of proteins that are involved in limiting inflamma-

tion, adds to the theme of chronic inflammation and immune

activation. For example, decreased calreticulin precursor (Calr)

and annexin III and IV play into pro-inflammation, as less Calr

mediates less nuclear export of nuclear receptor subfamily 3, group

C, member 1 (NR3C1); an important receptor that glucocorticoids

bind to, in order to dampen inflammation [49]. Moreover,

suppression of annexin III and IV, further support this theme, as

annexins suppress phospholipase A2 which suppresses arachidonic

acid release, resulting in less prostaglandin and leukotriene

expression [50,51]. Therefore, less annexin means more prosta-

glandin and leukotriene expression leading to increased inflam-

mation. Overall, we see multiple examples of protein abundance

changes consistent with a higher baseline inflammation level in

HIV-infected on HAART HOECs than in controls.

In addition to heat shock proteins and anti-inflammatory

proteins being suppressed in the HIV-infected subjects’ oral

epithelium, proteins associated with oxidative stress such as Gstp1,

Prdx1, and Ero1 are also down regulated. The first two are

antioxidant enzymes; i.e., they prevent the buildup of reactive

oxygen species (ROS). Interestingly, it was recently reported that

individuals on HAART have increased levels of ROS, such as

glutathione peroxidase (Gpx), in their circulation, with concom-

itant decreased levels of antioxidants such as glutathione

reductase, over time [52]; a clinical finding that supports our

conclusions. Reduced levels of antioxidant enzymes and/or

oxidative stress, in general, are known to up-regulate inflammatory

cytokine activities in individuals receiving HAART [53]. The

observed suppression of oxidoreductase enzymes known to be

induced by hypoxia, such as Erol1 [54,55], as we report herein,

suggests an increased presence of ROS in oral epithelium, which is

consistent with a significant increase in ROS in the circulation of

HIV infected individuals on HAART. It is generally accepted that

ROS are a source of oxidative stress that can adversely affect the

immune response and activate certain latent viruses [56,57],

thereby predisposing the epithelium to secondary infections.

GSTP1, in addition to being associated with phase II

detoxification of the products of oxidative stress, has recently

been implicated in the regulation of cell proliferation and

apoptosis through direct interaction of c-Jun N-terminal kinase,

(JNK) [32,58]. Furthermore, MAPK and upstream MAPK kinase

dephosphorylation has been attributed to PP2A [36,59,60], in

addition to a unique family of dual specific MAP kinase

phosphatases [35]. In agreement with these reports, the suppres-

sion of Ppp2r1a in HIV-infected subjects may regulate the

catalytic activity of PP2Ac, which in turn may contribute to the

activation of not only JNK but also MEK1/2, a kinase for ERK.

Although such a mechanism is consistent with the data, it

represents only one plausible mechanism linking the possible

pathways that are common for the activation of both JNK and

ERK.

Protein up regulation themes
The proteins that are up regulated in HIV-infected subjects

include proteins that are involved in redox homeostasis such as

protein disulfide-isomerase A1 precursor (Pdia1), and protein

disulfide-isomerase A3 precursor (Pdia3). Although endoplasmic

reticulum-resident proteins, protein disulfide isomerases (PDIs) are

commonly detected at cell surfaces, and changes in the expression

of intracellular PDIs are reflected in the their expression on cell

surfaces [61]. These increases in Pdia1 and Pdia3, with a

corresponding decrease in ER oxidoreductin (Ero1l alpha) are

consistent with antioxidant imbalances associated with HIV-

infection and a potential prolonged usage of HAART [52]. The

decrease in the level of Ero1l alpha in HIV-infected subjects is

probably attributed to the increases in the ROS in the ER. The

Ero1l alpha enzyme is a flavoprotein that can couple the

introduction of disulphide into the PDI with the reduction of

oxygen to liberate hydrogen peroxide. For every disulphide

introduction into PDI, one molecule of hydrogen peroxide can

theoretically be produced. The production of this source of

reactive oxygen species leads to ER-generated oxidative stress. On

the other hand, PDIs have a direct role in the antioxidant system

and mainly participate in regenerating peroxiredoxins that are

oxidized by peroxides [62]. Thus, the induction of both Pdia1 and

Pdia3 in HIV-infected on HAART subjects could have a

protective role by avoiding the deleterious accumulation of ROS

in the ER, and maintaining a physiological balance between the

redox systems. Therefore, the increase in the expression of PDIs

and a concomitant decrease in the expression of Erol is consistent

with a protective response to the oxidative stress associated with

the down-regulated families of antioxidant enzymes that play an

important role in redox regulation and detoxification in these cells.

Another notable finding is accumulation of vimentin degrada-

tion products in HOECs of HIV-infected individuals. Western blot

analysis of this protein (Figure 4), identified both quantitative and

qualitative changes for vimentin in HIV-infected subjects, in

particular the appearance of vimentin degradation bands. Muller

et al reported major cleavage products (spanning from 46–57 Kda

and 29, and 26 Kda) of vimentin during oxidized low density

lipoprotein induced macrophage apoptosis [26]. Since HAART

has been associated with increased levels of LDL and ROS in
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HIV-infected on HAART subjcets, in parallel with down

regulation of a group of proteins that decrease apoptosis induced

by ROS; i.e., Prx1, Gstp1, Cryab Hspd1, Hpb1, Lgals3bp, Ox-

LDL mediated apoptosis of HOECs, may lead to vimentin

fragmentation. Of note, HIV protease fragments vimentin both in

vivo [63] and in vitro [23], and the number and size of vimentin

fragments reported are also very similar to our Western blot

results. While HIV may not infect epithelial cells efficiently (e.g.

abortive infection may be a feature of the disease related effects),

we cannot entirely rule out that HIV protease is present in the

local epithelial environment during HIV permissive cell lysis.

Although our study identifies multiple pathways and proteins

dysregulated in HIV-infected on -HAART subjects, some caveats

must be admitted as this research is still in its early stages. First, the

study only comprises a total of twenty-one subjects, with only eight

individuals in the discovery phase. In addition, there is a

systematic difference in the average age of the HIV-infected and

control groups, as age-matched HIV negative volunteers under-

going the same surgical procedures were quite difficult to enroll.

Thus, it is entirely possible that this sub-group of subjects may not

broadly reflect the molecular alterations of a larger patient

population and that important HIV related pathways may have

easily been overlooked. Also, some of the differences may be

attributable to age differences alone. However, the subjects are all

adults from 18–58 years, which is an age range unlikely to be

biased by senescence.

Despite the potential limited discovery set, the verification

experiments, which were conducted on individual (un-pooled)

patient samples, entirely confirmed the pathways and proteins

identified in the initial discovery phase. While intact oral mucosa is

composed of multiple cell types; these experiments utilized a

homogeneous epithelial cell population, in order to provide results

that could be unambiguously attributed to this cell type. Thus,

additional studies, either by Western or preferably by immuno-

histochemistry, performed on primary oral tissue, will be of

interest to fully understand the protein dysregulation of the oral

mucosa associated with HIV-infection on HAART. Furthermore,

additional studies on HIV-infected, HAART naive subjects are

needed to dissect the effects of HIV from those of HAART as we

have on-HAART vs HAART naı̈ve data only for MAP kinase

kinase phosphorylation and for only two patients in each of these

groups. Lastly, these studies suggest the potential for epigenetic

variation, if not silencing in the oral epithelia, mediated by HIV or

HAART related chronic effects. This is related to the interesting

phenomena that despite the primary cellular expansion of the oral

epithelial cells, the resultant cell populations represented by the

HIV-infected vs. non infected groups have considerable variation

in proteome expression. Silencing of oral cells in DNA damage

and cancer is a theme of increasing interest, as is epigenetic

silencing in general [64,65], and future experiments to examine

histone modifications or promoter methylation changes are

certainly of interest to further explore the molecular basis of these

differences.

In summary, our study has identified over 60 candidate proteins

whose expression is dysregulated in HOECs of HIV-infected on

HAART subjects and changes in the expression levels of these

proteins could negatively impact local epithelial immunity. These

proteins represent potential biomarkers for diagnostic and

prognostic purposes and the dysregulated pathways are potential

targets for novel therapies to combat co-infection risks. In

addition, these biomarker proteins may be detectible in saliva,

which is likely to contain significant quantities of oral tissue related

proteins. Salivary biomarkers may reflect changes in oral

pathology related to these findings and may represent an accessible

oral fluid suitable for more routine diagnostic analysis.

Overall, the data suggests that local immune dysregulation in

HIV-infected individuals involves down regulation of proteins

which are necessary to attenuate cellular stress, to induce pro-and

anti-inflammatory responses, and proteins which regulate ROS.

The down regulation of these important clusters of proteins and

pathways identified in this study may represent global epithelial

defects that may contribute to increased susceptibility to infection

observed in chronically ill HIV-infected subjects. While evaluation

of the proteome expression in the two experimental groups does not

distinguish protein expression patterns that may be due to HAART

from those that are associated with chronic HIV infection, it does

provide leads to establish association between the observed protein

changes and epithelium susceptibility towards comorbid infections.

Materials and Methods

Reagents
The majority of chemicals in this study were obtained from GE

Healthcare (Piscataway, NJ), Thermo scientific (Rockford, IL), and

Invitrogen (Carlsbad, California) and used without further

purification unless otherwise stated. Antibodies to Ppp2r1a,

Psmb6, and b-actin, loading control (Abcam, Cambridge, MA)

and antibodies to Pdia1, Pdia3, Vim, Il1ra, HSF1, CstA, and CstB

(Sigma Aldrich, St. Louis, MO), MEK1/2, Phospho-MEK1/2,

JNK, Phospho-JNK (Cell Signaling Technology, Danvers, MA)

were purchased from the indicated vendors.

Ethics Statement
Volunteers have been used as the source of material for the

described work outlined in this manuscript. Human gingival tissue

overlying impacted third molars from HIV-infected and healthy

control subjects were collected after written informed consent was

provided by study participants and/or their legal guardians.

University Hospital Case Medical Center Institutional Review

Board (IRB) Protocol #: 19981017 approved this study.

Clinical Samples
Human gingival tissue overlying impacted third molars were

obtained from HIV-infected subjects (48.068.7 years) and healthy

controls (22.966.5 years). Both pretreatment CD4 T-cells data

(nadir CD4) and CD4 T-cells after HAART at the closest date to

tissue collection, as well as viral load per ml of blood from the

HIV-infected subjects were determined (Table S1). Also, no

diagnosis of gingivitis; i.e., inflammation of the gingival tissue, or

periodontitis; i.e., alveolar bone loss, was observed in the biopsy

sites from healthy or HIV-infected subjects.

Human Oral Epithelial Cell (HOEC) preparation
Primary human oral epithelial cells (HOECs) were isolated and

expanded in serum free keratinocyte growth medium with

supplements as previously described by Krisanaprakornkit et al

[66,67]. Briefly, the epithelial layer was separated from the

underlying fibrous connective tissue with dispase. A single cell

suspension was prepared from the epithelial sheets by trypsiniza-

tion and repeated pipetting. Cells were suspended in serum-free

EpiLife media (Cascade Biologics Inc, Portland, OR), and plated

on 10 cm petri dishes and grown to near-confluence. After

reaching .80% confluence, cells were detached from the petri

dish, pelleted, frozen and stored in liquid nitrogen until used for

expression proteomics and verification analyses. Samples for the

original 2-D DIGE analyses were pooled HOECs from 4 HIV-

infected (Table S1, subjects 1–4) and 4 HIV- negative individuals
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respectively, while confirmation analyses were conducted on

separate HOECs from HIV-infected (Table S1, subjects 5–11)

and healthy control subjects.

Sample size and Power analysis
To estimate sample size for this study power analysis was

performed using two datasets from previous 2D-DIGE experi-

ments [20], and (Yohannes et al, unpublished data). One of the

datasets is from technical replicate gel images that were run using

the same sample but labeled with either Cy3, or Cy5. The second

dataset is from biological replicate gel images. Standardized

volume of protein spots were exported into excel using XML

Toolbox within DeCyder software. Once spots that are present

across all the gel images were filtered, the within group variance

for each spot followed by upper quartile variances were computed

on a log transformed spot standardized volumes. Power for

different sample size at 0.05 or 0.001 significant level, and using

upper quartile variance and 50% change in expression was

computed via Power and Sample Size Calculator Version 3.0.43 (a

free package: http//biostat.mc.vanderbilt.edu/twiki/bin/view/

main/PowerSampleSize). The relationship between power and

sample size was plotted in Microsoft Excel.

Protein extraction and fluorescence dye labeling
Sample preparation was conducted as previously described [20].

Briefly, total protein was harvested from the respective HOEC

samples. Protein clean up and concentration of each sample was

determined using a 2D cleanup and quant kits (GE Healthcare),

respectively. For 2D DIGE experiments, four biological replicates

from control and four from HIV-infected subjects were pooled in

order to minimize interpersonal variation as well as meet the

minimum total protein sample size required to carry out the

experiment. The samples were then split into four 50 mg aliquots.

An additional sample, a pool of 100 mg protein from each group

was collected from HIV-infected and normal samples (200 mg

total) and split into four 50 mg aliquots and used as an internal

standard. Thus, samples from either HIV-infected or healthy

control were labeled with Cy3 or Cy5 cyanine dyes alternatively

while the internal standard samples were labeled with Cy2 dye by

the addition of 400 pmol of Cy dye in 1 mL of anhydrous N,N

dimethylformamide per 50 mg of protein. A dye-swapping scheme,

as shown in Table 1 was used such that the four samples for any

condition were variously labeled with Cy3 or Cy5 to control for

any dye-specific labeling artifacts. Labeling was performed for

30 min on ice in the dark; the reaction was then quenched with

10 mM lysine and additionally incubated for 10 min.

Gel electrophoresis
The quenched Cy3 and Cy5-labeled samples, to be partitioned in

the same gel according to the experimental design in Table 1, were

then combined and mixed with an aliquot of Cy2-labeled internal

standard and an equal volume of 26 sample buffer (8 M urea, 4%

w/v CHAPS, 2% w/v dithiothreitol (DTT), 2% v/v Pharmalytes 3–

10 NL) was added. Prior to isoelectric focusing (IEF), an additional

350 mg of unlabeled protein was added (for later spot picking and

protein identification) and the mixtures were brought up to 450 ml

with 16 rehydration buffer. The mixed samples were then

partitioned according to their isoelectric point (pI) and molecular

weight, in two dimensional gels, as previously described [20].

Image acquisition and spot quantification
Gel images, acquisition and spot quantification were carried out

as previously described [20]. Briefly, data analysis was carried out

using a total of 12 gel images consisting of four replicate images

from healthy control, four replicates of HIV-infected and four

from the internal standards, which were pooled mixtures of equal

aliquots of each experimental sample. The pick gel image was also

processed with the rest of the gel images but not included in the

analysis. In order to compare protein spots across the eight gel

images, image analyses were conducted in two steps using

DeCyder v6.5 2D differential analysis software (GE Healthcare).

In the first step, the set of three images from a single gel were

loaded into differential in-gel analysis (DIA) module within the

DeCyder software to detect and quantify intra-gel spots. For the

subsequent inter- gel differential analysis, the DIA workspaces for

all the gels were saved and loaded into the biological variation

analysis (BVA). In the BVA module, the image with the largest

number of protein spots was assigned as the master image. Sample

(Cy3 or Cy5 labeled) spot maps were assigned into healthy control,

HIV-infected and all internal standard and the pick spot maps

were assigned into standard and pick folders, respectively, in the

experimental design view of the BVA modules. Once the spots

from the common standards were matched across the analytical

gel images and with the pick gel image, the standardized volume

ratio for each standard image from the different gels was set to the

value 1.0 in order to compare ratios between matched protein

spots in the different gels (groups). Thus, the ratios of the log

standardized protein spot abundances (differences in expression)

between the groups were computed.

To test for significant differences in expression of proteins

between the two experimental groups, T-test was performed at a

significance level of 0.05; thus, for every hundred spots tested, five

false positives would be expected. Specifically, the data were

filtered using the average volume ratios of 1.5 and above or 21.5

and below fold differences in expression and with false discovery

rate adjusted (FDR) T-test p value of 0.05 or less and assigned as a

spot of interest. For the spots that displayed significant differences

in expression between the groups, a pick list with pick location and

coordinates were generated. The pick list along with the post-

stained pick gel was transferred to the automated Ettan spot picker

and excised gel plugs were placed into a 96-well plate for the

subsequent in-gel digestion and mass spectrometry analysis of the

peptide for protein identification.

Multivariate analyses were performed on the expression data

derived from the BVA using the DeCyder extended data analysis

(EDA) software. The gel images were grouped such that the 4-

technical replicates for each experimental condition formed a

group. Once the BVA was imported into EDA, the data was

filtered so that only 153 spot features exhibiting statistically

significant (T-test p,0.05) changes and present in more than 80%

of the spot maps were considered. The global relationships among

spot maps were visualized by performing a principal component

analysis (PCA) on these spot features.

In gel digestion and protein identification
The proteins in the gel plugs were digested with trypsin

(Promega) using a modified protocol adapted from Shevchenko

et al. [68]. Tryptic digests were extracted from the gel matrix,

concentrated by SpeedVac avoiding complete drying, and

reconstituted in 0.1% formic acid. The protein digests were then

trapped onto a pre-column (C18, PepMap100, 300 mm 65 mm,

5 mm particle size, 100 Å, Dionex) and desalted on-line in mobile

phase A (0.1% formic acid in 5% acetonitrile) at 10 mL/minute for

10 minutes using a Dionex Ultimate 3000 capillary LC system on

line with an LTQ- Fourier Transform (FT) mass spectrometer

(Thermo Electron Corp., Bremen, Germany). Each sample was

subsequently loaded onto a Dionex C18 PepMap 75 mm615 cm
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reversed phase column with 5% mobile phase B (0.1% formic acid

in 85% acetonitrile). Separation of peptides was obtained with a

linear gradient of 2% per min, starting with 100% of mobile phase

A. Subsequently, the peptides were infused at a flow rate of

300 nL/min via PicoTip emitter (New Objective Inc., Woburn,

MA) a voltage of 1.8 kV into LTQ-FT mass spectrometer to

acquire mass spectrum data (alternating full MS scan and MS/MS

scans). Survey data was acquired from m/z of 400 to 1600 and the

precursors were interrogated by MS/MS per switch. The switch

into MS/MS was based on precursor intensity and 5 scans were

acquired for every precursor interrogated.

The tandem mass spectra were annotated and peak list files

were generated, commonly referred to as. DTA files, by running

SEQUEST extract_msn algorithm in Bioworks version 3.2

(Thermo Electron, Bremen, Germany). The mass range m/z

400–3500 from full scan data, with an absolute threshold of 100, a

minimum ion count of 12 and a precursor ion tolerance of 1.4 Da

were used to generate the .DTA file. Prior to searching, non-

redundant databases of 3,893,302 sequences (release 07/04/06)

were downloaded in FASTA format via file transfer protocol (FTP)

from the website of the NCBInr. These databases were stored

locally and a subset human database was created and indexed to

produce faster search times. The resulting peak list (.DTA) files

were then used to interrogate sequences present in an indexed

human subset database (137,607 sequences stored locally) by

running SEQUEST SEARCH algorithm of Bioworks software

version 3.2. SEQUEST searches were performed with maximum

peptide and fragment ion mass tolerance of 2.5 and 1.0 Da

respectively, with partial methionine oxidation, and complete

carbamidomethylation of cysteine. Two missed cleavage sites were

also allowed in the search parameters. The criteria for each

protein identification was a minimum of two peptides with a

significant peptide expectation (P,0.001), peptide Xcorr 1.9, 2.7,

and 3.5 for the charge states and +1, +2, and +3 respectively, and a

minimum Delta CN (Delta correlation) of 0.1. The correlation of

theoretical molecular weight and pI with the gel region were also

generally considered. In addition all the MS/MS spectra identified

by SEQUEST were manually verified for spectral quality and

matching y and b ion series (A complete protein list and

annotation criteria are included in the Table S3).

Network Analysis
The data set with a list of regulated proteins identified by 2-D

DIGE was analyzed further using the network building tool

Ingenuity Pathway Analysis (Ingenuity Systems, Inc.). The

Ingenuity Pathways Knowledge Base is the largest curated

database of previously published findings on mammalian biology

from the public literature (Ingenuity Systems). The databases

consist of millions of relationships between proteins that are

derived from published data on proteins and small molecules. The

relationships include direct protein interaction, transcriptional

regulation, binding, enzyme-substrate and other structural or

functional relationships. The networks can be visualized graphi-

cally as nodes (proteins) and edges (the relationship between

proteins) alongside empirical expression patterns. The data set

from our study was imported into the IPA systems. Hypothetical

networks of proteins from our experiment and proteins from the

Ingenuity systems database were then built using the de novo

network building algorithm, one of the several algorithms

integrated within Ingenuity systems.

Western blotting
Cell lysates were prepared from HOECs obtained from an

independent set of biological replicates (individuals not used

previously for the initial 2-D DIGE experiment) from healthy

controls and HIV-infected on -HAART or HAART naı̈ve

subjects. Twenty micrograms of protein extracts from all subjects

was loaded per lane, each lane representing one of the three or

four replicates per experimental group. The proteins were then

resolved by electrophoresis on denatured and reduced 4–12%

polyacrylamide gels (Invitrogen) and transferred onto nitrocellu-

lose membranes for western blotting. The membranes were

blocked with 5% skim milk or 5% BSA for 1 hr at room

temperature with gentle shaking, washed, and incubated overnight

with specific primary antibodies against Pdia1 (0.5 ng/ml), Pdia3

(0.130 ng/ml), Il1nr (0.120 ng/ml), Cstb (0.130 ng/ml), CstA

(0.080 ng/ml), Vim (0.170 ng/ml), Ppp2r1a (1.000 ng/ml), Psmb6

(1.000 ng/ml), total JNKs (0.180 ng/ml) or dual phosphor-JNKs,

(0.150 ng/ml), MEK1/2 (0.017 ng/ml) or phosphor-MEK1/2

(0.066 ng/ml), HSF1 (0.080 ng/ml) and b-actin at (1.000 ng/ml).

The membrane was washed and then incubated for 1 hr at room

temperature with horseradish peroxidase (HRP)-conjugated sec-

ondary antibody (2 ng/ml). After three washes, the blot was

incubated for 5 minutes in chemiluminescent developing sub-

strate, prepared according to the manufacturers’ instructions

(Pierce Biotechnology; Rockford, IL or Cell Signaling Technology;

Danvers, MA). The membrane was removed from the substrates

and placed in plastic sheet protectors and the chemiluminescence

was visualized by exposing the blot to Kodak X-OMAT. The

bands on the films were scanned quantified using ImageQuant-TL

v2005 software (GE Healthcare, Piscataway, NJ). Equal loading of

the protein samples was demonstrated by re-probing the blots for

b-actin (Figure 4 and 5). In data analysis the intensity of each band

was normalized using the b-actin intensity.

Supporting Information

Figure S1 The relationship between power and sample
size at a = 0.05 or 0.001 for 50% change in protein
expression. Two datasets from technical replicates and biolog-

ical replicates encompassing technical noise only and both

technical and biological noises respectively were used to estimate

the upper quartile variances and to compute power at various

sample size.

(TIF)

Table S1 Clinical data of the HIV-infected subjects used
for 2-D DIGE and/or validation experiments. The samples

from the first 4 subjects, who are HIV-infected on HAART, were

pooled for the 2-D DIGE analysis. The subject samples 5–11 were

used for the verification analysis. Samples from HIV-infected on

HAART subjects 5, 6,and 7 were presented in the Western blot

analyses of Figure 4. Samples from subjects 8, 9, 10, and 11 were

used for the Western blot analyses presented in Figure 5. Patients 8

and 11 are HAART naı̈ve while 9 and 10 are on HAART. 1The

mean viral load for subjects 5–11 does not include subjects 8 and

11, who were HAART naı̈ve.

(DOC)

Table S2 Differential proteome profile of oral epithelial
form HIV-infected on HAART subjects.

(DOC)

Table S3 Database Search Results of spectra acquired
on a Fourier Transform LTQ Mass Spectrometry. The

tandem mass spectra were annotated and generated peak list files

(.DTA), by running SEQUEST extract_msn algorithm in Bio-

works version 3.2 (Thermo Electron, Bremen, Germany). The

resulting peptide mass lists were then used to interrogated

sequences present in an indexed human subset database
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(137,607 sequences), that was created from NCBInr 3,893,302

sequences (release 07/04/06) and stored locally, by running

SEQUEST SEARCH algorithm of Bioworks software version 3.2.

SEQUEST searching were performed with maximum peptide and

fragment ion mass tolerance of 2.5 and 1.0 Da respectively, and

with partial methionine oxidation (M)and complete carbamido-

methylation of cysteine (C), and 2 missed cleavage sites were also

allowed in the search parameter. For each protein identification, a

minimum of two peptides with a significant peptide expectation

(P,0.001), peptide Xcorr 1.9, 2.7, and 3.5 for the charge states

and +1, +2, and +3 respectively, minimum Delta CN (Delta

correlation) of 0.1.

(DOC)
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