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Abstract

Subcellular localization of messenger ribonucleic acid (mRNA) is a universal mechanism for precise and efficient control of the
translation process. Although many computational methods have been constructed by researchers for predicting mRNA subcellular
localization, very few of these computational methods have been designed to predict subcellular localization with multiple localization
annotations, and their generalization performance could be improved.
In this study, the prediction model MSlocPRED was constructed to identify multi-label mRNA subcellular localization. First, the
preprocessed Dataset 1 and Dataset 2 are transformed into the form of images. The proposed MDNDO–SMDU resampling technique
is then used to balance the number of samples in each category in the training dataset. Finally, deep transfer learning was used to
construct the predictive model MSlocPRED to identify subcellular localization for 16 classes (Dataset 1) and 18 classes (Dataset 2). The
results of comparative tests of different resampling techniques show that the resampling technique proposed in this study is more
effective in preprocessing for subcellular localization. The prediction results of the datasets constructed by intercepting different NC
end (Both the 5’ and 3’ untranslated regions that flank the protein-coding sequence and influence mRNA function without encoding
proteins themselves.) lengths show that for Dataset 1 and Dataset 2, the prediction performance is best when the NC end is intercepted
by 35 nucleotides, respectively. The results of both independent testing and five-fold cross-validation comparisons with established
prediction tools show that MSlocPRED is significantly better than established tools for identifying multi-label mRNA subcellular
localization. Additionally, to understand how the MSlocPRED model works during the prediction process, SHapley Additive exPlanations
was used to explain it. The predictive model and associated datasets are available on the following github: https://github.com/ZBYnb1/
MSlocPRED/tree/main.
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Introduction
In the intricate process of eukaryotic development, the precise
subcellular localization of messenger ribonucleic acid (mRNA) is a
fundamental and essential regulatory mechanism, with profound
implications for protein synthesis [1]. Eukaryotic cells exhibit
a dynamic distribution of mRNA, often found in diverse cellu-
lar compartments, particularly in complex organisms where it
orchestrates multiple functions [2–6]. mRNA localization is gov-
erned by intricate biological rules; yet, any disruption can trigger
severe health consequences, including cancers, spinal muscu-
lar atrophy, Alzheimer’s disease, and neurological disorders [7–
10]. Consequently, a comprehensive understanding of mRNA’s
localization machinery is of paramount biological importance.
However, given the time-consuming nature of traditional bio-
chemical methods, there is a pressing need for the development
of a computationally efficient and accurate predictive tool to

streamline this process [11–16]. In recent years, an increasing
number of machine learning algorithms have been employed
to predict mRNAs and non-coding RNA’s (ncRNAs’) subcellular
localization [17–20]. In 2021, Wang et al.’s method, DM3Loc, uti-
lized one-hot encoding as input features and employed Convolu-
tional Neural Network (CNN) and multi-head attention to predict
multiple labels for six positions [21]. Li’s team, also in 2021, pre-
sented SubLocEP, which took into account additional features and
used a weighted aggregation of single-layer models [22]. In 2022,
Bi et al. introduced Clarion that combined sequence information
and prior label knowledge, using multiple binary classifiers to
achieve multi-label predictions [23]. In 2023, Yuan et al. developed
RNAlight, which assembled k-mers into sequence feature maps
and targeted a more general approach [24]. In the same year, Wang
et al. introduced DeepmRNALoc, employing a two-stage feature
extraction strategy in a deep learning neural network [25].
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Although a great deal of research work has been carried out and
many computational tools have been constructed for subcellular
localization prediction, there are still many limitations: (i) they are
often designed for single-position prediction, while in reality, mul-
tiple positions may be relevant. (ii) Converting multi-position clas-
sification into multiple binary problems can be computationally
expensive. (iii) The generalization and accuracy of current mod-
els are not optimal, and their feature extraction methods may
be limited or unreliable. To address these limitations, a com-
putational tool needs to be developed that can handle multi-
position prediction more efficiently, consider more sophisticated
feature extraction techniques, and improve overall performance
and generalizability. With this in mind, this study aims to establish
a multi-label computational tool that can be directly used to
predict multi-label subcellular localizations. The flowchart of the
prediction model MSlocPRED developed in this study is depicted
in Fig. 1. Figure 1 mainly consists of the following parts: initially,
Dataset 1 and Dataset 2 are divided into a training set and a testing
set (data preprocessing) according to a 9:1 ratio. Subsequently, the
multi-dimensional normal distribution–similarity of Mahalanobis
distances (MDNDO–SMDU) resampling algorithm is employed to
balance the quantity of each class. The balanced data are then
converted into a format suitable for transfer learning, that is, all
data from Dataset 1 and Dataset 2 are transformed into images
using a Python script. This script iterates over text files in a speci-
fied directory, reads the text content line by line, and renders each
line into separate images. The generated image has a transparent
background and is cropped according to the size of the text to
ensure a compact display effect. The image files are saved in
the corresponding directories using the same naming conventions
as the source text files. It should be noted that in this step, we
only convert the NC-termini of the sequences (the first 35 and
last 35 nucleotides). After completing the above steps, the data
will be sent to the optimized AlexNet transfer learning model for
training. Finally, once the network training is complete, the testing
set is input into the predictor MSlocPRED, yielding test results and
computing various metrics for multi-label classification to assess
the performance of network.

Materials and methods
Benchmark dataset
It is crucial to build a reliable benchmark dataset in order to
develop predictive models with good generalization performance
and statistical significance. All mRNA subcellular localization
datasets used in this study were sourced from the RNALocate
database (a resource for RNA subcellular localization analysis).
RNALocate v1.0 (version 1.0, updated in February 2020) [26]
integrated GenBank (https://www.ncbi.nlm.nih.gov/genbank/)
[27], and the mRNA sequence data in the FASTA format
were obtained from the National Center for Biotechnology
Information in February 2020 (https://www.ncbi.nlm.nih.gov/
sites/batchentrez). RNALocate v2.0 (version 2.0, updated in June
2021) [28] integrated RNA subcellular localization data from five
databases (CSCD) [29], EVmiRNA [30], exoRBase [31], PomBase [32]
and TAIR [33]. To comprehensively validate the effectiveness of
the predictive model constructed in this study, we constructed
predictive models using two benchmark datasets collected from
the RNALocate v1.0 and RNALocate v2.0 databases. The specific
descriptions of the two benchmark datasets are as follows:

The benchmark dataset collected based on the
RNALocate v1.0 [26], namely Dataset 1
Considering that Wang et al. [21] collected data on seven subcellu-
lar localizations [nucleus, exosome, cytosol, cytoplasm, ribosome,
membrane, endoplasmic reticulum (ER)] based on the RNALocate
v1.0 database in 2021, they constructed DM3Loc [21] to iden-
tify multiple subcellular localizations and compared its perfor-
mance with that of four advanced methods. In order to objectively
compare the predictive performance of the model constructed in
this study, the benchmark dataset constructed by Wang et al. [21]
was used as Dataset 1. The detailed steps for constructing training
and testing datasets for Dataset 1 are as follows:

(i) For the seven subcellular localization data collected, since an
mRNA can localize at multiple departments and we are consider-
ing seven departments, a total of 128 (27) possible combinations of
mRNA localizations exist in theory, removing categories with less
than 230 sequences and duplicate sequences. Finally, the dataset
is divided into 16 categories:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

data1
1 = data1

1(0100000), data1
2 = data1

2(0100001)

data1
3 = data1

3(0100100), data1
4 = data1

4(0101000)

data1
5 = data1

5(1100000), data1
6 = data1

6(1100001)

data1
7 = data1

7(1100100), data1
8 = data1

8(1101000)

data1
9 = data1

9(1101010), data1
10 = data1

10(1101100)

data1
11 = data1

11(1101101), data1
12 = data1

12(1101110)

data1
13 = data1

13(1111000), data1
14 = data1

14(1111010)

data1
15 = data1

15(1111100), data1
16 = data1

16(1111110)

(1)

In which, one-hot was used to represent the localization cate-
gories, they are in the following order: nucleus, exosome, cytosol,
cytoplasm, ribosome, membrane, and ER. For example, 0100000
means this sequence has the exosome annotation, and 0100001
means this sequence has the exosome and ER annotations. The
meanings of the other 14 equations are similar. (ii) After division,
the 16 categories of data were obtained. (iii) The 16 classes of
data obtained were randomly divided into two parts: the training
dataset and the testing dataset. Where 90% of the data in each
class is used as training data, the rest of the data is used as
test data. (iv) In order to test the importance of the N-terminal
and C-terminal of subcellularly localized sequences, the N- and
C-termini of the preprocessed sequences were intercepted to
lengths of 20–45, interval of 5, that is, the sequence lengths are
40, 50, 60, 70, 80, and 90, respectively. Table 1 lists the specific
quantities for each category in the training and testing sets of
Dataset 1, along with the corresponding labels.

Based on the benchmark dataset collected by
clarion [23] for messenger ribonucleic acid
subcellular localizations from the RNALocate
v2.0 [28] (Dataset 2)
For the nine subcellular localization data collected from Clarion
(exosome, nucleus, nucleoplasm, chromatin, cytoplasm, nucle-
olus, cytosol, membrane, and ribosome), the detailed steps for
constructing the training and test datasets are as follows:

(i) For the nine subcellular localization training and test data
collected, since an mRNA can localize at multiple compartments
and we are considering nine compartments, a total of 512(29) pos-
sible combinations of mRNA localizations exist in theory, the cat-
egories with less than 300 sequences and duplicated sequences
were removed and finally the training and test datasets were
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Figure 1. The framework diagram of the prediction model MSlocPRED constructed in this paper.

Table 1. Content of Dataset 1

Classes Label Total counts Train set Test set Classes Label Total counts Train set Test set

1 0100000 3603 3243 360 9 1101010 1032 929 103
2 0100001 240 216 24 10 1101100 1677 1509 168
3 0100100 242 205 23 11 1101101 224 202 22
4 0101000 574 517 57 12 1101110 714 643 71
5 1100000 1662 1496 166 13 1111000 879 791 88
6 1100001 266 239 24 14 1111010 337 303 34
7 1100100 586 527 59 15 1111100 430 387 43
8 1101000 1909 1718 191 16 1111110 233 210 23

divided into 18 categories, respectively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

data2
1 = data2

1(100000000), data2
2 = data2

2(010000000)

data2
3 = data2

3(000010000), data2
4 = data2

4(110000000)

data2
5 = data2

5(100100000), data2
6 = data2

6(100000100)

data2
7 = data2

7(100000001), data2
8 = data2

8(110010000)

data2
9 = data2

9(110000100), data2
10 = data2

10(110000110)

data2
11 = data2

11(111101000), data2
12 = data2

12(111100100)

data2
13 = data2

13(111101100), data2
14 = data2

14(111100110)

data2
15 = data2

15(111100101), data2
16 = data2

16(111101110)

data2
17 = data2

17(111101101), data2
18 = data2

18(111101111)

(2)
In which,we use one-hot encoding to represent the local-

ization categories, they are in the following order: exosome,
nucleus, nucleoplasm, chromatin, cytoplasm, nucleolus, cytosol,
membrane, and ribosome. For example, 100000000 means this

sequence has the exosome annotation; 100100000 means this
sequence has the exosome and chromatin reticulum annotations;
the meanings of the other 16 equations follow in this manner. (ii)
The 18 class training datasets and testing datasets were obtained
after division. (iii) In order to test the importance of the N-terminal
and C-terminal of subcellular localized sequences, the N-terminal
and C-terminal of the preprocessed sequences were intercepted
to lengths of 20–50, interval of 5, that is, the sequence lengths are
40, 50, 60, 70, 80, 90, and 100, respectively. Table 2 lists the specific
quantities for each category in the training and testing sets of
Dataset 2, along with the corresponding labels.

Resampling methods
Due to the extreme imbalance of the training dataset constructed
in this study, the ratio of 16 training samples for Dataset 1 is as
follows: 3243: 216: 205: 517: 1496: 239: 527: 1718: 929: 1509: 202:
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Table 2. Content of Dataset 2

Classes Label Total counts Train set Test set Classes Label Total counts Train set Test set

1 100000000 7506 6774 732 10 110000110 393 349 44
2 010000000 3365 3037 328 11 111101000 394 359 35
3 000010000 1911 1715 196 12 111100100 580 527 53
4 110000000 1291 1154 137 13 111101100 1730 1557 173
5 100100000 353 319 34 14 111100110 497 448 49
6 100000100 1143 1016 127 15 111100101 493 445 48
7 100000001 475 422 53 16 111101110 1884 1688 196
8 110010000 392 345 47 17 111101101 1320 1190 130
9 110000100 647 587 60 18 111101111 1139 1034 105

643: 791: 303: 387: 210; the ratio of 18 training samples for Dataset
2 is as follows: 6774: 3037: 1715: 1154: 319: 1016: 422: 345: 587: 349:
359: 527: 1557: 448: 445: 1688: 1190: 1034. Therefore, this study
proposed the MDNDO–SMDU resampling algorithm to reduce the
ratio of training samples for Dataset 1 (16 categories) and Dataset
2 (18 categories). We calculate the number of various types of
samples after sampling according to Equation (3):

N = round
(

n1 + n2 + · · · + nk + · · · + nt

t

)
(3)

Among them, nkrepresents the number of the k class sam-
ples, k = 1, 2, 3, · · · , t. For Dataset 1, t = 16; Dataset 2, t = 18. For
each class of training samples with a quantity less than N, use
undersampling based on the similarity of Mahalanobis distances
(SMDU) to remove similar or redundant samples, and an oversam-
pling algorithm based on multi-dimensional normal distribution
(MDNDO) to synthesize samples with the same distribution. The
MDNDO–SMDU resampling algorithm proposed in this study is
described as follows:

Multi-dimensional normal distribution
oversampling algorithm
The MDNDO oversampling algorithm was proposed in our
previous research for synthesizing multi-label lysine sequences.
Given the effectiveness of the MDNDO oversampling algorithm
in predicting post translational modification sites in proteins,
this study utilizes the MDNDO oversampling algorithm to
synthesize training samples for each class with fewer than
N. The main idea of oversampling algorithm based on multi-
dimensional normal distribution (MDNDO) used in this study
is to synthesize theMksamples that follow the same normal
distribution, and the Mkcomputation formula is shown in
Equation (4):

Mk = N − nk, k = 1, 2, 3, · · · , t (4)

In which nk is the sample number of the k class, k = 1, 2, 3, · · · , t.
The specific steps of the MDNDO oversampling technique are
shown below:

The first step: for the truncated nucleotides at the NC end,
convert the four nucleotides (A, C, G, T) into numerical vectors,
namely:

A − 1, C − 2, G − 3, T − 4 (5)

The second step: suppose Xk = [
xk

1, xk
2, · · · , xk

i , · · · , xk
nk

]′
, k =

1, 2, · · · , t is all samples in the k class, where xk
i is the i sample

in the k class, nk is the total number of samples in the k class,
and d is the dimensionality. XX = [X1, X2, · · · , Xk−1, Xk+1, · · · , Xt

]′
denotes all samples in the other classes except the k class, Xt =[
xt

1, xt
2, · · · , xt

i , · · · , xt
nt

]′ denotes all samples in the t class, nt is the
total number of samples in the t class. When the i sample in the
k class is synthesized using MDNDO, xk

i denotes the mean of the
data to be generated, and σ denotes the autocorrelation matrix
(correlation coefficient matrix) of xk

i . Then σi
2 can be expressed in

the form of equation (6):

σi
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β
(
xt

i,1

)2
0 · · · 0

0 β
(
xt

i,2

)2 · · · 0

...
...

...
...

0 0 · · · β
(
xt

i,d

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

d×d

(6)

Where the p row and q column element of σi
2 is denoted as:

σi
2 (p, q

) =
⎧⎨
⎩

0 , p �= q

β
(
xt

i,p

)2
, p = q

, p, q = 1, 2, · · · , d (7)

β is the probability factor that is taken as 0.05 in this study.
The third step: Assuming that tp samples are generated for each

sample in the k class, for nk × tp synthetic samples generated from
all samples in the k class, all synthetic samples are evaluated
using indicator I. The indicator for the k synthetic sample is:

Ii = min
1≤j≤m

√∥∥∥xk
i − xl

j

∥∥∥2
, i = 1, 2, · · · , nk × tp (8)

Where l = 1, 2, · · · , k − 1, k + 1, · · · , t, m = n1 + n2 + · · · + k − 1 +
k + 1 + · · · + t.The nk × tp metrics calculated from Equation (8) are
rearranged in ascending order, so that the Mk synthetic samples
selected are the Mk samples that take the highest values in I (i.e.
those considered to be the furthest from the l class according to
the metric defined in Equation (8)).

The forth step: Use the reverse numerical conversion of
nucleotides to convert nucleotides represented by 1 to 4 to four
kinds of nucleotides, namely:

1 − A, 2 − C, 3 − G, 4 − T (9)

Finally, the training samples synthesized using MDNDO are
combined with the original nk training samples, and finally N
training samples can be obtained for training the correlation
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Table 3. The pseudo-code of MDNDO oversampling

Algorithm 1: MDNDO oversampling
Input : Thekclass of original training samples:xk

1, xk
2, · · · , xk

i , · · · , xk
nk

, k = 1, 2, · · · , t, the number of samplesnk

Output : SynthesizedMktraining samplesQk
1, Qk

2, Qk
3, · · · , Qk

Mk

1. Encoding training samplesxk
1, xk

2, · · · , xk
i , · · · , xk

nk
by using equation (5)

2. For EACHi:1 ≤ i ≤ nk /∗Calculate the diagonal matrix of covariance generated for each sample in thekclass ∗/
3. DO c = xk

i ; b = size (c, 2) ; z = zeros
(
b, b
)

; m = zeros
(
2∗b, 1

)
;

4. For EACHj1:1 ≤ j1 ≤ size (c, 2)

5. For EACH j2:1 ≤ j2 ≤ size (c, 2)

6. IF j1 == j2
7. DOz

(
j1, j2
) = 0.05∗ (c (j1)) ˆ2; t

(
:, i
) = diag(z); t1

{
i
} = diag

(
t
(
:, i
))

;
8. END IF
9. END FOR
10. END FOR
11. END FOR
12. For EACHi:1 ≤ i ≤ nk /∗For each sample,kpsynthetic samples are generated ∗/

13. DO p1
{
i
} =
[
mvnrnd

(
xk

i , sqrt
(
t1
{
1, i
})

, kp
)]

;

14. END FOR
15. For EACHi:1 ≤ i ≤ nk /∗ Find the minimum number of paradigms for each synthetic sample and all other samples ∗/
16. For EACHj1:1 ≤ j1 ≤ kp
17. For EACHk1:1 ≤ k1 ≤ n1 + n2 + · · · + nk−1 + nk+1 + · · · + nt

18. nn1
(
k1
) = sqrt

(
norm

(
p1
{
1, i
} (

j1, :
)− xl

k1

)
ˆ2
)

;/∗l = 1, 2, · · · , k − 1, k + 1, · · · , t∗/
19. END FOR
20. m1

(
i, j1
) = min (nn1) ;

21. END FOR
22. END FOR
23. Thenk × kpmetrics calculated from 15–17 are rearranged in ascending order
24. TheMksynthetic samples selected that take the highest values
25. RETURN Qk

1, Qk
2, Qk

3, · · · , Qk
Mk

prediction model. The pseudo-code of MDNDO (i.e. Algorithm 1)
is shown in Table 3.

Similarity of Mahalanobis distances
undersampling algorithm
Similarity-based undersampling was firstly proposed by Cateni
et al., and its basic idea is to calculate the Euclidean distance
between any two samples in each class, select the top N pairs
of samples with the smallest result from the obtained lower
triangular matrix, and randomly select one sample from each
pair to delete, thus achieving the goal of deleting similar sam-
ples. Given the effectiveness of the Similarity-based undersam-
pling algorithm, in our previous research, we proposed Kmeans
similarity-based undersampling to remove redundant and similar
non-carbonylated samples.

Consider two flaws that exist in the Euclidean distance: (i) it
does not consider that different variables (dimensions) vary on
different scales. For example, y1 and y2 represent lengths, and the
difference between using ‘centimeters’ as the unit of measure and
using ‘meters’ as the unit of measure is very large. They are really
the same value, it is just the difference in units that causes the
results of the Euclidean distance calculations to vary dramatically.
(ii) The correlation between the variables was not considered. If
the correlation between two variables (dimensions) is very strong,
the Euclidean distance does not capture the correlation. Whereas
Mahalanobis distance with the help of the idea of normalization
of the unitary case, solving for the distance adds the inverse of
the covariance matrix of y1, y2, so that variables (dimensions)
with greater variance correspond to smaller weights, and the
contribution of two highly correlated variables (dimensions) to
the Mahalanobis distance is smaller than the contribution of two
variables with relatively low correlation. In view of this, in this
study, we calculate the Mahalanobis distance between any two

samples in each class, select the top Ng pairs of samples with the
smallest distance, and randomly select one sample from each pair
to delete. The detailed steps are as follows:

The first step: suppose that xg = xg
1, xg

2, · · · , xg
i , · · · , xg

ng repre-
sent all training samples in the g class, in which xg, g = 1, 2, · · · , t,
d is the dimensionality of the extracted features, and ng is the
number of all samples in the g class. Normalize all columns of
the matrix xg and get a transformed matrix w, where the element
wi,h of the i row and h column can be represented as:

wi,h = xg
i,h

max1≤j≤ng

{
xg

j,h

} , i = 1, 2, · · · , ng, h = 1, 2, · · · , d (10)

The second step: compute the Mahalanobis distance between
every two rows of the transformed matrix w to get a symmetrical
square distance matrix D1, where the element d

(
p, q
)

of the matrix
D1 can be represented as:

d
(
p, q
) =
√

(wp − wq) S−1(wp − wq)′ (11)

Where wp and wq represented vectors consisting of all elements
of the p and q rows of the matrix w, respectively. S−1 is the inverse
of the covariance of wp, wq.

The third step: it was clear that the elements located on the
main diagonal of the symmetrical square distance matrix D1 are
zero. Because the matrix D1 was a symmetry matrix, only the
lower triangle of the matrix D1 was considered in the below, and
D1 was defined as a dissimilarity matrix.

The fourth step: The smaller the element d
(
p, q
)
, the more

‘similar’ the samples wp and wq. The pairs of samples were
rearranged based on this similarity index. For the most similar
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Table 4. The pseudo-code of SMDU undersampling

Algorithm 2: SMDU undersampling
Input : Thegclass of original training samples:xg = xg

1, xg
2, · · · , xg

i , · · · , xg
ng , g = 1, 2, · · · , t, the number of samplesng

Output: After undersamplingNtraining samplesQg
1 , Qg

2 , Qg
3 , · · · , Qg

N
1. Encoding training samplesxg

1, xg
2, · · · , xg

i , · · · , xg
ng by using equation (5)

2. For EACHi:1 ≤ i ≤ ng /∗ Normalize all columns of the matrixxg ∈ R
n×dand get a transformed matrixw∗/

3. For EACHk:1 ≤ k ≤ size
(
xg, 2

)
4. a

(
i, k
) = max

(
xg (:, k

))
;

5. IF a
(
i, k
) == 0

6. w
(
i, k
) = xg (i, k

)
/ng

7. ELSE
8. w

(
i, k
) = xg (i, k

)
/ max

(
xg (:, k

))
8. END IF
9. END FOR
10. END FOR
11. /∗Calculate the distance between any two samples∗/

12. D1 = pdist
(
w, "mahal"

)
; D = squareform (D1) ;

13. For EACHi:1 ≤ i ≤ ng

14. For EACHj:1 ≤ j ≤ ng

15. IFj >= i
16. D

(
i, j
) = 0;

17. END IF
18. END FOR
19. END FOR
20.D1 = nonzeros(D);
21.D2 = sort

(
D1, ’ascend’

)
;

22. Select theNgmost similar couples of samples
23. Eliminate one sample from theNgmost similar couples
24. ObtainN = ng − Ngtraining samplesQg

1 , Qg
2 , Qg

3 , · · · , Qg
Nafter undersampling

25. RETURN Qg
1 , Qg

2 , Qg
3 , · · · , Qg

N

pairs, we randomly selected one sample to eliminate, thus pre-
serving the original class distribution without significant loss of
information. The pseudo-code of SMDU (i.e. Algorithm 2) is shown
in Table 4.

AlexNet transfer learning
Transfer learning allows models developed for one task to be
reused as a starting point for models for another task, and saves
the significant computational and time resources needed to train
neural networks. In this study, the AlexNet model trained at the
Computer Vision Challenge via the ImageNet dataset was used to
transfer the application to the subcellular localization dataset for
retraining (fine-tuning). The major steps are shown below:

(1) Each sample from the training and test data is first trans-
formed into the form of an image and then fed into the input
layer of the AlexNet network.

(2) Then load the trained network and resize the dataset
image to the same size as the network. The newly loaded
data is not needed for a 1000-category classification task,
so the last three layers of AlexNet must be targeted for
readjustment to the new classification problem: (i) extract
all layers except the last three; (ii) the extracted layers are
transferred to the new task and the last three original layers
are replaced with a fully connected layer, a soft max layer,
and a classification output layer; (iii) Configure the new
fully-connected layer parameters based on our new data
as fullyConnectedLayer (class, ‘WeightLearnRateFactor’, 20,
‘BiasLearnRateFactor’, 20). (iv) Set the hyperparameters for
model training respectively as ops = trainingOptions (‘sgdm’,
‘InitialLearnRate’, 0.0001, ‘ValidationData’, augimdsTest,
‘Plots’, ‘training-progress’, ‘MiniBatchSize’, 4, ‘MaxEpochs’,
3, ‘ValidationPatience’, Inf, ‘Verbose’, false);

(3) Initialize the weights of the output layer to random values,
but keep the weights of the other layers the same as the
originally trained weights.

(4) Start training on the subcellular localization dataset.
(5) Select the optimal model based on five-fold cross-validation

and five evaluation indicators (Aiming, Coverage, Accuracy,
Absolute_True, Absolute_False).

After modifying the input and output terminals, the final net-
work structure diagram of AlexNet is illustrated in Fig. 2. Figure 2a
depicts the modified input end, Fig. 2b shows the overall architec-
ture of AlexNet used for transfer learning, and Fig. 2c presents
the classifier modified for use in this study, where the input
of the classifier should correspond to the number of features,
and the output should be the number of classes. To ensure the
reproducibility of the experimental results, this study provides a
detailed description of the hardware and software environments
used during the experimental process, as well as the experi-
mental settings. The hardware configuration includes an Intel
Gold 6226R processor and an NVIDIA RTX 4090 GPU equipped
with 24GB of video memory, which are used to handle large
datasets and complex computational demands. All experiments
were conducted in the MATLAB environment, utilizing its capa-
bilities for matrix computation and visualization to perform data
analysis and model experiments. Experimental parameter set-
tings included setting the number of iterations to 5490 for Dataset
1 and 9639 for Dataset 2, and a learning rate of 0.0001, to ensure
that the model adequately learns the data features and achieves
stable training performance.

In order to select the optimal transfer learning model, this
study also compared AlexNet with several traditional neural
networks used in the field of computer vision (VGG16, GoogLeNet,
ResNet-50) on two datasets, with the comparative results
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Table 5. Comparison of transfer learning effect applied to different networks on Dataset 1

Name Aiming Coverage Accuracy Absolute_True Absolute_False

VGG16 0.6910 0.7420 0.5433 0.0901 0.3164
GoogLeNet 0.8033 0.6055 0.5006 0.1226 0.3186
ResNet-50 0.7467 0.6910 0.5343 0.1137 0.3121
AlexNet 0.7378 0.7611 0.5676 0.1120 0.2935

Table 6. Comparison of transfer learning effect applied to different networks on Dataset 2

Name Aiming Coverage Accuracy Absolute_True Absolute_False

VGG16 0.6963 0.4373 0.3573 0.1059 0.3543
GoogLeNet 0.6652 0.6043 0.4445 0.1156 0.3328
ResNet-50 0.6381 0.6042 0.4470 0.1393 0.3315
AlexNet 0.6636 0.6586 0.4756 0.1151 0.3163

Figure 2. Transfer learning network.

presented in Table 5 and Table 6. For Dataset 1, AlexNet exhibited
superior performance in terms of Accuracy (0.5676) and Coverage
(0.7611), and its Absolute False (0.2935) was the lowest among the
four networks, demonstrating its superior learning capabilities
and good generalization performance. On Dataset 2, despite
a general increase in error rates across all networks, AlexNet
maintains the lowest Absolute_False (0.3163), while continuing
to lead in Accuracy (0.4756) and Coverage (0.6586), further
demonstrating its stability and adaptability across different
settings. Moreover, although GoogLeNet achieved the highest
Aiming (0.8033) in Dataset 1 and ResNet-50 exhibited the best
Absolute_True value (0.1393) in Dataset 2. However, in terms
of overall performance, AlexNet displays a more balanced and
consistent performance across both datasets. These results
indicate that AlexNet not only maintains high Accuracy and
Coverage, but also effectively controls Absolute_False, making
it the preferred network architecture for performing transfer
learning.

Five kinds of multi-label evaluation indicators
For the two benchmark datasets collected and processed in this
study (Dataset 1, Dataset 2), Dataset 1: we have a total of 13 135
training samples, the 7 subcellular localization data were specif-
ically divided into 16 categories, of which 3243 are labelled with
exosome annotation, the other 15 categories have two or more
labels. Dataset 2: there are 22 966 training samples, the nine
subcellular localization data were specifically divided into 18
categories, among them, 6774 with exosome annotation; 3037
with nucleus, 1715 with cytoplasm, the other 15 categories have
two or more labels. Therefore, in the current study we are deal-
ing with a multi label system according to Chou’s formula [34],

in order to evaluate the predictive performance of MSlocPRED,
the evaluation criterion for a multi-label system can be defined
as follows:

Aiming = 1
n

n∑
i=1

(∥∥Li ∩L∗
i

∥∥∥∥L∗
i

∥∥
)

(12)

Coverage = 1
n

n∑
i=1

(∥∥Li ∩L∗
i

∥∥
‖Li‖

)
(13)

Accuracy = 1
n

n∑
i=1

(∥∥Li ∩L∗
i

∥∥∥∥Li ∪L∗
i

∥∥
)

(14)

Absolute − True = 1
n

n∑
i=1

Δ
(
Li,L

∗
i

)
(15)

Absolute − False = 1
n

n∑
i=1

(∥∥Li ∪L∗
i

∥∥− ∥∥Li ∩L∗
i

∥∥
M

)
(16)

where n is the total number of samples, M is the total number
of labels in the system, ∪ and ∩ denote ‘union’ and ‘intersection’
in set theory, ‖‖ is the operator that operates on one of the sets
to calculate the number of elements, Δ() denotes an operator
that operates on a subset of them to determine whether all their
subset elements are equal. Li is the subset of all labels observed
experimentally for the i sample, L∗

i is the subset of all predicted
labels for the i sample, and

n∑
i=1

Δ
(
Li,L

∗
i

) =

⎧⎪⎨
⎪⎩

1, all labels in Li are the same as
the corresponding labels in Li

0, otherwise
(17)

In a multi-label system, (i) ‘Aiming’ or ‘Precision’ denotes the
average ratio of predicted labels agreeing with true labels; (ii)
‘Coverage’ or ‘Recall’ indicates the average ratio of true labels
covered by predicted labels; (iii) ‘Accuracy’ indicates the average
ratio of correctly predicted labels to the total number of labels
(including correctly and incorrectly predicted labels, as well as
those true labels that were omitted during the prediction process);
(iv) ‘Absolute-True’ or ‘Subset-Accuracy’ indicates the average
ratio of predicted labels that are exactly the same as the true
labels; and (v) ‘Absolute-False’ or ‘Hamming loss’ indicates the
average ratio of the inconsistency between the predicted label
and the true label to the total number of categories and samples.
Obviously, in a multi-label system, when the values of Aiming,
Coverage, Accuracy and Absolute-True are higher, and the value of
Absolute-False is lower, the performance of the constructed model
is better.
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Figure 3. Five-fold cross-validation results of different resampling methods for Dataset 1.

Results and discussion
Preprocessing training data based on
multi-dimensional normal
distribution–similarity of Mahalanobis distances
resampling technique
Since both training datasets constructed in this study are
extremely unbalanced, for Dataset 1, the ratio of 16 classes of
training samples is 3243: 216: 205: 517: 1496: 239: 527: 1718: 929:
1509: 202: 643: 791: 303: 387: 210. The number of training data
for classes 2, 3, 4, 6, 7, 11, 12, 13, 14, 15, and 16 are less than 800
(train1

2 : 216, train1
3 : 205, train1

4 : 517, train1
6 : 239, train1

7 : 527,
train1

11 : 202, train1
12 : 643, train1

13 : 791, train1
14 : 303, train1

15 : 387,
train1

16 : 210), therefore, this study synthesizedNsamples using
the algorithm proposed in a previous study on MDNDO for these
11 classes of training data. Assuming n2, n3, n4, n6, n7, n11, n12,
n13, n14, n15 and n16 are the number of samples for train1

2, train1
3,

train1
4, train1

6, train1
7, train1

11, train1
12, train1

13, train1
14, train1

15 and train1
16,

respectively, the number of samples generated for these 11 classes
is N = M − ni, i ∈ {2, 3, 4, 6, 7, 11, 12, 13, 14, 15, 16},

where M = round
( n1+n2+n3+···+n16

16

)
is the number of training

samples for each class after sampling, and round () represents
rounding. In this study, five-fold cross validation was used to
train prediction models. For classes 2, 3, 4, 6, 7, 11, 12, 13, 14,
15, and 16 training samples, round

( 4
5 M
)

samples were used as
training data for each fold in five-fold cross validation, round

( 1
5 M
)

samples were used as test data, and round () represents round-
ing. For the training data of categories 1, 5, 8, 9, and 10, since
their numbers are 3243, 1496, 1718, 929, and 1509, respectively,
in contrast to the other 11 classes of training data, which are
much larger in number, the SMDU under-sampling algorithm was

used to calculate the Mahalanobis distance of any two samples
in each category (categories 1, 5, 8, 9, and 10), select theN1 =
ni − M, i ∈ {1, 5, 8, 9, 10}pairs of samples that have the smallest
distance (i.e. the most similar pair of samples), and randomly
delete one of them to achieve the purpose of removing the most
similar samples.

For Dataset 2, since the number of training data for classes
4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, and 18 are less than 1200,
Ni = M − ni, i ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18} samples are
synthesized for these 13 classes of training data using the MDNDO
over-sampling algorithm,

where M = round
( n1+n2+n3+···+n18

18

)
is the number of training sam-

ples for each class after sampling, and round () denotes rounding.
For the remaining 5 classes, the SMDU under-sampling algorithm
is utilized to select the Ni = ni − M, i ∈ {1, 2, 3, 13, 16} pairs of
samples with the smallest distance (i.e. the most similar pairs of
samples) and randomly deletes one of them, thus achieving the
purpose of deleting the most similar samples.

Effectiveness of multi-dimensional normal
distribution–similarity of Mahalanobis distances
resampling technique
In order to objectively evaluate the performance of the prediction
model MSlocPRED constructed in this study, the MDNDO–SMDU
resampling technique is compared with the training dataset con-
structed by three methods, namely, utilizing only MDNDO over-
sampling, utilizing only the SMDU under-sampling algorithm,
and no sampling. The results of the five-fold cross-validation
correlation are shown in Figs 3 and 4.
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Figure 4. Five-fold cross-validation results of different resampling methods for Dataset 2.

From the five evaluation metrics and the specific prediction
labels in Figs 3 and Fig. 4, it can be observed that when no sam-
pling is performed (i.e. the original training dataset), due to the
extreme difference in the number of samples between the large
and small classes, the results of the trained model predictions are
skewed towards the large class (take the first fold as an example,
for Dataset 1: all were predicted to be Category 1, except for 20
were predicted to be Category 8 for the 2619 test sets. For Dataset
2: 4390 out of 4589 test data were predicted to be class 1). Although
the predictors Aiming, Coverage, Accuracy, Absolute-True, and
Absolute-False reached 0.94, 0.58, 0.53, 0.24, 0.24 and 0.79, 0.43,
0.43, 0.30, 0.27 for the two datasets, respectively, this model is
an invalid model. When using only SMDU under-sampling, it is
obvious that due to the imbalance of samples across different
categories, most categories (especially those with a small number)
were not tested. When only using MDNDO over-sampling to syn-
thesize subcellular localization data, it has a certain effect. When
using MDNDO–SMDU for resampling, it can be found that among
categories containing two or more positions, most categories only
have one position undetected.

After testing two training datasets (Dataset 1 and Dataset 2)
using different sampling methods, the results show significant
differences in category prediction. In order to clearly present these
results, using the first fold of the five-fold cross-validation as an
example, two tables (Tables 7 and 8) summarize the performance
of different sampling methods on various categories.

Table 7 displays the test results on Dataset 1 using three sam-
pling methods (MDNDO, SMDU, and MDNDO–SMDU). It is evident
from the table that the MDNDO sampling method achieved the
highest number of correct predictions for Category 1, totaling
2126, while this number significantly decreased to 381 when
using the SMDU method. For other categories, the MDNDO–SMDU
method showed notable advantages in certain categories, such
as Category 10 with 1325 correct predictions, while the SMDU
method performed better in Category 13 with 580 correct predic-
tions. It is particularly noteworthy that the application of MDNDO

could predict five categories, SMDU predicted three categories,
and MDNDO–SMDU could predict up to eleven categories. This
indicates that the MDNDO–SMDU sampling method not only
learns features more comprehensively and completely but also
significantly increases the number of category predictions, which
is of significant importance for practical applications.

Table 8 shows the test results on Dataset 2. Similar to Dataset
1, the MDNDO sampling method performed exceptionally in Cat-
egory 1 with 5134 correct predictions, while the SMDU method
had a relatively high number of correct predictions in Category 13,
totaling 1422. The MDNDO–SMDU method had the highest num-
ber of correct predictions in Category 13, amounting to 2045, and
also showed excellent performance in Category 5 with 906 correct
predictions. Additionally, the MDNDO–SMDU sampling method
could predict 12 categories on Dataset 2, while the MDNDO and
SMDU methods could only predict 7 and 5 categories, respectively.
The application of the MDNDO–SMDU method again confirms its
significant advantages in comprehensively and completely learn-
ing data features, playing a crucial role in enhancing classification
performance.

It should be noted that for multi-label classification tasks, if
the model can effectively predict some correct labels but not com-
pletely predict all labels correctly, the model is actually effective.
Therefore, judging the effectiveness of a model based solely on
average accuracy and complete correctness is neither scientific
nor fair. Consequently, we have proposed a set of metrics to assess
multi-label classification systems: Partial label accuracy MRj.

MRj =

max∑
k=j

Pk

max∑
k=j

Ck

(18)

In this definition, Pk represents the total number of predicted
samples at computation level k, where the true labels match the
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Table 7. Different sampling algorithms predict the number of classes in the first fold of the five-fold cross-validation on Dataset 1

Class MDNDO SMDU MDNDO–SMDU Class MDNDO SMDU MDNDO–SMDU

1 2126 381 33 9 0 0 4
2 0 0 342 10 20 703 1325
3 111 0 348 11 0 0 83
4 0 0 4 12 0 0 0
5 0 0 0 13 0 580 0
6 464 0 0 14 0 0 53
7 0 0 18 15 0 0 4
8 851 0 403 16 0 0 0

Table 8. Different sampling algorithms predict the number of classes in the first fold of the five-fold cross-validation on Dataset 2

Class MDNDO SMDU MDNDO–SMDU Class MDNDO SMDU MDNDO–SMDU

1 5134 784 407 10 50 0 121
2 106 5 1 11 339 0 103
3 100 112 130 12 0 0 0
4 0 0 0 13 0 1422 2045
5 0 0 906 14 0 0 0
6 0 0 125 15 0 0 441
7 482 0 217 16 0 0 65
8 0 0 29 17 0 0 0
9 55 0 0 18 0 591 0

predicted labels, and the number of correctly predicted labels
(considering only labels marked as ‘1’ among all true labels) is
exactly k. Meanwhile, Ck denotes the total number of samples
at the same level k where the true label count equals k (also
considering only labels marked as ‘1’ among all true labels).
The value of max is the highest number of labels marked as ‘1’
occurrences within the sample categories in the current dataset.

For example, when calculating the data for Dataset 1 at level
k = 4, with the value of max is 6 (i.e. the sample in Dataset 1
with the most label marked as ‘1’ is: 1111110), the numerator
of interest would be P4 + P5 + P6, where P4 is the total number
of samples where the predicted labels match the true labels and
the number of matching labels is exactly 4; P5 and P6 are defined
similarly. The corresponding denominator would be C4 + C5 + C6,
where C4 is the total number of samples in the true dataset with
exactly 4 labels marked as ‘1’. C5 and C6 are defined similarly. The
numerator encompasses all samples with the following labels:
1101010, 1101100, 1101101, 1101110, 1111000, 1111010, 1111100,
and 1111110. Notably, for samples with more than 4 labels marked
as ‘1’ (such as 1101101, 1101110, 1111010, 1111100, 1111110),
only the cases where exactly 4 labels match are considered. The
corresponding denominator includes the total number of samples
with the true labels: 1101010, 1101100, 1101101, 1101110, 1111000,
1111010, 1111100, and 1111110. This can then be substituted into
the formula as follows: MR4 = P4+P5+P6

C4+C5+C6
.

By applying this method, the partial label matching rate MRj

can be effectively calculated, providing insights into the perfor-
mance of classification models in scenarios with imbalanced
datasets. In this study, four indicators MR1, MR2, MR3, MR4 are
used to evaluate the effectiveness of the multi-label classification
model before and after the application of the sampling methods.
Where MR1 denotes the probability of at least one label being
correctly predicted, that is, statistical analysis is conducted for
categories containing one or more locations and so on for others.

The results of the five-fold cross validation calculation are
shown in Tables 9 and 10, and the MDNDO–SMDU resampling

Table 9. The influence of different sampling algorithms on
prediction results on Dataset 1

Method MR1 MR2 MR3 MR4

None 100.00% 24.66% 24.49% 6.58%
MDNDO 100.00% 30.74% 17.57% 4.87%
SMDU 100.00% 67.83% 65.34% 20.88%
MDNDO–SMDU 100.00% 86.40% 74.97% 44.89%

Table 10. The influence of different sampling algorithms on
prediction results on Dataset 2

Method MR1 MR2 MR3 MR4

None 93.17% 0.00% 0.00% 0.00%
MDNDO 95.14% 16.6% 10.38% 5.54%
SMDU 94.57% 73.62% 74.48% 75.09%
MDNDO–SMDU 96.57% 81.54% 66.67% 68.68%

algorithm demonstrates significant superiority in multiple key
indicators. On Dataset 1, an MR1 of 100% was achieved by all
sampling algorithms, indicating that each method was capable
of predicting at least one correct label. However, MDNDO–SMDU
outperformed other sampling methods with MR2, MR3, and MR4

scores of 86.40%, 74.97%, and 44.89%, respectively. It is worth
noting that SMDU follows closely behind with scores of 67.83%,
65.34% and 20.88% for MR2, MR3, and MR4, respectively. These
results demonstrate the significant advantages of MDNDO–SMDU
in enhancing data balance and improving the robustness of the
classification model. On Dataset 2, MDNDO–SMDU also exhibited
superior performance, achieving the best scores for MR1 and
MR2 at 96.57% and 81.54%, respectively. In terms of MR3 and
MR4, SMDU held a slight advantage, reaching 74.48% and 75.09%,
respectively. Therefore, the MDNDO–SMDU resampling algorithm
demonstrated a significant overall advantage in handling
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Figure 5. Prediction results of intercepted sequences with different values at the NC end on Dataset 1.

complex and imbalanced datasets. This method not only excelled
in classification accuracy but also achieved comprehensive
improvements across various evaluation metrics such as partial
label matching rates. MDNDO–SMDU provides a more effective
approach to addressing complex classification tasks by effectively
combining the advantages of oversampling and undersampling,
showcasing its potential value in learning data features.

Comparison of predictive performance between
datasets constructed with different lengths on
N-terminal and C-terminal
In molecular biology, the N-terminus (5′ end) and C-terminus
(3′ end) of mRNA are considered critical regions for regulating
mRNA function. These termini often contain various regulatory
elements, such as protein-binding sites and stability control ele-
ments, which play crucial roles in mRNA subcellular localization
and translation efficiency. Notably, the 5′ untranslated region
(N-UTR) and the 3′ untranslated region (C-UTR) of mRNA have
been found to contain regulatory elements that interact with
specific proteins within the cell, thereby guiding mRNA transport
to specific cellular regions [35, 36].

To further emphasize the importance of the N-terminus (5′

end) and C-terminus (3′ end) of mRNA in predicting subcellular
localization, several relevant studies have been reviewed. Yan
et al. identified that the N-terminal and C-terminal regions of
RNA sequences exhibit significant biological activity [37]. Meer
et al. (2012) [38] and Bergalet et al. [39] have also emphasized
the importance of the N-terminal and C-terminal untranslated
regions (N-UTR and C-UTR), pointing out that regulatory elements
within these regions have a significant impact on mRNA subcellu-
lar localization. The study of DM3Loc further corroborates these
findings, employing a multi-head self-attention mechanism to
predict mRNA localization across various subcellular regions. The
results demonstrated that DM3Loc outperforms existing meth-
ods in overall performance and provides biological insights into
RNA-binding protein motifs and key signals [21]. These studies
collectively support our approach of analyzing the N-terminus
and C-terminus of mRNA, facilitating a more comprehensive
understanding of its behavior and function within the cell.

To elucidate whether subcellular localized sequences of N-
terminal and C-terminal nucleotides affect the predictive per-
formance of the model, for subcellular localization sequences
in the training dataset, we intercepted their N-terminal and C-
terminal nucleotides from 20 to 40 for Dataset 1 and from 20 to
50 for Dataset 2 (i.e. the length of each sample after interception
ranged from 40 to 80 for Dataset 1 and from 40 to 100 for Dataset
2), and the interval is 5. Figure 5 and Fig. 6 give the results of
the five-fold cross-validation performance comparison for differ-
ent NC end-value intercept sequences. Based on the comparison
results we can see that the model constructed using the dataset
constructed with 35 nucleotides intercepted from each of the N
and C terminals achieved the best prediction performance with
73.78%, 76.11%, 56.76%, 11.20%, and 0.2935 for Aiming, Coverage,
Accuracy, Absolute-False, and Absolute-True for Dataset 1, and
66.36%, 65.86%, 47.56%, 11.51%, and 0.3163 for Aiming, Coverage,
Accuracy, Absolute-False, and Absolute-True for Dataset 2. From
the comparison results, it can be concluded that the predictor was
influenced to a certain extent by the length of the sequence.

Ultimately, to ensure that our model achieves optimal predic-
tive performance, we extracted sequences of length 35 from both
the N-terminus and C-terminus (resulting in a total length of
70) from Dataset 1 and Dataset 2 as input for MSlocPRED during
training and testing. It is important to note that after the model is
trained, the predictor must also be provided with sequences of 35
nucleotides from both the N-terminus and C-terminus, totaling
70 nucleotides, as input during the prediction phase.

Comparing MSlocPRED with existing methods
and tools
For the prediction performance of MSlocPRED, we firstly com-
pared it with the other four predictors in different aspects on
Dataset 1. Since the original training datasets were friendly
offered by DM3Loc, RNATracker, mRNALoc, and iLoc-mRNA,
MSlocPRED was compared with these methods using the five-
fold cross-validation according to the results listed in their works.
We used the original six types of subcellular localization data
provided by DM3Loc, adjusted the model parameters constructed
in this study to binary classification. The area under the receiver
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Figure 6. Prediction results of intercepted sequences with different values at the NC end on Dataset 2.

Table 11. The five-fold cross-validation comparison with existing methods on Dataset 1

Compartment Method AUC APR MCC

Nucleus DM3Loc 0.7725 0.8765 0.3859
RNATracker 0.7531 0.8601 0.345
mRNALoc 0.6075 0.7655 0.1501
iLoc-mRNA 0.5186 0.7200 0.0516
MSlocPRED 0.7038 0.7586 0.3778

Exosome DM3Loc 0.7233 0.9964 0.0736
RNATracker 0.7533 0.997 0
mRNALoc 0.4065 0.9887 −0.0294
iLoc-mRNA / / /
MSlocPRED 0.6097 0.6290 0.1700

Cytosol DM3Loc 0.7406 0.3193 0.2872
RNATracker 0.7331 0.3176 0.1383
mRNALoc 0.4529 0.1177 −0.0134
iLoc-mRNA 0.531 0.1339 0.0253
MSlocPRED 0.9164 0.9312 0.6831

Ribosome DM3Loc 0.7589 0.5478 0.355
RNATracker 0.7447 0.5365 0.2697
mRNALoc / / /
iLoc-mRNA 0.7940 0.6634 0.3899
MSlocPRED 0.8585 0.8893 0.6145

Membrane DM3Loc 0.7558 0.4472 0.3115
RNATracker 0.7386 0.4051 0.1927
mRNALoc / / /
iLoc-mRNA / / /
MSlocPRED 0.8917 0.9121 0.6388

ER DM3Loc 0.6981 0.2502 0.2048
RNATracker 0.6265 0.1880 0
mRNALoc 0.3729 0.1402 −0.1479
iLoc-mRNA 0.8100 0.5702 0.3762
MSlocPRED 0.9275 0.9404 0.7205

operating characteristic (ROC), the precision-recall (PR) curves,
and the Matthews correlation coefficient (MCC) were used to eval-
uate their performance and these methods were compared. As
can be seen in the Table 11, as far as AUC is concerned, compared
to the existing DM3Loc, RNATracker, mRNALoc, and iLoc-mRNA,
the impacts of the MSlocPRED are generally increased by 17.58%
to 46.35% for cytosol, 6.45% to 11.38% for ribosome, 13.59% to
15.31% for membrane, and 11.75% to 55.46% for ER. In terms of
MCC, except for Nucleus, our method obtained the best results in

the other five compartments. DM3Loc achieves the best prediction
performance in Nucleus, and our method obtains the second
best. From the results can also be concluded that the predictor
was greatly influence by the selected sample. Additionally, the
best performance also indicated that deep transfer learning is
more suitable than traditional machine learning algorithms for
multi-label subcellular localization recognition.

To further demonstrate the effectiveness of the MSlocPRED
predictor, we also compared MSlocPRED to accessible web-servers
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Table 12. Performance comparison between MSlocPRED and other state-of-art tools on independent test dataset

Dataset Method Aiming Coverage Accuracy Absolute-true Absolute-false

DM3Loc 0.9593 0.6537 0.6203 0.3310 0.1902
Dataset 1 Clarion 0.9818 0.4808 0.4808 0.2426 0.2665

MSlocPRED 0.8001 0.8003 0.6251 0.2262 0.2127
DM3Loc 0.7605 0.5327 0.4855 0.2650 0.2338

Dataset 2 Clarion 0.7845 0.4175 0.4168 0.2823 0.2683
MSlocPRED 0.6060 0.6780 0.4503 0.2093 0.3338

Table 13. Summary of subcellular localization predictors

Type Tool Subcellular
localization

Benchmark dataset
size

Encoding scheme Classifier AUC APR MCC

Single-label RNATracker Cyt, ER, Ins, Mem,
Mito, Nuc

11 373 (Dataset 1)
13 860 (Dataset 2)

One-hot
RNA secondary
structure

CNN
LSTM
Attention

0.7249 0.5507 0.1576

iLoc-mRNA Cyp, Cyt, Den, ER,
Exo, Mito, Nuc, Rib

4901 K-mer SVM 0.6634 0.5219 0.2108

mRNALoc Cyp, ER, ECR, Mito,
Nuc

14 909 PseKNC SVM 0.4600 0.5030 −0.0102

Multi-label DM3Loc Cyt, ER, Exo, Mem,
Nuc, Rib

17 870 One-hot CNN
Attention

0.7415 0.5729 0.2697

MSlocPRED Exo, Nuc, NP, Chr, Cyp,
No, Cyt, Mem, Rib

14 608 (Dataset 1)
22 966 (Dataset 2)

Convert to images AlexNet 0.8179 0.8434 0.5341

Note: cytosol: Cyt; endoplasmic reticulum: ER; insoluble: Ins; membranes: Mem; mitochondrial: Mito; nuclear: Nuc; cytoplasm: Cyp; dendrite: Den; exosome:
Exo; mitochondrion: Mito; nucleus: Nuc; ribosome: Rib; extracellular region: ECR; nucleoplasm: NP; chromatin: Chr; nucleolus: No.

DM3Loc and Clarion on independent test datasets (Dataset 1 and
Dataset 2). As indicated in the Table 12, when tested using the
independent test datasets (i.e. 35 nucleotides from each of the
NC ends) after preprocessing in this paper, in terms of Coverage,
for Dataset 1 and Dataset 2, MSlocPRED was broadly improved
by 14.66%–31.95% and 14.53%–26.05%, respectively. For the four
assessment metrics of Aiming, Accuracy, Absolute-False and
Absolute-True, although the MSlocPRED results are lower than
those of DM3Loc and Clarion, a look at the specific test labels
reveals the following: the DM3Loc predicted all the test samples
(Dataset 1 and Dataset 2) to be Exosome, and a few samples were
predicted as both Nucleus or Nucleus and Cytoplasm. Clarion
predicted almost all of the test data as Exosome, and a few
samples were not predicted at all. For Dataset 1, the number of
completely correct predictions by MSlocPRED were 495 for class
1, 40 for class 2, 3 for class 4, 18 for class 5, 17 for class 6, 1 for
class 7, 87 for class 8, 71 for class 9, 566 for class 10, 87 for class
12, 71 for class 13, and 3 for class 15, respectively. For Dataset
2, the number of completely correct predictions by MSlocPRED
were 1093 for class 1, 53 for class 2, 91 for class 3, 28 for class 5,
2 for class 6, 50 for class 8, 1 for class 10, 2 for class 11, 185 for
class 13, 523 for class 16, 399 for class 17, and 120 for class 18,
respectively. For the other categories that were not completely
predicted correctly, analyzing the labels tested reveals that for
categories containing two and more positions, most of them can
be predicted for one or two positions, even though they were
not completely predicted. The experimental results showed that
the recognition of multi-labeled subcellular localization after the
NC-terminal interception of fragments was effective using the
model MSlocPRED constructed in this study.

As shown in Table 13, a comparison of the current state-of-
the-art subcellular localization models is summarized, covering
aspects such as subcellular positions, the sizes of benchmark
dataset, encoding schemes, and classifiers, along with average

Figure 7. Waterfall chart for category2 in Dataset 1.

metrics of AUC, APR, and MCC for each position. For models
unable to predict certain cellular compartments, the denom-
inators of these metrics have been appropriately adjusted to
ensure fairness in the comparison process. The proposed pre-
diction model, MSlocPRED, employs mature techniques and algo-
rithms from the field of image processing, transforming data into
image form. Compared to traditional methods, the use of images
as input data allows complex data relationships to be displayed
visually, making pattern recognition and feature extraction more
intuitive. For the input image data, feature extraction is per-
formed using a modified AlexNet, and classification is conducted
through transfer learning. This approach is particularly valuable
in bioinformatics, where slight variations in experimental condi-
tions or new experimental setups often lead to changes in data
distribution. Utilizing a pre-trained image recognition network
provides robust feature extraction capabilities, reduces the risk
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Figure 8. Bar chart for category2 in Dataset 1.

of overfitting, and enhances generalization performance of the
model.

Ultimately, the average AUC, APR, and MCC of MSlocPRED
reached 0.8179, 0.8434, and 0.5341, respectively, representing
improvements of 0.0930, 0.2927, and 0.3233 over the highest
average AUC and APR (0.7249 and 0.5507 for RNATracker) and MCC
(0.2108 for iLoc-mRNA) observed in single-label methods. Com-
pared to the most advanced multi-label method, DM3Loc (with
AUC, APR, and MCC of 0.7415, 0.5729, and 0.2697, respectively), the
increases were 0.0764, 0.2705, and 0.2644. Experimental results
demonstrate that MSlocPRED exhibits superior performance
and robustness compared to both single-label and multi-label
methods. The innovative combination of this new encoding
method and transfer learning techniques shows significant
advantages over traditional methods in various aspects.

Model interpretability analysis based on
SHapley Additive exPlanations values
Overview of SHapley Additive exPlanations
The complexity and numerous parameters of deep learning mod-
els pose significant challenges in understanding their internal
workings. To address this issue, SHapley Additive exPlanations
(SHAP), a machine learning interpretability approach grounded
in game theory, is used. SHAP values are assigned to individual
features, effectively quantifying their impact on the model’s pre-
diction outcomes, thereby facilitating a deeper understanding of
the model’s decision-making process. Consequently, we employed
the SHAP library to generate waterfall charts, bar graphs, and
bee swarm plots for the in-depth analysis of the 4096 features
present in the ‘fc7’ layer of the AlexNet network. Our objective
was to interpret the influence of these features on the prediction
outcomes. To illustrate this, we selected a single label from each of
the two datasets to clearly demonstrate the feature contributions
to the prediction results.

Feature analysis for Dataset 1
For the second class in Dataset 1, the SHAP algorithm was
employed to generate waterfall plots, bee swarm plots, and

feature bar charts, providing a comprehensive analysis of the
prediction results.

The waterfall chart in Fig. 7 illustrates the cumulative effect of
each feature on the prediction score for Category 2 in Dataset 1.
Positive SHAP values, such as those for Feature3734, Feature1665,
and Feature2250, significantly boost the prediction score. In con-
trast, features like Feature4031 and Feature4061 have negative
SHAP values, indicating they reduce the prediction score.

Figure 8 presents a bar chart that visually represents the con-
tributions of the top-ranking features, emphasizing their magni-
tudes. Feature125 emerges as the most impactful, contributing a
value of 0.51, followed closely by Feature 356 with a contribution
of 0.31. This chart effectively highlights the relative importance of
these key features in the prediction process.

A bee swarm plot provides a comprehensive view of SHAP
values for all features, showcasing their distribution and influ-
ence on the prediction outcome. Figure 9 illustrates this, high-
lighting how most features contribute positively. However, it also
reveals discernible outliers with substantial negative impacts on
the prediction score, indicating the nuanced nature of feature
interactions.

Feature analysis for Dataset 2
In Dataset 2, the analysis of category 8 mirrors previous findings.
The cumulative impact of key features, such as Feature2608, Fea-
ture373, and Feature1012, significantly enhances the prediction
score, as illustrated in Fig. 10. Conversely, negative contributions
are demonstrated by features like Feature2357 and Feature1135,
resulting in a decrease in the prediction score.

Similar to the analysis in Dataset 1, Fig. 11 further quanti-
fies the feature contributions in Dataset 2 for category8. Here,
Feature2608 stands out with the highest positive SHAP value of
0.215, clearly demonstrating its paramount significance in driving
the prediction outcome. The comprehensive view of the feature
impact in Dataset 2 for category8 is offered by Fig. 12, the bee
swarm plot. It showcases a diverse distribution of SHAP values,
illustrating the intricate interplay between features and their
influence on the prediction. This plot highlights the significance
of both high and low SHAP values in appreciating the complexity
of the prediction process.
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Figure 9. Bee swarm plot for category2 in Dataset 1.

Figure 10. Waterfall chart for category8 in Dataset 2.

Conclusion and outlook
In this study, the multi-label prediction model MSlocPRED
was constructed to identify multi-label mRNA subcellular
localizations for seven subcellular localizations in Dataset 1 and
nine subcellular localizations in Dataset 2. The preprocessed
datasets were transformed into image formats, and the MDNDO–
SMDU resampling technique was used to balance the number
of samples in each category. Deep transfer learning was
subsequently employed to develop the MSlocPRED predictive
model. Comparative tests among various resampling techniques
demonstrated that the proposed MDNDO–SMDU method is
more effective for preprocessing subcellular localizations. The
prediction performance was optimal when the NC end was
intercepted by 35 nucleotides for both datasets. Independent
testing and five-fold cross-validation showed that MSlocPRED

significantly outperforms established tools for identifying multi-
label mRNA subcellular localizations. SHAP values were used to
explain the prediction process of MSlocPRED.

Although the MSlocPRED model demonstrates strong perfor-
mance in predicting seven and nine subcellular localizations,
there remains room for improvement in its accuracy and gener-
alization capabilities. One of the limitations of the model is its
inability to cover other important localization sites or achieve a
higher accuracy, which may affect the applicability and compre-
hensiveness of the model in certain biological contexts. Future
research will explore more themes related to mRNA, including
extending the model to predict additional critical localization sites
and further optimizing the prediction algorithms and processing
techniques to enhance accuracy. Additionally, the possibility of
developing customized models for specific biological applications
deserves further investigation. Beyond transfer learning, other
approaches such as meta-learning and contrastive learning will
also be explored. The focus will not only be on learning strate-
gies themselves but also on designing targeted machine learning
schemes based on specific task challenges such as data imbal-
ance, incomplete feature extraction, and the effectiveness of sam-
pling methods. Subsequent studies will continue to examine how
to integrate these learning strategies with multi-label subcellular
localization methods. Through these explorations, we hope to
provide more comprehensive and precise solutions for mRNA
subcellular localization research.

Key Points

• Subcellular localization of mRNAs is a universal mech-
anism for precise and efficient control of the transla-
tion process. However, up till the present moment, most
prediction methods have been designed for single-label
subcellular localization, ignoring the mutual informa-
tion between multi-label localizations. With this in mind,
this study established a multi-label computational tool,
MSlocPRED, which can be directly used to predict multi-
label mRNA subcellular localization.

• MDNDO–SMDU resampling technique was firstly pro-
posed and incorporated to reduce the proportion of the
original training samples.

• Inputting NC-terminal interception of fragments
directly as a picture into the convolutional neural
network, and the predictive model was constructed
using deep transfer learning to identify subcellular
localization.

• The model interpretability analysis based on SHAP val-
ues showed that the prediction model constructed in this
study, MSlocPRED, was effective.
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Figure 11. Bar chart for category8 in Dataset 2.

Figure 12. Bee swarm plot for category8 in Dataset 2.

Data availability
The predictive model MSlocPRED and associated datasets are
available at: https://github.com/ZBYnb1/MSlocPRED/tree/main.
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