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Introduction
Prostate cancer is the second leading cause of 
cancer death in the USA1 and the number of 
cases are rapidly increasing in Japan.2 Patients 
presenting with advanced disease typically receive 
hormonal therapy using medical or surgical cas-
tration as initial treatment. However, most pros-
tate cancer patients acquire resistance to the 
initial hormonal therapy over 2–3 years, thus pro-
gressing to a castration-resistant disease state.3

Since docetaxel was introduced in 2004 to pro-
long the survival of patients with castration-
resistant prostate cancer (CRPC),4 there has 
been a rapid increase in the number of effective 
systemic agents for CRPC, including novel 
androgen receptor (AR)-directed, immunothera-
peutic, chemotherapeutic and radiopharmaceuti-
cal drugs. Concomitant docetaxel treatment at 
the beginning of hormonal therapy for metastatic 

castration-sensitive prostate cancer (CSPC) has 
resulted in longer overall survival than with hor-
monal therapy alone.5 Elucidating an appropriate 
treatment sequence is important for maximizing 
clinical benefit in CSPC and CRPC patients. 
Improvements in technology aimed at genomic, 
transcriptomic and metabolomic analysis have 
led to the discovery of an abundance of new bio-
markers that may be utilized in the prediction of 
prostate cancer outcome and response to ther-
apy.6 The characterization of tumor tissue 
through advanced high-throughput ‘omics’ tech-
nology may subsequently create personalized 
road maps to guide clinical decision-making 
because of better understanding of the patient’s 
risk of progression.7 Here, we summarize the uti-
lization of prostate cancer biomarkers in current 
clinical practice (Table 1), their advantages and 
limitations, and possible future considerations 
for their use to guide therapy.
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Table 1. Potential prognostic or predictive biomarkers in prostate cancer.

Biomarker Source Clinical relevance Prog versus Pred

Metastatic status Clinical Number of bone mets (EOD), viseral mets Prog/Pred

Performance status Clinical ECOG performance status (0–4) Prog/Pred

Time to CRPC Clinical Time from ADT to CRPC Pred

Prior treatment Clinical Number of antiandrogens or steroid Pred

PSA Blood Protein specifically extracted from prostate gland Prog

PSA kinetics Blood PSA decrease rate under treatment Prog

Gleason score Tissue Pathological features strongly correlated 
prognosis

Prog/Pred

Lactate 
dehydrogenase

Blood Elevated by injuries and various disease including 
cancer

Prog/Pred

Alkaline phosphatase Blood Elevated by cancer spreading to bones or liver Prog

Albumin Blood An index of nutritional status Prog

Hemoglobin Blood Decreased by anemia Prog/Pred

Neutrophil-lymphocyte 
ratio (NLR)

Blood Elevated NLR predicted poorer OS in various 
cancer patients

Prog

Testosterone Blood Ligand of AR associating prostate cancer 
proliferation

Prog/Pred

Number of circulating 
tumor cells (CTCs)

Blood Increased number of CTCs associating with worse 
cancer prognosis

Prog

AR splice variants in 
CTC (esp. AR-V7)

Blood Correlating with poor response to ENZA and ABI 
but good response to Chemo

Pred

Concentration of cell-
free DNA (cfDNA)

Blood Increased abundance of cfDNA associating with 
worse cancer prognosis

Prog

AR mutation and copy 
number in cfDNA

Blood Correlating with worse efficacy of ENZA and ABI Pred

Somatic DNA repair 
mutations

Tissue Correlating with poor response to ADT, but good 
response to PARP inhibitors

Prog/Pred

ABI, abiraterone; ADT, androgen-deprivation therapy; AR, androgen receptor; cfDNA, cell-free DNA; CRPC, castration-
resistant prostate cancer; CTC, circulating tumor cell; ECOG, Eastern Cooperative Oncology Group; EOD, extent of 
disease; ENZA, enzalutamide; mets, metastases; NLR, neutrophil-lymphocyte ratio; OS, overall survival; PARP, poly-ADP 
ribose polymerase; Pred, predictive marker, Prog, prognostic marker; PSA, prostate-specific antigen.

Pretreatment clinical parameters as 
prognostic or predictive biomarkers
The currently used biomarkers are defined as 
prognostic and predictive (Table 1). Prognostic 
markers aim to evaluate objectively the patient’s 
overall outcome, such as the probability of cancer 
recurrence after standard treatment. The pres-
ence or absence of a prognostic marker can be 
useful for the selection of patients for treatment 
but does not directly predict the response to treat-
ment. Predictive markers aim to evaluate objec-
tively the likelihood of benefit from a specific 
clinical intervention, or the differential outcomes 
of two or more interventions, including toxicity.8

The discovery of prostate-specific antigen (PSA) as 
a serum tumor marker has revolutionized prostate 
cancer diagnosis, and is the only widely used bio-
marker for diagnosis and prognosis of this disease. 
However, PSA is organ- but not cancer-specific. 
Moreover, it is not able to differentiate between 
indolent and aggressive forms of prostate cancer. 
Many men may harbor aggressive prostate cancer 
despite having low initial levels of serum PSA.9 The 
Gleason grading system is also used with prostate 
biopsy samples to help evaluate the prognosis of 
men with prostate cancer.10 Recently, the new, sim-
plified prostate cancer grading system with five 
grades has shown more accurate grade stratification 
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compared with current Gleason grading systems.11 
Together with other parameters, it is incorporated 
into a strategy of prostate cancer staging that pre-
dicts prognosis and helps to guide treatment.

The majority of other clinical and biological prog-
nostic biomarkers of prostate cancer have been 
validated, which helps physicians to estimate sur-
vival using tumor and patient characteristics. 
Originally, PSA-based test results, performance 
status (PS) score and hemoglobin level were com-
bined with age, albumin, lactate dehydrogenase 
(LDH) or alkaline phosphatase levels, Gleason 
score, pain intensity and metastases characteris-
tics in different prognostic models.12,13 After the 
emergence of new treatment options in CRPC, an 
updated nomogram for predicting survival in men 
with metastatic CRPC receiving first-line chemo-
therapy was developed and validated.14 More 
recently, metastatic site and opioid analgesic use,15 
as well as serum androgen levels,16 have been 
reported to correlate with prognosis. We analyzed 
pretreatment parameters predicting enzalutamide 
efficacy by Cox proportional hazard analyses for 
PSA progression-free survival in 345 patients. 
Enzalutamide treatment was effective for patients 
with low Gleason scores, good PS, absence of 
bone or visceral metastasis and no prior steroid or 
docetaxel treatment.17 In subgroup analysis of the 
PREVAIL study, the treatment effect of enzaluta-
mide for increasing progression-free survival time 
was more significant in patients with good PS, low 
Gleason score, no visceral metastasis, low LDH 
levels and high hemoglobin levels.18 For meta-
static CSPC, the benefit of chemohormonal ther-
apy was more apparent in the subgroup with 
high-volume than low-volume disease, indicating 
that the clinical benefit was more pronounced 
among patients with a higher burden of disease.5 
The neutrophil-to-lymphocyte ratio is also corre-
lated with prognosis in patients with metastatic 
prostate cancer.19 By using these known baseline 
clinical parameters, we can predict the prognosis 
and efficacy of novel treatments for prostate can-
cer. However, they are not perfect for selecting the 
best treatment sequence. Achieving precision 
medicine will require more precise tissue- or liq-
uid-based biomarkers with prognostic and predic-
tive value beyond these clinical parameters.

Treatment selection based on the 
mechanisms of castration resistance
Most advanced prostate cancers treated with 
androgen-deprivation therapy (ADT) acquire 

castration resistance by various mechanisms, 
including AR overexpression, AR mutation, AR 
activation by other signals and non-AR path-
ways.20 Novel mechanisms such as de novo andro-
gen production in cancer cells21 and the generation 
of AR splice variants22 have recently been associ-
ated with castration resistance and poor progno-
sis. We have previously reported that a prostate 
cancer cell line, LNCaP, comprises a heterogene-
ous group of cells with different androgen-depri-
vation sensitivities and potential for invasiveness.23 
Therefore, we need to consider the heterogeneity 
of CRPC cells when we choose therapy for each 
prostate cancer patient.

The mechanisms of castration resistance and the 
treatment selection based on them are summa-
rized in Table 2. AR overexpression was associ-
ated with castration resistance in a study using 
mouse xenograft models of prostate cancer, and 
enzalutamide suppressed tumor growth,24 indi-
cating that enzalutamide is effective for CRPC 
patients with increased AR expression. AR muta-
tions might also be induced by ADT or specific 
antiandrogens.25–27 For patients with CRPC har-
boring mutant AR, antiandrogen withdrawal or 
alternative antiandrogen treatment might be 
effective.28 Enzalutamide-refractory mutant AR 
has been reported recently and might be one 
mechanism for acquired enzalutamide resist-
ance.29 The testosterone concentration of meta-
static prostate cancer tissues is higher than in 
nonmetastatic tissues, caused by the increased 
expression of enzymes for androgen synthesis 
such as cytochrome P450 17alpha-
hydroxylase/17,20-lyase (CYP17).21 Abiraterone 
might be effective for these CRPC patients. 
Recently, the metabolites of abiraterone have 
been demonstrated to have antagonistic effects on 
AR and considered to have a further potential 
mechanism of action.30 AR splice variants includ-
ing AR-V7 have been shown to provide an impor-
tant mechanism for CRPC and treatment 
resistance.31 They are AR isoforms coding only 
for the DNA binding and transactivation domains 
of AR, and lack the C-terminal ligand-binding 
domain.32 These truncated AR species are resist-
ant to conventional AR-targeting agents as well as 
abiraterone and enzalutamide.33,34 Taxane chem-
otherapy might be a better treatment option for 
AR-V7-positive prostate cancer patients.35–37 
Therefore, detection of AR-V7 might represent a 
prognostic and predictive (i.e. treatment selec-
tion) marker in men with CRPC.38 Other than 
AR overexpression, mutation and splice variants, 
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various additional AR bypass pathways are asso-
ciated with androgen-independent AR activation 
and might represent future treatment options for 
CRPC.39 We previously reported the association 
of a prostaglandin receptor, EP4, in CRPC as a 
potential treatment target.40 Historically, ster-
oid41 and estrogen42 treatment has resulted in 
subjective and objective responses in patients 
with CRPC. Glucocorticoid receptor (GR) and 
progesterone receptor (PR) are considered to be 
AR bypass pathways associated with castration 
resistance.43 The actions of these receptors under 
treatment with steroids or estrogen differ among 
cell types and their concentrations.44 Recently, 
GR overexpression was reported to be associated 
with enzalutamide resistance.45 The interaction of 
GR or PR and AR is complicated and elucidation 
of their true function and clinical implication in 
CRPC needs further examination.46 Non-AR 
pathways such as neuroendocrine differentia-
tion47 and DNA repair48 are also important. As 
androgen-targeting therapy is not effective in 
these cells, platinum-based chemotherapy or 
other molecular targeted therapy such as poly-
ADP ribose polymerase (PARP) inhibitor may be 
treatment options.

Circulating tumor cells and cell-free DNA as 
novel liquid biomarkers
Prostate biopsies are almost always performed at 
the time of prostate cancer diagnosis, therefore, 
tissue markers such as Gleason grade are useful to 
determine prognosis and select first-line treat-
ment. However, for patients who fail first-line 
therapy, treatment is often changed without per-
forming another tumor biopsy. Therefore, other 
biomarkers using samples easily obtained for pre-
dicting subsequent treatment efficacy are urgently 
needed. Recent advances in high-throughput 

technology provide new and powerful platforms 
to find novel biomarkers from body fluids such as 
blood or urine.49

We have previously examined the gene expression 
profiles using transcriptome analyses of prostate 
cancer tissues and found that cysteine-rich angio-
genic inducer (Cyr)61 is highly expressed in pros-
tate cancer, and its expression is correlated with 
cancer aggressiveness.50 Serum Cyr61 protein 
expression levels are correlated with biochemical 
recurrence after surgery.51 Proteomic analyses 
have recently uncovered several candidate bio-
markers from tissue or serum samples.52 We have 
examined the lipid expression profiles of prostate 
cancer tissues using high-resolution imaging mass 
spectrometry53 and found that decreased expres-
sion of lysophosphatidylcholine independently 
predicts biochemical recurrence.54 We have also 
found, using matrix-assisted laser desorption/ion-
ization time-of-flight mass spectrometry, that a 
C-terminal PSA fragment composed of 19 amino 
acid residues is a potential novel urine biomarker 
for diagnosis of prostate cancer.55 However, it 
was difficult to establish the method to measure 
the concentration of these lipids or proteins. 
Therefore, none of them could be commercially 
available biomarkers.

The blood of some patients with advanced pros-
tate cancer contains circulating tumor cells 
(CTCs) derived from the primary tumor and 
metastatic sites. It is also known that CTCs can 
be detected in peripheral blood before the occur-
rence of clinically detectable metastases. Several 
CTC isolation methods have been investigated.56 
The most extensively investigated target in the 
context of CTC characterization in prostate can-
cer is the AR. We reported that the detection of 
AR-V7 in CTCs was associated with resistance to 

Table 2. Mechanisms of castration resistance and the treatment selections.

Mechanism Treatment

AR mutation Alternative antiandrogen (e.g. bicalutamide→flutamide)

AR overexpression Novel antiandrogen (enzalutamide)

Novel androgen synthesis CYP17 inhibitor (abiraterone)

AR splice variant Taxane chemotherapy (docetaxel/cabazitaxel)

AR activation by other signals Steroid/estrogen/molecular target therapy

Non-AR pathways Chemotherapy (platinum)/molecular target therapy (PARP inhibitor)

AR, androgen receptor; CYP17, cytochrome P450 17alpha-hydroxylase/17,20-lyase; PARP, poly-ADP ribose polymerase.
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abiraterone and enzalutamide.33 AR-V7-positive 
CTCs were identified in 39% of patients receiv-
ing enzalutamide and 19% of those receiving abi-
raterone in our initial study of 62 patients. The 
PSA response rate was 0% for AR-V7-positive 
patients in the context of both therapies. These 
results have now been expanded to a larger sam-
ple of 202 patients, in whom the negative prog-
nostic impact of CTC-specific AR-V7 detection 
has been confirmed.57 These results suggest that 
the presence of AR-V7 might explain the mecha-
nism of primary resistance to abiraterone and 
enzalutamide in many cases. By contrast, the 
presence of AR-V7 does not appear to correlate 
with poor treatment responses in patients receiv-
ing docetaxel or cabazitaxel.35,37,58

One of the shortcomings of CTC analysis is diffi-
culty in cell isolation and subsequent nucleic acid 
extraction (blood samples need immediate prepa-
ration soon after extraction from patients). In 
addition, CTC capture methods based on epithe-
lial cell adhesion molecule or other cell-surface 
markers may miss mesenchymal cells undergoing 
epithelial–mesenchymal transition. Cell-free DNA 
(cfDNA) has recently been recognized as a poten-
tial biomarker in advanced tumors. cfDNA is 
composed of small fragments of nucleic acid that 
are not associated with cells or cell fragments.59,60 
cfDNA might be more stable than CTCs and can 
be stored for several days after extraction. In sev-
eral solid malignancies, analysis of cfDNA has 
been used to characterize and monitor disease, as 
well as predict outcome and treatment response.61 
Similar to CTCs, ARs represent an important tar-
get in the context of cfDNA analysis. AR copy 
number variations and activating mutations in the 
ligand-binding domain are correlated with resist-
ance to abiraterone and enzalutamide.26,27 In 
addition, analysis of AR-V7 from whole-blood 
RNA is feasible62,63 and may correlate with infe-
rior outcomes to abiraterone and enzalutamide.64

Novel molecular biomarkers based on 
genomic landscape of prostate cancer
ARs are the most important molecules for prostate 
cancer progression, and their overexpression, muta-
tion or splice variance can be useful predictive bio-
markers. However, other genomic changes in 
prostate cancer might also be useful in the recent 
advances of CTC and cfDNA isolation technology.

Gene fusions, specifically E26 transformation-
specific fusions such as the TMPRSS2:ERG 

translocation, are associated with early onset of 
prostate cancer.65 TMPRSS2:ERG gene fusion 
might predict cancer-specific and overall survival 
based on immunohistochemistry in metastatic 
patients undergoing palliative transurethral resec-
tion of the prostate.66 However, there seems to be 
no association between TMPRSS2:ERG expres-
sion and response to ADT.67,68 Phosphatase and 
tensin homolog (PTEN) loss activates PI3K/
AKT signaling, thus controlling cell proliferation 
and growth69 and is associated with poor progno-
sis.70 The prognostic value of PTEN deletion 
combined with TMPRSS2:ERG fusion in pros-
tate cancer has been investigated in several stud-
ies.71–73 PTEN loss is independently associated 
with increased risk of lethal progression, particu-
larly in the ERG fusion-negative subgroup.74 It is 
also reported that PTEN-negative tumors are 
associated with worse survival and shorter time 
on abiraterone treatment in CRPC.15 TMPRSS2-
ERG fusions and PTEN gene in CTCs have been 
evaluated,75 but the results are not consistent.76 
After these initial publications, several more 
recent reports fail to show the value of these 
parameters as potential predictive biomarkers. 
Other prostate-cancer-associated gene mutations 
such MYC, RB1 and MET have also been 
detected in cfDNA; genomic aberrations in these 
genes are associated with poor prognosis.77

It is increasingly recognized that mutations in 
genes controlling DNA repair pathways, especially 
homologous recombination repair and mismatch 
repair, may be relevant in many cancer types 
including prostate cancer.78 In recent genomic 
sequencing efforts, the prevalence of somatic 
DNA repair gene mutations (primarily involving 
the BRCA1/2 and ATM genes) in biopsies from 
patients with CRPC is in the order of 15–25%.79 
About half of these patients with somatic DNA 
repair aberrations also have germline defects in 
these same DNA repair genes (8–12% of the 
total).80 The presence of a germline or somatic 
mutation in a DNA repair gene may have prog-
nostic and therapeutic implications. For example, 
one study has suggested that these patients have 
poorer responses to ADT.81,82 Conversely, such 
patients may have a favorable response to alterna-
tive therapies including PARP inhibitors such as 
olaparib.48 Intriguingly, patients with tumors that 
harbor DNA repair defects may exhibit higher 
sensitivity to platinum-containing chemother-
apy,83 immune checkpoint inhibitors,84 radiophar-
maceutical products85 or a novel approach 
involving high-dose testosterone treatment.86 In 
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the next few years, several ongoing studies will 
conclusively determine the predictive impact of 
DNA repair mutations in the context of these and 
other therapies.

Future perspective
There have been rapid advancements in the treat-
ment of CRPC, with a resulting improvement in 
prognosis of patients. Further research is needed 
with respect to selection and sequencing of ther-
apy87,88 to determine the optimal series of treat-
ments for an individual patient. A role for 
biomarkers to select patients that may benefit from 
a particular therapy will need to be elucidated fur-
ther, but the detection of the AR-V7 splice variant 
and DNA repair mutations appear promising can-
didates in the quest for biomarkers that will allow 
the precision medicine revolution to take place. 
The future of precision oncology is upon us.
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