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Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the

innate immune response plays a central role in the pathophysiology of

the severe complications and organ injury in surviving patients. During the

development of HS, innate immunity acts as the first line of defense, mediating

a rapid response to pathogens or danger signals through pattern recognition

receptors. The early and exaggerated activation of innate immunity, which is

widespread in patients with HS, results in systemic inflammation, cytokine

storm, and excessive activation of complement factors and innate immune

cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer

cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells.

Recently, compelling evidence focusing on the innate immune regulation in

preclinical and clinical studies promises new treatment avenues to reverse or

minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality.

In this review, we first discuss the innate immune response involved in HS

injury, and then systematically detail the cutting-edge therapeutic strategies in

the past decade regarding the innate immune regulation in this field; these

strategies include the use of mesenchymal stem cells, exosomes, genetic

approaches, antibody therapy, small molecule inhibitors, natural medicine,

mesenteric lymph drainage, vagus nerve stimulation, hormones,

glycoproteins, and others. We also reviewed the available clinical studies on

immune regulation for treating HS and assessed the potential of immune

regulation concerning a translation from basic research to clinical practice.

Combining therapeutic strategies with an improved understanding of how the

innate immune system responds to HS could help to identify and develop

targeted therapeutic modalities that mitigate severe organ dysfunction,

improve patient outcomes, and reduce mortality due to HS injury.

KEYWORDS

Innate immunity, hemorrhagic shock, immunotherapy, multiple organ failure,
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Introduction

Hemorrhagic shock (HS) is a life-threatening condition

occurring in various clinical situations, including trauma,

childbirth, gastrointestinal hemorrhage, and aneurysmal

rupture (1, 2). It is a represents a substantial global problem,

which more than 1.9 million deaths per year worldwide, of

which 1.5 million results from traumatic injury (3). Although

20% of the fatal cases of HS are considered avoidable, current

practice has failed to improve the survival rate (4). Clinically, HS

is treated with an expedited anatomic control of bleeding in

conjunction with intravenous blood products, deliberate

hypotension, antifibrinolytic therapy, and vasodilation (5, 6).

Despite advances in clinical treatment aimed at the hypovolemic

injury, patients who survive the initial HS insult have severe

complications due to organ reperfusion injury, delayed

infections, immune dysfunction, and the risk of developing

organ, with incidences of 37.2%, or multiple organ failure

(MOF), with incidences of 22.1% (7, 8).

Increasing evidence has proved that the modulation of

innate immune responses is a promising therapeutic strategy

for preventing and treating HS-induced MOF injury and

complications (9). Soon after HS insult, exposure to exogenous

pathogen-associated molecular pattern molecules (PAMPs) and

endogenous damaged-associated molecular pattern molecules

(DAMPs) extensively activate the innate immune defense,

mainly comprising type II innate lymphoid cells (ILC2), CD4+

T cells, natural killer (NK) cells, eosinophils, dendritic cells

(DCs), basophils, macrophages, neutrophils, and the

complement cascade (10). The innate immune response

initiated and propagated in response to HS triggers

inflammatory and anti-inflammatory mechanisms within

30 min post-injury, followed by systemic immune response

syndrome (SIRS) and counterbalancing anti-inflammatory

response syndrome (CARS), which are related to organ injury

and complications (11). The systemic parameters during HS

suggest that restoration of innate immunity offers exciting and

promising directions for developing novel therapeutics for HS-

induced second injuries. Recently, compelling evidence has

focused on the innate immune response for the monitoring

and therapy of HS (8, 9, 12, 13). The emerging understanding is

poised to revolutionize the treatment of HS through targeted

immune modulators.

In this article, we firstly summarize recent advances in the

pathomechanistic insights associated with the innate immune

response following HS injury, then systematically detail the

cutting-edge therapeutic strategies used in the past decade

regarding the innate immune regulation in this field, such as

mesenchymal stem cells (MSCs), MSC-derived exosomes, MSC-

derived extracellular vesicles (MSC-EVs), MSC-derived soluble

factors (FS-MSC), genetic approaches, antibody therapy, small

molecule inhibitors, natural medicine, mesenteric lymph (ML)

drainage, vagus nerve stimulation (VNS), hormones,
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glycoproteins, and others. We also reviewed clinical studies on

the regulation of immunity for treating HS and assessed the

potential of immune regulation concerning a translation from

basic research to clinical practice. Combining these therapeutic

strategies with an improved understanding of how the innate

immune system responds to HS could help to identify and

develop targeted therapeutic modalities that mitigate severe

organ dysfunction, improve patient outcomes, and reduce

mortality due to HS injury.
Innate immune response to HS

Increasing experimental and clinical evidence indicates that

innate immunity is the predominant mediator in the

pathophysiology of HS injury that unequivocally leads to

organ damage and failure. The innate immune activation and

immunosuppression responses to HS injury obtained in clinical

trials and preclinical experiments are summarized in Figure 1.

At the site of hemorrhage, the immune system is challenged

with “alarmins”, among which exogenous PAMPs are expressed

on invading microorganisms and endogenous DAMPs are

released from damaged and host cells, and include

mitochondrial DNA, cold-inducible RNA-binding protein

(CIRP), high mobility group box 1 (HMGB1), interleukin (IL)-

25, IL-33, mitochondrial N-formyl peptides (F-MIT), and F-

Actin (14–16). These “alarmins” are recognized by distressed

immune cells through groups of pattern-recognition receptors,

including toll-like receptors (TLRs), receptors of advanced

glycation end products (RAGEs), C-type lectin receptors, and

complement receptors (17). The excessive proinflammatory

response SIRS and parallel immunosuppression CARS are

induced after these damage molecules engage with their

corresponding receptors, which is characterized by the release

of cytokines, chemokines, complement factors, and coagulation

proteins, as well as activation of innate immune cells (18). In

terms of negative feedback, the excessive innate immune

response can promote the circulation of new DAMPs, thereby

amplifying a vicious cycle of cell and tissue injuries (19, 20).

During the development of HS, the innate immune cells act

as the first line of defense, providing a rapid response to

pathogens or danger signals through pattern recognition

receptors (21). One of the first innate immune cell types to the

site of injury is antigen-presenting cells, including tissue-resident

macrophages, which sense damaging molecules and then

differentiate from M1-type macrophages that secrete

proinflammatory factors (TNF-a, IL-1b, IL-6, and interferon-

g) to M2-type macrophages that secrete anti-inflammatory

factors (IL-10, IGF-1, and TGF-b) (22). In addition to

defending against pathogens, macrophages are crucial to the

maintenance of tissue homeostasis (23). Indeed, data suggest

that the macrophage phenotype can correspondingly switch

from M1-type macrophages, polarized by Th1 cytokines (GM-
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CSF, TNF-a, and interferon-g), to M2-type macrophages,

polarized by Th2 cytokines (IL-4 and IL-13) to deal with tissue

repair (24, 25). Interestingly, neutrophils also regulate T cell

function, and the M1-to-M2 macrophage switch represents a

central element in the clearance of neutrophils by efferocytosis

(26–28).

DCs are another type of antigen-presenting cell, which deliver

antigens to T and NK cells. DCs show rapid responsiveness to

pathogens or danger signals, which is followed by the secretion of

TNF-a, interferon (IFN)-a, IFN-b, as well as IL-6 within a few

hours after HS (29). The activation of T lymphocytes by DCs or

danger signals is essential in exaggerating inflammation and

subsequent immunosuppression (30). CD4+ T cells are the

primary lymphocytes involved in HS injury and are classically

divided into four categories: Th1, Th2, Th17, and T regulatory

(Treg) cells (31). Treg cells can suppress T-cell activation and Th1

cytokine production after injury. Data suggest that HMGB1 binding

to RAGE, TLR4 and TLR9 can promote the activation of DCs,

CD4+ T, CD8+ T, Th17, and Treg cells in response to HS injury

(32–34). The imbalance of Th17/Treg has been suggested to be

positively correlated with the degree of acute liver injury (35). The

balance of Th1/Th2 is attributed to conversion to type 2 responses
Frontiers in Immunology 03
during HS development (36–38). DCs subject to HS were more

inclined to polarize naive CD4+ T cells into Th2 and Treg cells,

consistent with the clinically observed immunosuppressive

phenomena in severe patients (39). Clinically, the peak of organ

damage and MOF occurs within the 3 days of HS, with lung failure

being the most common (40, 41).

Taken together, innate immunity is activated early after HS

injury, and cross-talk between various immune cells ultimately

results in MOF. Many attempts of therapeutic strategies focusing

on the innate immune regulation in preclinical and clinical

studies have achieved promising results in reducing tissue

injury, organ dysfunction, and ultimately mortality due to HS.
New insights into HS therapeutics
with innate immune regulation

Stem cell therapy in HS

Stem cells possess a remarkable potential for developing new

cell-based treatments in the context of HS by modulating local
FIGURE 1

Innate immunity-mediated pathomechanisms in multi-organ failure development after hemorrhagic shock. During the development of
hemorrhagic shock, the innate immunity rapid response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular
patterns (PAMPs) is mediated through pattern recognition receptors, including toll-like receptors (TLRs), receptors of advanced glycation end
products (RAGEs), C-type lectin receptors, and complement receptors. The early and exaggerated activation of innate immunity results in
excessive activation of complement factors(C1/C3/C5) and innate immune cells, comprising macrophages, DC cells, T cells, natural killer (NK)
cells, eosinophils, basophils, and neutrophils. The activation of innate immune cells leads to the secretion of cytokines and chemokines, which
exaggerates inflammation and subsequent immunosuppression, causing systemic immune response syndrome (SIRS) and a counterbalancing
anti-inflammatory response syndrome (CARS), ultimately leading to multi-organ failure.
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and systemic deleterious immune responses (42, 43). Table 1

shows the main stem cell-related therapeutic strategies in the HS

model in order of stem-cell type: MSC (MSCs, MSC-EVs, FS-

MSC, MSC-derived exosomes, and IL-1b primed MSC),

adipose-derived stem cells, and neutrophil progenitors. Each of

these therapeutic strategies is discussed in detail below.

MSCs are multipotent stem cells, which are commonly used

as a clinical cell therapeutic strategy for immunomodulation and

tissue repair (9, 56). Treg cells, an immunosuppressive T cell

subset, are essential for maintaining immune homeostasis and

tolerance (57). In a rat model of unilateral lung contusion

followed by HS, impaired wound healing and lung structure

were improved by MSCs treatment by increasing the Treg cell

population (44, 45). Cell-based therapies using MSCs or MSC-

EVs are beneficial for improving neurologic outcomes and lung

injury in animal models of HS (9). Moreover, in an HS-induced

mild lung injury rat model, leukocyte infiltrates (CD68+ and

MPO+ cells) were significantly reduced in the lung after

treatment with MSCs (46). The latest transcriptome data

demonstrated that treatment with MSCs or MSC-EVs was

associated with the inactivation of inflammation-chemokine

and cytokine pathways in the lung of HS mice (47). In a

porcine model of HS, the neuroprotective and neurorestorative

properties observed in MSC-EVs treatment were also associated

with the attenuation of inflammation-related transcription in the

brain (48).

A previous study showed that IL-10, an immunoregulatory

cytokine, binds to the IL-10 receptor and inhibits inflammation

following HS (58, 59). Yunwei Zhang et al. found that IL-10-

deficient MSCs lost the protective function compared to WT
Frontiers in Immunology 04
MSCs in an HS-induced hepatic injury model (49). Another

experiment indicated that MSC-EVs carrying IL-10 as cargo

were mainly taken up by macrophages in the liver, mediating

M2-type macrophage polar izat ion and consequent

immunosuppression in HS-induced hepatic injury (49).

Neutrophils are the first innate immune cells against

pathogens due to their array of microbicidal activities (60, 61).

Clinically, the drop in circulating neutrophils is positively

correlated with the occurrence of MOF (62, 63). FS-MSCs

have an immunomodulatory action through paracrine activity

by secreting anti-inflammatory cytokines and growth factors

(64). Recent studies have shown that treatment with FS-MSCs

significantly reduced inflammation and lung neutrophil

infiltrates in an HS-induced rat model (50).

An early single dose of exosomes derived from MSC

treatment has been shown to attenuate neurological injury by

decreasing IL-1, IL-6, and IL-18, and increasing granulocyte-

macrophage colony-stimulating factor (GM-CSF) levels in the

Yorkshire swine model of HS (51). Additionally, the

administration of human MSC-derived exosomes induces

transcriptomic changes of neuroinflammation after HS injury

in swine (52). In several in vitro and in vivo studies, IL-1b
priming maximized the immunomodulation effect of MSCs by

regulating IL-6 and IL-8 expression and influencing the

polarization of peritoneal macrophages (65, 66). Moreover,

systemic cytokines (IL-1a , IL-6, and IL-10) and the

programmed cell death receptor (PD)-1/PD-L1 axis were

decreased by IL-1b-primed MSCs on monocytes and

granulocytes in HS-induced kidney and liver injury model

(53). Similarly, the IL-6 concentration also decreased with
TABLE 1 Overview of the applications of stem cell-related therapeutic strategies in a hemorrhagic shock model.

Treatment strategy HS model Mechanism Inhibited outcome Refs

MSC Rat Increasing Treg cell population
in the peripheral blood

Lung injury (44, 45)

MSC Rat Decreasing leukocytes (CD68+

and MPO+ cells) infiltrates
Lung injury (46)

MSC or MSC-EVs Mice Reducing the level of inflammatory
-chemokine and cytokines in the lungs

Lung injury (47)

MSC-EVs Porcine Downregulating the inflammation
-related transcription in the brain

Brain injury (48)

MSC-EVs Mice Mediating M2-type macrophage
polarization and immunosuppression

Liver injury (49)

FS-MSC Rat Reducing inflammation and neutrophil
infiltration in the lung

Lung injury (50)

MSC-derived exosomes Swine Decreasing the secretion of IL-1, IL-6,
IL-18, and increasing GMC-SF levels

Neurologic injury (51, 52)

IL-1b primed MSC Rat Decreasing systemic cytokines (IL-1a,
IL-6, and IL-10) and the PD-1/PD-L1 axis

MOF injury (53)

Adipose-derived stem cells Rat Inhibiting IL-6 secretion
in plasma

Liver injury (54)

Neutrophil progenitors Mice Decreasing proinflammatory cytokines
and increasing neutrophil migration
into the airspace

Lung infection (55)
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adipose-derived stem cell treatment in HS-induced liver injury

(54). In rodent models of HS, it has been demonstrated that, in

addition to suppressive proinflammatory cytokines in the lungs,

there is an increase in neutrophil migration into the airspace

from the bone marrow after neutrophil progenitor transplant,

which can be used in the treatment and prevention of secondary

infection following HS (55).

Indeed, several studies—mostly in rodents but also in

porcine—have concluded that MSCs, MSC-EVs, FS-MSCs,

MSC-derived exosomes, IL-1b-primed MSCs, adipose-derived

stem cells, and neutrophil progenitors can relieve lung,

neurologic, kidney, and liver injury by regulating innate

immunity (Figure 2, Table 1). The innate immune processes

involved in the above effects include reducing the leukocyte and

neutrophil infiltrate, increasing the Treg population, mediating

M2-type macrophage polar izat ion and consequent

immunosuppression, and inactivating inflammatory

chemokines and cytokines (Figure 2, Table 1). These stem cell-

related therapeutic strategies represent a potential opportunity

for treating HS-induced second injuries.
Antibody therapy and genetic
approaches in HS

IL-6 plays a prominent role in the differentiation from Th1

to Th2 in the development of HS (67). The secretion of IL-6 is

positively correlated with the prognosis patients with shock and
Frontiers in Immunology 05
organ dysfunction (68, 69). Zhang Yong et al. reported that

treatment with anti-mouse IL-6 monoclonal antibody

immediately before resuscitation can prevent Th2 cytokine

production, suppress the lymphocyte response, reduce the

level of IL-10, keratinocyte-derived chemokine (KDC),

monocyte chemoattractant protein 1(MCP-1) , and

macrophage inhibitory protein 1 (MIP-1) in a mouse model

combining HS and lower-extremity injury (67). The mucosal

address in cell adhesion molecule-1 (MAdCAM-1), a critical

mediator of the early innate immune response to HS, mainly

mediates lymphocyte recruitment to the gut during the

inflammatory storm phase (70–72). This observation is

supported by a finding that antibody blockade of MAdCAM-1

can decrease the secretion of IL-1b, IL-6, and TNF-a, reduce
lymphocyte infiltration, ameliorate intestinal barrier

dysfunction, and prolong survival (70). B and T lymphocyte

attenuator (BTLA), a receptor that is structurally similar to PD-

1, is expressed on T lymphocytes, B lymphocytes, monocytes,

macrophages, and DCs (73, 74). A previous study showed that

treatment with the anti-BTLA monoclonal [6A6] antibody

(25mg/g body weight) can abolish HS followed by sepsis-

induced reduction of cytokines and chemokines (TNF-a, IL-
12, IL-10, KC, MIP-2, MCP-1) and decreased recruitment of

neutrophils, macrophages, and DCs to the peritoneal cavity,

which in turn relieve organ injury and reduce mortality (75).

Clinical studies have shown patients with HS with a poor

prognosis within 24 h after admission have higher type 2

cytokines in serum, such as IL-5 (76). IL-33-stimulated ILC2,
FIGURE 2

Overview of the immune therapeutic strategies of stem cells in hemorrhagic shock. The mesenchymal stem cell (MSC), MSC-derived
extracellular vesicles (MSC-EVs), MSC-derived soluble factors (FS-MSC), MSC-derived exosomes, adipose-derived stem cells, and neutrophil
progenitors can relieve the lung, neurologic, kidney, and liver injury by regulating neutrophil infiltration, increasing the Treg population,
mediating M2-type macrophage polarization and consequent immunosuppression, and inactivation of inflammatory chemokine and cytokines.
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the resident innate lymphocytes that potently regulate host

immunity in the lung, are the primary source of type 2

cytokines response to HS injury (34, 77). A recent finding has

shown that anti-IL-5 antibody, IL-33, or ILC2 deletion,

significantly increased IL-5 expression in neutrophils and

decreased lung injury scores at 6 h in the HS-induced mice

injury model (77). DAMPs can activate systemic inflammation

and organ injury in HS through binding to TLR2 on immune

cells (78). Similarly, anti-TLR2 monoclonal antibody or TLR2-/-

mice exhibited significantly less liver damage, and lower NF-kB
and inflammatory cell infiltrate in HS at 20 h (78). Consistently,

the phenotype of TLR2-/- mice shows reduced intestinal injury

accompanied by reduced complement (CD55, Factor H, and C3)

and inflammatory (IL-12, IL-6, and TNF-a) factors, compared

to wild-type mice (79).

Extracellular CIRP, an 18-kDa RNA chaperone protein, acts

as an endogenous proinflammatory mediator, binds to TLR4,

and leads to mitochondrial DNA fragmentation that triggers

innate immunity and inflammatory responses in patients with

HS (17, 80). Continuity studies demonstrated that the purified

recombinant murine CIRP (rmCIRP) induces cytokine release in

macrophages and deficiency or blockade of CIRP using antisera

leads to attenuated TNF-a and IL-6 release, neutrophil

accumulation, and lethality in HS injury (17, 80). Interestingly,

wound-associated TNF-a enhancement and neutrophil

infiltration is also attenuated in CIRP-/- mice compared to WT

mice (81). Mitochondrial DNA binds to the stimulator of

interferon genes (STING) as a ligand, activating ype I

interferon and proinflammatory cytokines-producing signals

(82, 83). Kehong Chen et al. reported that the HS-induced

increase in IL-6 and IFN-b levels in the serum and the high

mRNAs expression of TNF-a, IL-6, and IL-1b in the lung were

significantly counteracted by STING knockout, which suggests

that the absence of STING significantly reduces inflammation

and lung injury after HS (84).

Many studies have focused on the role of PD-1 and its

ligand, PD-L1 (B7H1) in the cellular immunotherapy (85–87).

The population of PD-1+ blood leukocytes in patients is

positively correlated with interleukin levels in the serum,

which suggests that PD-1 is a key indicator in the assessment

of HS-induced immune dysfunction (87). Indeed, in terms of

immune regulation, animals deficient in PD-1 or PD-L1

expression exhibited an attenuation in the neutrophil influx in

HS injury, while PD-L1 knockout produced a marked

suppression in the secretion of TNF-a, IL-6, and MCP-1,

which were consistently elevated induced by HS in the WT

mice group (88).

Clinical and preclinical studies have observed that nuclear

factor-erythroid 2 p45-related factor-2 (Nrf2), a major mediator

in innate immunity and inflammation, is significantly increased

in the leukocytes collected from patients with HS (89–92). Haige

Zhao et al. reported that HS-induced secretion of HMGB1, L-6,

IL-1b, and TNF-awere higher at 2 h in Nrf2 knockout mice (92).
Frontiers in Immunology 06
Likewise, Nrf2-KO offers no benefit over the hepatoprotection of

remote ischemic conditioning in reductions in HS-induced

TNF-a and IL-6 (93).

CD226, a costimulatory adhesion molecule expressed on

both immune and endothelial cells, can regulate immune

metabolic activity and function (94, 95). Recent studies have

illustrated that CD226 deficiency in vascular endothelial cells

can alleviate HS-induced intestinal damage and the

inflammatory response (96). Emerging evidence shows that

microRNAs play essential roles in pathophysiological

responses by regulating inflammation and immunity (97, 98).

Moreover, data suggest that miR-18b-5p knockdown notably

reduced the levels of SOD1, iNOS, and IL-6 in macrophages,

decreased the M1/M2 ratio of macrophages, and reduced the

Th1/Th2 ratio of CD4+ T cells in splenic tissues after HS

injury (99).

Significant advances have been made in the identification of

immune therapies for HS injury, including antibodies (anti-IL-6,

anti-TLR2, anti-IL-5, anti-IL-BTLA, and anti-MAdCAM-1),

RNAi-based deficiency (PD-1, CD226, and miR-18b-5p), and

gene knockout (TLR2, IL33, CIRP, or STING). In summary,

these antibody therapies and genetic approaches for HS are

associated with a potent innate immune response that not only

regulates the levels of inflammatory factors, the lymphocyte

influx, and neutrophil infi ltration, but also reduces

complement, the ratio of M1/M2 macrophages, the Th1/Th2

ratio in CD4+ T cells, and increases recruitment of DCs (Figure 3

and Table 2).
Small molecule inhibitor or agonist
therapy in HS

As a master alarm system and a major fluid defense system

of innate immunity after HS injury, the complement cascade can

be rapidly activated by DAMPs or PAMPs, and lead to elevated

plasma levels of complement activation products such as

complement factor 1 (C1), complement factor 3 (C3) and

complement factor 5 (C5) (100). As reviewed earlier, such

exuberant complement act ivat ion evokes systemic

inflammation, which is associated with increased susceptibility

to infections and HS-induced MOF (8, 101). Early studies have

shown that C3 deficiency attenuates HS-related hepatic injury

and SIRS (102). The therapeutic inhibition of C3 by C3 inhibitor

compstatin-40 (Cp40) is capable of improving immune,

coagulation, and organ (kidney and intestine) functions by

decreasing IL-6, MIF, IL-1RA, MIP-1, MCP-1, and IFN-g
(103). Another C3 inhibitor-soluble form of CR1 (sCR1) was

confirmed to significantly mitigate the over-expression of NO,

ET-1, TNF-a, and reactive oxygen species in serum to relieve

vascular hyperreactivity in HS rats (104). Recombinant human

C1-esterase inhibitor (rhC1-INH) has been found to particularly

reduce tissue damage (kidney, gut, and lung), tissue complement
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activation, and cytokine release in an HS-induced porcine injury

model (105). Additionally, the alternative complement

activation in response to HS injury can induce macrophage

infiltration and IL-12 secretion in the intestine (106). Multiple
Frontiers in Immunology 07
studies have indicated that treatment with complement

inhibitors (C5 receptor antagonist or cobra venom factor) can

significantly attenuate HS-induced intestinal injury (107–109).

Furthermore, the mucosal damage, macrophage infiltration, and
FIGURE 3

Overview of the immune therapeutic strategies of antibodies, and genetic approaches in hemorrhagic shock. The antibody of anti-IL-6, anti-
TLR2, anti-IL-5, anti-IL-BTLA, and anti-MAdCAM-1; genetic approaches (RNAi-based deficiency such as PD-1, CD226, and miR-18b-5p); and
gene knockout such as TLR2, IL33, CIRP, and STING can relieve lung, intestinal, splenic, liver, and multi-organ failure. These effects are mainly
mediated by regulating the population of monocytes and macrophages, mediating neutrophil infiltration, reducing complement, the M1/M2
ratio in macrophages and the Th1/Th2 ratio in CD4+ T cells, and increasing recruitment of DCs.
TABLE 2 Summary of the applications of antibody therapy and genetic approaches in the hemorrhagic shock model.

Treatment
strategy

HS
model

Mechanism Inhibited
outcome

Refs

Anti-IL-6 mAb Mice Preventing Th2 cytokine production, lymphocyte response, and the levels of IL-10, KDC, MCP-1, and MIP-1 Lung and liver
injury

(67)

Anti-MAdCAM-1
mAb

Rat Suppressing lymphocyte infiltration and the secretion of IL-1b, IL-6, and TNF-a Mesenteric
lymph injury

(70)

Anti-BTLA mAb Mice Increasing the levels of TNF-a, IL-12, IL-10, KC, and MIP-2, MCP-1, and promoting the recruitment of
neutrophils, macrophages, and DCs

MOF injury (75)

Anti-IL5 mAb or
IL33-/-

Mice Increasing IL-5 expression in neutrophil at 6 h Lung injury (77)

Anti-TLR2 mAb or
TLR2-/-

Mice Decreasing NF-kB and inflammatory cell infiltrates MOF injury (78)

TLR2-/- Mice Reducing complement (CD55, Factor H, and C3) and inflammatory factor (IL-12, IL-6 and TNF-a) Intestinal injury (79)

CIRP-/- Mice Reducing TNF-a, IL-6 secretion and neutrophil accumulation Liver injury (80,
81)

STING-/- Mice Decreasing the levels of IFN-b and IL-6 in the serum, and the mRNAs expression of TNF-a, and IL-1b and
IL-6 in the lung

Lung injury (84)

PD-1 deficiency Mice Suppressing neutrophil influx and release of TNF-a, MCP-1, and IL-6 Lung injury (88)

CD226 deficiency Mice Inhibiting inflammation Intestinal injury (96)

miR-18b-5p
knockdown

Rat Reducing the Th1/Th2 ratio in CD4+ T cells in splenic tissues, the M1/M2 ratio in macrophages, and the
levels of SOD1, iNOS, and IL-6 in macrophages

Spleen injury (99)
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intestinal inflammation induced by HS injury were decreased by

reducing leukotriene B4, IL-12p40, and TNF-a in the absence of

IL-12p70 or treatment with complement receptor 2-targeted

factor H (CR2-fH), a targeted inhibitor of the alternative

complement pathway (106).

In addition to inhibitors targeting complement, many

inhibitors targeting key proteins of innate immunity decrease

HS-induced organ dysfunction. Recent studies have indicated

that early intravenous treatment of tranexamic acid, a serine

protease inhibitor, can protect the intestinal barrier by inhibiting

neutrophil extracellular trap formation in the development of

HS (110). CIRP acts as a DAMP to activate innate immunity and

increases complications caused by HS (17). CIRP-derived

oligopeptide-23 (C23) is homologous to the human CIRP

protein (Ser110-Glu125) that binds to the CIRP receptor with

high affinity and inhibits the secretion of TNF-a (111).

Fangming Zhang et al. reported that the mRNA levels of IL-

1b, TNF-a, and IL-6 in the lungs were reduced by adjuvant

treatment with C23 (8 mg/kg) in HS-induced lung injury (111).

Cyclosporine A (CsA) acts as a calcineurin inhibitor that

participate in the innate immune response to pathogens in an

inflammation storm (112). Some studies have shown that CsA

could increase the survival time of HS rats by inhibiting

proinflammatory cytokine production (IL-6) and reducing

liver injury (113, 114).

Emerging evidence suggests that treatment with HDAC

inhibitors (HDACIs) can attenuate MOF and improve early

survival in animal models of HS by restoring “acetylation

homeostasis” of histones and inducing transcriptional

activation (115, 116). Transcriptomic studies in peripheral

blood mononuclear cells (PBMC) and brain tissue suggested

that valproic acid (VPA, one of HDACIs) can reduce HS-

induced neurologic injury by downregulating genes associated

with cell death and inflammation (IL-6, TLR4, JAK2, NLRP1,

TNFa, IL-1a, IL-1B, NF-kB) (117, 118). In addition, treatment

with VPA (150 mg/kg) significantly decreased brain lesion size

and improved neurologic recovery by activating nuclear factor- k

B (NF-kB) and degrading of cytosolic IkB in Yorkshire swine

models of HS (119). Elizabeth A. Sailhamer et al. demonstrated

that suberoylanilide hydroxamic acid (SAHA), one of HDACIs,

can normalizes inflammatory cytokines (TNFa and IL-1b) levels
by acetylating the transcription factor NF-kB following HS in

the rats (120).

FTY720, an immunomodulator targeting receptors of

sphingosine 1-phosphate (S1P), which can disrupt lymphocyte

trafficking, prevent lymphocytes from accumulating in

secondary lymphoid organs, and decrease lymphocytes in the

blood circulation (121, 122). Jason S. Hawksworth et al. reported

that FTY720 (0.3 mg/kg) could sequestrate the central

lymphocytes, resulting in attenuation in innate cellular and

signal activation following HS in a swine liver and lung injury

model (123). FTY720 (1 mg/kg) has also been shown to reduce

HS-induced MOD syndromes, red cell injury, and neutrophil
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priming in a rat model (124). The direct administration by a

receptor agonist can block the binding of TLR ligands with their

receptor, interfere with intracellular signaling molecules, and

prevent signal amplification, which is a promising approach for

treating HS-induced immune dysregulation. Xu Ding et al.

reported that macrophage-activating lipopeptide-2 (MALP-2),

as an agonist of TLR, given at the earliest can reduce pulmonary

damage and polymorphonuclear neutrophil infiltration in an HS

mouse model (125).

Latest studies have shown that some activators, such as

sulforaphane, an Nrf2 pathway agonist, can modulate

immunity against HS damage (126). Weiqiang Liang et al.

demonstrated that sulforaphane, a potential immune

modulator, could protect the liver from HS-induced

inflammation storm by decreasing the secretion of TNF-a,
MCP-1, KC/CXCL1, IL-6, and IL-10 and abolishing neutrophil

infiltration in kupffer cells (126). Moreover, in a mouse HS

model, sulforaphane administration reduced lung and liver

injury via down-regulating pro-inflammatory cytokines, such

as TNF-a, COX-2, iNOS, and IL-1b (127, 128).

As discussed above, small molecule inhibitors, especially

complement-related target inhibitors, inhibitors of serine

protease, CIRP, sphingosine-1-phosphate, toll-like receptors,

mPTP, and agonists of the Nrf2 pathway, can reduce HS-

induced liver, kidney, intestinal, renal, and lung and vascular

hyperreactivity injury in monkey, swine, and rodent animal

mode l s by modula t ing innate immune responses

(Figure 4, Table 3).
Natural medicine therapy for HS

Increasing research has confirmed the role of resveratrol, a

natural polyphenol widely found in plants and fruits, in

improving survival and prolonging lifespan following HS by

improving immune function and reducing inflammation (129,

130). Phosphorylation and acetylation on the p65 subunit of NF-

kB regulate the inflammatory cascade (131). In the HS-induced

rat injury model, the ratio of the phosphorylated p65 subunit of

NF-kB to the unphosphorylated form demonstrated a noticeable

decline following resveratrol treatment (18). Resveratrol also

counteracts the increase in gene expression and plasma secretion

levels of IL-2, IL-6, IL-10, TNF-a, and MIP-1a at 2 h following

HS in heart tissue (18). It has been reported that the release of

proinflammatory cytokines caused by HS, participates in the

development of kidney injury (132). Ophiopogonin A, an

effective active component extracted from ophiopogonis radix,

can dose-dependently downregulate the levels of iNOS, TNF-a,
IL-1b and IL-6, and decrease HS-induced renal injury (133).

Intestinal DCs play essential roles in regulating the function

of the intestinal immune barrier and intestinal bacterial

translocation (134). Experimental evidence suggests that

treatment with allicin, a thiosulfonate extract from freshly
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minced garlic, can block intraintestinal bacterial translocation

and reduce the permeability of the intestinal barrier by assisting

the immunologic barrier function of the ML node and

facilitating the maturation of DCs (135, 136). Ursolic acid, a

natural pentacyclic triterpenoid carboxylic acid isolated from

uncaria rhynchophylla, reduces immune-mediated lung

inflammation, assists human DCs via TLRs, and accelerates

the production of IFNg by CD4+ T cells (137, 138).

Additionally, ursolic acid suppresses superoxide production in

activated neutrophils and restrains HS-induced hepatic and lung

injuries in rats (139). The development of complications from

HS is accompanied by the activation of neutrophils (77, 140). In

the rat HS model, the neutrophilic oxidative stress and lung

injury were restrained after administration of osthol, a natural

coumarin found in traditional medicinal plants (141).

In conclusion, natural medicines, such as polyphenol,

saponins, thiosulfonate, carboxylic acid, and coumarin

represent an essential therapy against HS-induced injury in

terms of regulating immune processes, including subsiding

inflammatory cytokine release, assisting the immunologic

barrier function of the ML node, facilitating DC maturation,

reducing superoxide production in activated neutrophils, and

attenuating neutrophil-dominated inflammation, to improve

cardiac function, block intraintestinal bacterial translocation,

and relieve hepatic, lung, and kidney tissue injury

(Figure 5, Table 4).
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Other therapies in HS

Other therapies, such as physical therapy (post-shock ML

drainage, VNS, stellate ganglion block), glycoprotein, fatty acids,

and inorganic compounds can also be used to modulate

immunity against HS injury (Figure 5, Table 5). Previous

studies have shown that the diversion of the ML or lymphatic

duct ligation can reduce vascular permeability, subside systemic

neutrophil priming, and decrease lung injury in HS models

(143). It has been recently shown that post-shock ML drainage

can decrease the levels of the T lymphocyte subgroup, including

the population of CD3+ cells, CD3+ cells, CD4+ cells, and

CD4+CD25+ cells, and reduce IFN-g and IL-4 secretion in the

HS rat model at 3 h after resuscitation, which suggests that post-

shock ML drainage can markedly improve hyperimmunity

occurred at early stages (142). Conversely, exosomes isolated

from post-shock ML significantly increase lung injury by

recruitment of inflammatory cells to the alveolar space and

lung parenchyma, inducing mRNA expression of NF-kB,
iNOS, TNF-a, and CINC-1 during HS (150).

The continuous migration of CD103+ DCs from the

intestine to the ML nodes is considered to induce Treg cell

maturation and promote tolerance to intestinal inflammation

(151, 152). The balance of Treg and Th17 cells determines the

intestinal tolerance to inflammation and immune response
frontiersin.org
FIGURE 4

Overview of the immune therapeutic strategies of small molecule inhibitors or agonists in hemorrhagic shock. Small molecule inhibitors or
agonists, especially complement-related target inhibitors, such as compstatin-40 (Cp40), soluble form of CR1 (sCR1), recombinant human C1-
esterase inhibitor (rhC1-INH), complement receptor 2-targeted factor H (CR2-fH), tranexamic acid, CIRP-derived oligopeptide-23 (C23),
FTY720, macrophage-activating lipopeptide-2 (MALP-2), cyclosporine A (CsA), and sulforaphane can reduce HS-induced liver, kidney, intestinal,
lung, and multi-organ failure injury by reducing complement activation, macrophage infiltration, neutrophil priming, and systemic inflammation.
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(153). Previous studies have demonstrated that VNS prevents

HS-induced impairment in intestinal blood flow, alters the DC

profile, and prevents incompleteness of the gut barrier in the ML

(154–158). Additionally, Koji Morishita et al. reported that VNS

could promote tolerance to HS-induced inflammation by

increasing the CD103+ DC population in the ML and

facilitating the ratio of Treg cells to Th17 cells (143). VNS has

also been shown to increase the level of IL-10 and decrease HS-

induced lung and gut barrier injury, with a marked decrease in

the mRNA level of TNF-a, IL-6, NF-kB, and MPO (144, 145).

Previous studies have shown that stellate ganglion block (SGB), a

standard method of blocking sympathetic nerves, can reduce

intestinal barrier dysfunction and prolong the survival time in

the HS rat model (159). The latest research shows that SGB

administration significantly normalized the population of CD4+

T cells and the level of IL-2, IL-4, and TNFa-induced protein 8

like 2 (TIPE2) in the development of HS (146).

Lactoferrin, as a pleiotropic glycoprotein, was proven to

limit HS-induced gut injury and inhibit the biological activity of

ML by enhancing the gastrointestinal barrier and assisting

mucosal immunity (147). Talactoferrin, a unique recombinant

form of human lactoferrin and an oral DC cell-mediated

immunotherapy, has demonstrated safety and preliminary
Frontiers in Immunology 10
efficacy in clinical trials (160–162). It has been recently shown

that talactoferrin (1000 mg/kg/day) pretreatment 5 d before

being subjected to HS injury has gut-protective effects by

reducing the respiratory burst activity of lymph (147).

Intestinal mucosa innate immunity is involved in removing

pathogenic bacteria and alleviating intestinal injury (163).

Feng Tian et al. reported that n-3 polyunsaturated fatty acids

(PUFAs) could restore the function of the intestinal barrier by

improving the innate immunity of the intestinal mucosa,

increasing the expression of lysozyme, mucin 2, and IL-4, and

stabilizing the intestinal microbiota in mice after HS (148). An

early study revealed that hydrogen sulfide could increase survival

in rodent models of lethal hemorrhage (164). Moreover,

Dunquan Xu et al. demonstrated that sodium hydrosulfide

administration could protect lungs against HS injury by

suppressing the levels of IL-6, TNF-a, and HMGB1 in rat

bronchoalveolar lavage fluid (149).

In summary, increasing therapeutic approaches to HS have

been verified, focusing on various mechanisms involving innate

immunity. These therapeutic approaches restore the thymus,

lung, and gut. In addition to regulating the secretion of

inflammatory cytokines and chemokines (IFN-g, IL-4, NF-kB,
iNOS, TNF-a, IL-10, IL-6, IL-2, and CINC-1), these novel
TABLE 3 Summary of the applications of small molecule inhibitor or agonist therapy in a hemorrhagic shock model.

Name Target Conc. HS
model

Mechanism Inhibitedoutcome Refs

Cp40 Inhibitor of C3 3
mg/kg

Monkey Reducing the levels of IL-6, MIF, MIP-1, MCP-1, and IFN-g MOF injury (103)

sCR1 Inhibitor of C3 50 mg/kg Rat Reducing the levels of TNF-a and ET-1 Vascular injury (104)

rhC1-
INH

Inhibitor of C1 250 IU/
kg

Porcine Reducing TNF-a and complement levels MOF injury (105)

CR2-fH Inhibitor of complement 17.5
µM

Mice Reducing the levels of macrophages, IL-B4, IL-12p40, and
TNF-a

Intestinal injury (106)

Tranexamic
acid

Inhibitor of serine
protease

20 mg/kg Rat Inhibiting neutrophil
extracellular trap formation

Intestinal injury (110)

C23 Inhibitor of CIRP 8
mg/kg

Mice Reducing IL-1b, TNF-a, and IL-6 levels Lung injury (111)

CsA Inhibitor of mPTP 50
mg/kg

Rat Decreasing the level of IL-6 Liver injury (113,
114)

VPA Inhibitor
of histone deacetylase

150 mg/
kg

Swine Downregulating inflammatory pathways Neurologic injury (117–
119)

SAHA Inhibitor
of histone deacetylase

400
nM

Rat Normalizes TNFa and IL-1b Improves
survival

(120)

FTY720 Agonist of S1P 1
mg/kg

Rat Inhibiting neutrophil priming MOF injury (124)

FTY720 Agonist of S1P 0.3 mg/
kg

Swine Increasing CD3+ T cell and inhibiting neutrophil priming Liver and lung injury (123)

MALP2 Agonist of TLRs 25
mg/kg

Mice Reducing neutrophil infiltration Lung injury (125)

Sulforaphane Agonist of Nrf2 50
mg/kg

Mice Reducing the level of TNF-a, MCP-1, KC, IL-6, and
neutrophils

Liver injury (126)

Sulforaphane Agonist of Nrf2 40 mg/kg Rat Decreasing the level of TNF-a and IL-1b Liver injury (127,
128)
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therapeutic options for treating HS to restore critical organ

function mainly rely on regulating the population of innate

immune cells, involving T lymphocyte subgroup, CD4 + T cell,

Treg ce l l s , monocy te s , Th17 ce l l s and DC ce l l s

(Figure 5, Table 5).
Clinical opportunities of innate immune
modulation in HS

Although some attempts at targeting innate immunity

against HS injury and subsequent organ damage in preclinical
Frontiers in Immunology 11
models have been successful, only a few clinical trials have

evaluated the treatment strategies with immune-related

indicators as primary or second outcome measures in patients

with HS.

Dexmedetomidine (Dex; a2 adrenergic receptor agonist)

targeted activation of a2 receptors can produce sedative,

analgesic, antisympathetic, and hemodynamic effects (165).

New clinical evidence indicates that early intervention with

Dex can effectively prevent postoperative renal insufficiency or

renal failure and improve microcirculation in patients with HS

requiring surgery, mainly by inhibiting the release of oxygen

free radicals, IL-6, and IL-8 (166). Another promising
FIGURE 5

Overview of the natural medicine, vagus nerve stimulation, and other therapy approaches in hemorrhagic shock. Natural medicines, such as
resveratrol, ophiopogonin A, allicin, ursolic acid, and osthol, act on several immune biological processes against HS-induced cardiac, liver, lung,
and kidney injury, mainly rely on the inhibition of inflammatory cytokine release, modulating DC maturation and neutrophil-dominated
inflammation. Other therapeutic approaches to HS, such as post-shock ML drainage, vagus nerve stimulation (VNS), stellate ganglion block
(SGB), talactoferrin, n-3 polyunsaturated fatty acids (PUFAs), and hydrogen sulfide, restore the critical organs (thymus, lung, and gut) mainly by
regulating the secretion of inflammatory and chemokines, and regulating the proportion of CD4 + T cell, Treg cells, Th17 cells, M1-type
macrophages, and DCs.
TABLE 4 Overview of the applications of natural medicine therapy in a hemorrhagic shock model.

Name Compound type Conc. Mechanism Inhibited outcome Refs

Resveratrol Polyphenol 10 mg/kg Inhibiting the levels of NF-kb(p65), IL-6, TNF-a, IL-2, MIP-1a, and IL-
10

Cardiac injury (18)

Ophiopogo-nin
A

Saponins Not
mentioned

Reducing the levels of TNF-a, IL-1b, and IL-6 Kidney injury (133)

Allicin Thiosulfo-
nate

Not
mentioned

Increasing DC maturation Intestinal damage (135)

Ursolic
Acid

Carboxylic acid 1 mg/kg Inhibiting superoxide production in neutrophils MOF (139)

Osthol Coumarin 1 Um Attenuating neutrophil-dominated inflammatory Lung injury (141)
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therapeutic compound is ulinastatin, a glycoprotein derived

from human urine; combined with thymosin a1, ulinastatin
improves the survival rate of patients with bacterial infection

by significantly increasing the CD4+CD8+ population and

restoring the balance between proinflammatory mediators

(TNFa, IL-1b, IL-6, and IL-8) and anti-inflammatory

cytokines (IL-4 and IL-10) (167). Park et al. reported that

ulinastatin administration (300,000 IU) neutralizes the serum

polymorphonuclear leukocyte elastase (PMNE) levels and

decreases the secretion of TNF-a and IL-6 in trauma patients

with HS at 48 h after administration (168). Pre-clinical studies

have certificated the benefit of estrogen in reducing MOF

injury and mortality in HS (169, 170). More importantly, the

levels of Treg cell, monocytes, and inflammatory factors were

significantly balanced in patients with HS after receiving

estrogen treatment (171). Conversely, the results of one

clinical study on the effect of remote ischemic conditioning

on trauma patients with HS using immune regulation

(neutrophil activity and plasma inflammatory factor

expression) as the primary outcome measures were

disappointing, limited by prolonged emergency transport

time and delayed application of therapy (ClinicalTrials.gov

Identifier: NCT02071290). One therapeutic method for HS

injury currently under clinical investigation is hypertonic

resuscitation, with the primary outcome measures being

neutrophil activation, coagulation parameters, and monocyte

activation (ClinicalTrials.gov Identifier: NCT00750997).

Most of the clinical studies of HS therapy have focused on

resuscitation fluid and modulators (nitroglycerine, polydatin,

vasopressin, estrogen, and the combination of norepinephrine

with octreotide) using hospital admission rate, urinary output,

blood pressure, heart rate, Glasgow coma scale value,

microcirculatory flow index, perfusion index, mean arterial

pressure, survival, or organ dysfunction as the primary

ou tcome measure s (C l in i c a lTr i a l s . gov Iden t ifie r :

NCT01780129, NCT03891849, NCT03235921, NCT01433276,

NCT00379522, NCT00973102) (172–175). There remains an
Frontiers in Immunology 12
immense need to validate these promising strategies targeting

innate immunity against HS injury in non-human primate

models, organoid models, and clinical patients.
Conclusion and prospects

Increasing experimental and clinical evidence has

contr ibuted to a pro found unders tand ing of the

pathophysiology of HS injuries in recent years. Furthermore,

regulation of innate immunity is recognized as an attractive

pharmacological target offering encouraging future directions

for the R&D of novel therapeutics. In this regard, numerous

strategies, including MSCs, exosomes, genetic approaches,

antibody therapy, small molecule inhibitors, and natural

medicine, have been successfully employed for protection from

HS damage and MOF in rodents, porcine, and non-human

primate models. The immunomodulatory mechanisms of

therapeutic approaches in HS injury discussed above are not

only reflected in the regulation of inflammatory cytokines and

chemokines but also in the balance of complement, DCs,

macrophages polarization, T lymphocyte differentiation, and

neutrophil infiltration.

The systematic and comprehensive research focus on HS

injury and innate immunity regulation has led to many

advances; however, gaps in the translation from basic research

to clinic capability remain. As immune activation and

immunosuppression are inseparable and sequential during the

development of MOF in HS, the time point of starting and

stopping therapeutic interventions is crucial. Furthermore,

reliable monitoring of the remaining immunomodulatory

functions of the intervening strategies within the HS-induced

immunity response cascade are equally important. Ongoing

studies should accelerate the progression of the most

promising strategy targeting innate immunity to clinical trials

in HS injury. Overall, the modulation of the innate immune

response by specific intervening strategies might provide the key
TABLE 5 Summary of the applications of physical therapy, glycoprotein, fatty acids, and inorganic compounds in the hemorrhagic shock model.

Treatment strategy Type of
therapy

HS
model

Mechanism Inhibited
outcome

Refs

Post-shock ML drainage Physical therapy Rat Restoring the T lymphocyte subgroup and IFN-g/IL-4 ratio Thymus injury (142)

VNS Physical therapy Rat Increasing the DC population and the ratio of Treg/Th17 Intestinal injury (143)

VNS Physical therapy Rat Increasing the IL-10 level, and decreasing the levels of TNF-a, IL-6, NF-
kB, and MPO

MOF injury (144,
145)

Stellate ganglion block
(SGB)

Physical therapy Rat Increasing CD4 + T cell population and the levels of IL-2, IL-4, and TIPE Mesenteric lymph
return

(146)

Talactoferrin Glycoprotein Rat Reducing the biological activity of lymph Intestinal injury (147)

n-3 PUFAs Fatty acids Mice Balancing the levels of IL-10 and IL-4 Intestinal injury (148)

Sodium hydrosulfide Inorganic
compounds

Rat Decreasing the release of IL-6, TNF-a, and HMGB1 Lung injury (149)
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to closing the cascading damage resulting from the vicious

danger response after HS injury.
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