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Introduction
Myelin oligodendrocyte glycoprotein (MOG) is a 
highly conserved protein that is exclusively 
expressed in oligodendrocytes in the central nerv-
ous system (CNS).1,2 Multiple isoforms of MOG 
exist that have identical extracellular immunoglob-
ulin (Ig) domains, but differentially spliced intra-
cellular C-termini. The differences in the 
C-terminal amino acids are the basis to distinguish 
α or β isoforms of MOG.3,4 Knowledge about the 
biological role of MOG and its isoforms is limited; 
however, the encephalitogenic potential of MOG 
that is eliciting demyelinating immune responses 
has been demonstrated in numerous experimental 
models.5–7 For this reason, MOG-IgG antibodies 
(MOG-IgG) were extensively studied in the last 
two decades in different acquired demyelinating 
syndromes (ADSs). The development and use of 
highly specific cell-based assays (CBAs) enabled 

the description of a variety of clinical disease mani-
festations ranging from certain ADS, for example, 
acute disseminated encephalomyelitis (ADEM) 
predominantly in children or optic neuritis mostly 
in adults, to cases of encephalitis with seizures.8–11 
This broad spectrum of clinical phenotypes associ-
ated with MOG-IgG has evolved into a new 
inflammatory CNS disease entity that is distinct 
from both multiple sclerosis (MS) and neuromy-
elitis optica spectrum disorders (NMOSDs).

In this review, we provide an overview of current 
knowledge of MOG-IgG associated disorders, 
describe the clinical presentations identified, 
highlight differences from NMOSD and MS, 
summarize clinical outcome and concepts of 
immune treatment, depict the underlying mecha-
nisms of antibody pathogenicity and provide the 
methodological essentials in MOG-IgG assays.
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Clinical aspects

Frequency of MOG-IgG in ADSs
The majority of studies of MOG-IgG in ADS 
have been retrospective and included selected 
patient populations. Only a few of the latest stud-
ies were designed prospectively or used a popula-
tion-based approach. MOG-IgG were detected in 
65 (31%) of 210 children with ADS in a large 
study conducted in Austria and Germany,12 in 76 
(32%) of 237 children in a UK study,13 in 31 
(22%) of 151 children in a study from The 
Netherlands,14 in 94 (39%) of 239 children in a 
study from Spain,15 in 17 (18%) of 92 children in 
a study from Denmark16 and in 84 (31%) of 274 
children in a study from Canada.17 Reported inci-
dence rates ranged from 0.16 to 1.4 per 100,000 
that is – among the group of ADS – in the range 

of NMOSD, but clearly below the incidence of 
MS (see the following).12,18,19

Summarizing the data from all available studies 
that used CBAs [combined with fluorescence 
activated cell sorting (FACS) or immunofluores-
cence (IF)] in aquaporin-4 (AQP4)-IgG negative 
non-MS ADS to analyse MOG-IgG revealed a 
clear association of their prevalence with age. The 
proportion of patients with MOG-IgG positive 
ADS was higher among children (39%)13–15,17,20–35 
than among mixed cohorts of children and adults 
(29%)36–51 or adults (23%)8,12,52–75 [Figure 1(A)]. 
This higher seroprevalence of MOG-IgG in chil-
dren might be a consequence of the age-depend-
ent manifestation of different demyelinating CNS 
diseases, as MS and AQP4-IgG positive NMOSDs 
are more common in adults.76,77

Spectrum of MOG-IgG associated demyelinating 
syndromes
Clinical and magnetic resonance imaging (MRI) 
characteristics of patients with positive MOG-IgG 
were reported by a multitude of studies in the past 
few years including different cohorts of patients, 
that is, children, adults or both, patients with mono-
phasic and recurrent or with relapsing disease course 
only.9,10,13,14,17,23,25,35,48,49,51,56,57,68,78–86 Overall, the 
clinical phenotype of MOG-IgG associated demy-
elinating syndromes changes with age from ADEM-
like (ADEM, ADEM–optic neuritis, multiphasic 
disseminated encephalomyelitis) in children to opti-
cospinal (optic neuritis, myelitis) in adults. A 
detailed overview on six recent representative large 
observational studies showing the frequency of dif-
ferent disease manifestations in adults and children 
is given in Table 1. Accordingly, MOG-IgG posi-
tive children presented as ADEM in approximately 
50% of cases, whereas adults in less than 10%. Vice 
versa, onset with optic neuritis or myelitis was 
observed in up to 50% and 30% of adults, whereas 
in approximately 25% and 10% of children (Figure 
1(B)]. Manifestations with brainstem, cerebral or 
multifocal symptoms were – in most studies – quite 
infrequent (<10%) at any age.10,13,15,17,18,78,87 
Symptoms associated with involvement of the area 
postrema, for example, nausea, vomiting and hic-
cups, were reported in a small subset of patients (at 
or before presentation). The majority of these 
patients did not show discrete area postrema lesions, 
but patchy, poorly demarcated lower brainstem 
lesions (most commonly in the context of ADEM; 
the isolated presentation was rare).87–89

Figure 1. Frequency and clinical presentation of 
MOG-IgG associated disorders are age-dependent. 
(A) Frequency of MOG-IgG in AQP4-IgG negative non-
MS demyelinating diseases out of studies including 
children,13–15,17,20–35 mixed cohorts of children and ad
ults36–51 and adults8,12,52–75 is shown. (B) Frequency of 
the main clinical phenotypes (ADEM, optic neuritis, 
myelitis) out of studies including children13–15,17 and 
adults10,18,78 is shown.
The mean percentages (bars) with 95% confidence intervals 
(error bars) are shown.
ADEM, acute disseminated encephalomyelitis; AQP4, 
aquaporin-4; IgG, immunoglobulin G; MOG, myelin 
oligodendrocyte glycoprotein; MS, multiple sclerosis; ON, 
optic neuritis.
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Delineating MOG-IgG associated disorders from 
other demyelinating CNS diseases
Patients with MOG-IgG associated demyelinat-
ing syndromes show certain demographic and 
clinical characteristics, cerebrospinal fluid (CSF) 
and MRI findings that allow the differentiation 
from patients with MS or APQ4-IgG positive 
NMOSD to a certain extent and can be the basis 
for reasonable antibody testing. A comprehensive 
comparison between MOG-IgG associated disor-
ders, APQ4-IgG positive NMOSD and MS is 
shown in Table 2; MRI findings are further 
detailed in the following.

MRI. Brain MRI in patients with MOG-IgG asso-
ciated disorders typically shows few, poorly 
demarcated, ‘fluffy’, sometimes large lesions that 
affect both the white matter and the grey matter, 
the latter including cortex and deep grey nuclei.9,91 
However, a reliable discrimination of MOG-IgG 
associated disorders from AQP4-IgG positive 
NMOSD and MS based on brain MRI findings is 
not possible.9,10,13,15,17,18,78,91,95,108 Characteristic 
MRI features have been reported for optic path-
way and spinal cord. Patients with MOG-IgG 
associated disorders and optic neuritis typically 
had bilateral involvement of the anterior optic 
pathways with long lesions and optic nerve head 
swelling.95,109 Bilateral involvement was of similar 
frequency in MOG-IgG associated disorders and 
AQP4-IgG positive NMOSD, but significanly 
more frequent than in MS. Affection of the chi-
asma was reported in some patients with MOG-
IgG associated disorders; whether the frequency 
differs from AQP4-IgG positive NMOSD is still 
contradictory. The involvement of the optic tract 
was uncommon in MOG-IgG associated disor-
ders.95,109 MRI of the spinal cord typically showed 
longitudinally extensive T2-signal abnormalities 
(>3 vertebral segments) predominantly of the 
thoracolumbar region40 involving the ventral spi-
nal cord parenchyma confined to the grey matter 
(sagittal line and axial H sign) without contrast-
enhancement,93 allowing distinction of myelitis 
from APQ4 positive NMOSD and MS. Longitu-
dinally extensive T2 lesions were of similar fre-
quency in MOG-IgG associated disorders and 
AQP4-IgG positive NMOSD but not found in 
MS.93,94 Multiple spinal cord lesions and conus 
involvement were more frequent with MOG-IgG 
than AQP4-IgG but not different from MS.93 
Besides these reported MRI features, the initial 
scan of the brain15,17,78,85 as well as of the spinal 
cord110 can be normal in patients with MOG-IgG 

associated disorders, also despite severe clinical 
manifestation, which can lead to diagnostic 
uncertainty.

Expanding the MOG-IgG disease spectrum
Encephalitis. The association of MOG-IgG with 
an encephalitic presentation has been known 
since the first report in 2017. An adult was 
described with steroid-responsive encephalitis 
involving the cortical areas who experienced focal 
seizures that subsequently generalized and who 
was eventually shown to be positive for MOG-
IgG. When the patient’s treatment of predniso-
lone was tapered, a relapse occurred with optic 
neuritis.111 Later case series confirmed the asso-
ciation between MOG-IgG, cortical brain lesions 
on MRI (typically with contrast enhancement) 
and seizures. The vast majority of patients had a 
relapsing disease course and had experienced 
demyelinating events such as optic neuritis or 
myelitis before, with or after encephalitis onset; 
and some patients had additional deep white mat-
ter or brainstem lesions on MRI.78,112–115

To further explore the significance of encephalitis 
associated with MOG-IgG, a large, prospective, 
multicentre, observational study was performed 
that included children with the whole spectrum of 
encephalitis (i.e. of infectious, autoimmune and 
unknown origin). The authors reported that 
among patients with autoimmune encephalitis 
(other than ADEM) MOG-IgG were more 
 common (34%) than all neuronal antibodies 
 combined (with N-methyl-D-aspartate-receptor 
[NMDAR] antibodies in 22% as the second most 
frequent).15 These MOG-IgG positive encephali-
tis patients developed clinical syndromes includ-
ing decreased level of consciousness (100%), 
seizures [64% (45% with status epilepticus)], 
fever (59%), and abnormal behaviour (50%) and 
movements (36%). Brain MRI showed extensive 
cortical involvement, basal ganglia or thalamic 
involvement, in some cases also only minimal 
changes (those associated with refractory status 
epilepticus), or revealed normal scans. Within a 
median follow-up of 45 months, 23% of patients 
had at least one relapse; almost all of them showed 
a demyelinating syndrome (optic neuritis or 
myelitis).15

Altogether, MOG-IgG were found to be associ-
ated with the clinical presentation of encephalitis 
(other than ADEM). The majority of patients 
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showed also features of demyelination either clin-
ically before, concomitantly or after encephalitis 
onset, or by means of MRI.

Overlap syndromes. Overlap syndromes with 
MOG-IgG and NMDAR antibodies are known.  
A recent study reported that in patients with 
NMDAR encephalitis concurrent glial antibodies 
were present in approximately 4% of cases; half of 
them were MOG-IgG.116 NMDAR encephalitis 
patients with additional MOG-IgG showed more 
frequently atypical disease manifestation includ-
ing brainstem or cerebellar symptoms or presented 
distinct demyelinating features such as optic 
 neuritis or myelitis; MRI revealed lesions typically 
in subcortical white matter, infratentorial region 
or the spinal cord with facultative contrast-
enhancement. In some cases involvement of the 
basal ganglia and cortical regions as well as men-
ingeal enhancement have been reported.47,116 
From a pathophysiological point of view, the 
shared contribution of NMDAR antibodies and 
immune responses to myelin dysfunction is 
unknown, but it should be noted that oligoden-
drocytes contain NMDAR.117 It has been sug-
gested that MOG-IgG could reflect, for example, 
a secondary immune reaction.118 However, 
patients with overlapping antibodies also often 
had a history of episodes of encephalitis or demy-
elinating syndromes.47,116 Of note, the distribution 
of the concurrent antibodies was different in 
serum and CSF in some patients, suggesting dif-
ferent compartmentalization of the immune 
responses.116 Evolution and sequence of concur-
rent antibodies as well as the underlying immune 
mechanisms have to be explored by further stud-
ies. Nevertheless, these findings emphasize the 
importance of examining MOG-IgG in patients 
with NMDAR encephalitis and atypical clinical or 
imaging features, especially because double-posi-
tive patients might have worse prognosis and pos-
sibly need more aggressive immune treatment.47

Seizures. Seizures as an isolated phenomenon 
have been reported to be associated with MOG-
IgG, that is, seizures were not accompandied by 
clinical manfestation of encephalitis or ADS, and 
brain MRI was unremarkable at onset. Seizures 
occurred solitarily or as cluster over a short inter-
val of days. As a direct contribution of MOG-IgG 
to epileptogensis is very unlikely, based on patho-
physiological considerations and by findings that 
seizure occurrence did not differ between MOG-
IgG positive (11%) and negative (14%) patients 

with ADEM,34 one might hypothesize that subtle 
inflammation of brain cortex was already present 
at onset of seizures but not detectable on regular 
brain MRI. Indeed, all of these patients developed 
ADS or encephalitis symptoms and eventually 
MRI abormalities during follow-up.119

Other possible disease presentations. Several cases 
of cranial neuritis with concurrent CNS involve-
ment and MOG-IgG positivity have been 
described.120,121 The cranial nerve involvement was 
determined by contrast-enhancement on MRI at 
the nerve root entry zone. Possible explanations for 
MOG-IgG reactivity might include that at this 
anatomical region of the cranial nerve, the so called 
transitional zone, an overlap of central and periph-
eral myelin features exist, or that an inflammatory 
process from CNS lesions might progress down-
stream.120 Cases with isolated or a clear additional 
affection of the peripheral nervous system, such as 
cranial neuritis or inflammatory demyelinating 
polyneuropathy, remain elusive.122,123

MOG-IgG in daily clinical routine
Recently, a diagnostic algorithm for the inclusion 
of MOG-IgG in daily clinical practice in patients 
with ADS has been proposed, leading to four 
main phenotypes: MS, AQP4-positive NMOSD, 
MOG-IgG associated disorders and antibody-
negative ADS (Figure 2).25,50,101,108 As MS is the 
most common ADS and frequently shows a char-
acteristic MRI pattern as well as CSF-restricted 
oligoclonal bands,101 it seems reasonable first to 
perform these two examinations. In the case of 
MS-atypical findings and negative AQP4-IgG, 
MOG-IgG should be determined. As the clinical 
phenotype associated with MOG-IgG expands to 
patients with autoimmune encephalitis, as shown 
by recent studies, MOG-IgG testing should also 
be considered in these cases especially after other 
differential diagnoses have been ruled out (Figure 2). 
It is crucial to limit MOG-IgG testing to these 
atypical cases, as screening of unselected, large 
populations for a rare biomarker generally 
decreases its positive predictive value by increas-
ing the rate of false-positive results. Even if an 
assay shows a high specificity (e.g. ⩾99%), the 
true-positive results can easily be outnumbered 
by false-positive results if the prevalence of a bio-
marker is low and the number of samples tested is 
high. This fundamental statistical fact also applies 
to MOG-IgG testing. In order to avoid overdiag-
nosing MOG-IgG associated disorders, a list of 
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indications as well as ‘red flags’ for MOG-IgG 
testing based on expert consensus have been 
recently proposed.108

Disappeareance of MOG-IgG is associated with 
a monophasic disease course
Approximately 35% of patients with MOG-IgG 
associated demyelinating disorders were reported 
to have a relapsing disease course, and relapes 
often manifest as optic neuritis irrespective of the 
initial type of disease manifestation.10,13,15–17,78 
Most of the studies reported that a relapsing 
 disease course was more likely in patients with 
higher MOG-IgG titres at onset13,78 and persist-
ing MOG-IgG over time, whereas transient low 
titre MOG-IgG were typically associated with a 
monophasic disease course.10,13,15,17,30,37,46,50,78,124 
Two recent studies each including more than 60 
MOG-IgG positive patients with serial testing 

revealed that the median time to become seron-
egative was about 12 months.15,17 Overall, the 
predictive value of persisting MOG-IgG for the 
occurrence of relapses was only moderate (posi-
tive predictive value of approximately 60%); how-
ever, seroreversion to MOG-IgG negativity 
during early disease course reliably predicted 
monophasic disease (negative predictive value of 
approximately 90%). A summary of studies inves-
tigating the predictive value of MOG-IgG persis-
tency is given in Table 3. Even though the 
predictive capability of MOG-IgG seems to be 
clear in general, there are still some limitations 
that do not allow their uncritical use in clinical 
routine and that have to be overcome first; for 
example, the usage of different cut-offs for defin-
ing antibody positivity due to various MOG-IgG 
assays, or the univariate statistical analyses that 
did not correct for the impact of other covariates, 
for example, immune treatment, on relapse risk 

Figure 2. Spectrum of demyelinating diseases of the central nervous system.
ADEM, acute disseminated encephalomyelitis; AQP4, aquaporin-4; BS, brainstem syndrome; CSF, cerebrospinal fluid; IgG, 
immunoglobulin G; MOG, myelin oligodendrocyte glycoprotein; MRI, magnetic resonance imaging; OCB, oligoclonal bands; 
ON, optic neuritis; TM, transverse myelitis.
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and did not show the independent predictive 
value of MOG-IgG persistency. Furthermore, as 
the association of MOG-IgG with disease course 
and the calculation of its predictive value were 
determined by retrospective analyes only, studies 
that a priori apply, for example, a definition for 
MOG-IgG persistency and follow patients for a 
second attack are needed to clearly capture a clin-
ically relevant predictive value of MOG-IgG.

Treatment and outcome
Treatment of acute attacks. A significant propor-
tion of patients with MOG-IgG associated disor-
ders shows permament disability depending on 
the age of manifestation, with higher risk of dis-
ability in adults.10,13,15,78 In up to 60% of those 
patients, disability results from the onset attack, 
while in the remaining patients disability accumu-
lation is due to the occurrence of further 
relapses.9,10,46,78 These findings imply that atten-
tion should be paid to acute management, because 
the time to treatment might be important for the 

prevention of permanent disability, as this is the 
case in NMOSD125 and other types of autoim-
mune encephalitis.126 Currently, there are no  evidence- 
based guidelines for the acute treatment of patients 
with MOG-IgG associated disorders. Mostly, 
intravenous methylprednisolone and plasma 
exchange were used to treat acute attacks (Figure 
3); however, intravenous immunoglobulins were 
also applied by some studies.78 According to a 
seminal multicentre study that systematically 
investigated clinical and paraclinical features of 
patients with MOG-IgG associated disorders, 
intravenous methylprednisolone was applied at 
doses ranging from 1 to 2 g once a day for 3–5 days 
with good or complete recovery in approximately 
50%.9 If steroids did not result in recovery of 
symptoms, plasma exchange (usually with five 
cycles) was used as a second-line treatment, 
which further achieved substantial improvement 
in 40% of this steroid-non-responder.9 Other 
studies reported even higher recovery rates from 
attacks of up to almost 90%; however, acute 
 management was a mix of several consecutive 

Table 3. Association of persistent MOG-IgG with a relapsing disease course.

Reference Assay Cut-offa Follow-up No. of 
patients

Transient/
persistent 
MOG-IgG

NPV, PPV

Juryńczyk et al.10 CBA-IF ⩾1:20 29/28 mob 57 14/43h 14/14 (100%), 24/43 (56%)

Hennes et al.13 CBA-IF ⩾1:1280 22/30 moc 34 27/7 18/27 (67%), 6/7 (85%)

Cobo-Calvo et al.78 CBA-IF ⩾1:160 6 mod 24 2/22 2/2 (100%), 13/22 (59%)

Armangue et al.15 CBA-IF ⩾1:160 At 24 mo 62 32/30 31/32 (97%), 20/30 (67%)

Waters et al.17 CBA-IF ⩾1:20 ~48 moe 67 38/29i 32/38 (84%), 11/29 (38%)

Pröbstel et al.30 CBA-FACS ⩾1:50 Up to 14 mof 16 10/6 10/10 (100%), NAj

López-Chiriboga 
et al.50

CBA-FACS ⩾1:20 16–32/39–75 mog 25 8/17 15/17 (88%), 7/8 (88%)

aDilution defining MOG-IgG positivity.
bMedian FU time is shown for patients with persistent and transient MOG-IgG.
cMedian FU time is shown for patients with monophasic and recurrent disease course.
dMedian FU time for the whole cohort.
eMedian FU time was 4.29 years for patients with persistent MOG-IgG, 4.04 years for patients with transient MOG-IgG and 5.20 years for patients with 
fluctuating MOG-IgG serostatus.
fTen of these 16 patients converted to MOG negativity within 14 months.
gIn the persistent MOG-IgG group, median FU time ranged from 39 months (adults) to 75 months (children); in the transient MOG-IgG group, FU time 
ranged from 16 months (adults) to 32 months (children).
hTwo patients turned negative and then positive again; none of them relapsed.
iFive patients fluctuated between positive and negative MOG-IgG status.
jNone of these six patients had relapsing disease course.
CBA, cell based assay; FACS, fluorescence-activated cell sorting; FU, follow-up; IF, immunofluorescence; mo, months; IgG, immunoglobulin G; 
MOG, myelin oligodendrocyte glycoprotein; NA, not available; No., number; NPV, negative predictive value; PPV, positive predictive value.
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treatments in a certain proportion of patients, 
that is, the effect with a single treatment was not 
assessed.15

Disease-modifying treatment. Following treat-
ment of the acute attack, a decision regarding the 
need for further disease-modifying treatment has 
to be made. Currently, there are no established 

parameters that allow a reliable risk evaluation for 
the occurrence of further relapses or disability. 
On these grounds, decision to start a preventive 
longer-lasting immune treatment remains to be 
made by an individual benefit–risk evaluation 
typically influenced, for example, by the severity 
of and the recovery from the acute attack, if more 
than one attack has occurred from the time to 

Figure 3. Therapeutic management of MOG-IgG associated disorders.
*Benefit–risk evaluation based on prognostic factors for relapse and/or disability, for example, patient’s age, previous 
disease course, present clinical syndrome or MOG-IgG persistency.
AZA, azathioprine; CNS, central nervous system; eval., evaluation; IgG, immunoglobulin G; IV, intravenous; MMF, 
mycophenolate mofetil; MOG, myelin oligodendrocyte glycoprotein; MOGAD, MOG-IgG associated disorder; MTX, 
methotrexate.
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relapse and, if appropriate, from other factors that 
might be associated with the likelihood of relapse, 
for example, MOG-IgG persistency.127 A treat-
ment concept for patients with MOG-associated 
disorders is given in Figure 3.

Most immune treatments that are used in MOG-IgG 
associated disorders – which include corticosteroids, 
intravenous immunoglobulin, immunosuppressive 
drugs (such as mycophenolate mofetil, azathioprine 
and methotrexate) and rituximab – are associated 
with a reduction in time to relapse and annual relapse 
rate, respectively.9,10,78,84,85,128 Of note, immunomod-
ulatory treatments for MS, such as interferon-β and 
glatiramer acetate, are ineffective.9,84 Most of the 
studies were retrospective, including various treat-
ments, each with a small number of patients and, 
therefore, addressed only whether any treatment was 
superior to no treatment.

The main concrete conclusions drawn from these 
studies are described in the following. Relapses fre-
quently occurred either during steroid weaning or 
shortly after its cessation.9,10,78,84,85 A recent study 
reported that relapses were mostly observed at 
doses <20 mg prednisone per day in adults or at 
doses <0.5 mg/kg per day in children.85 The dura-
tion of treatment seems to impact relapse risk as 
well. The risk of relapse was higher in patients with 
only short-term immunosuppressive therapy (less 
than 3 months) as compared with those treated for 
a longer time.10 Also of interest, one study showed 
that MOG-IgG positive patients treated with 
rituximab had some reduction of relapses, but 
relapse prevention was not associated with an 
effective depletion of memory B cells – in contrast 
to AQP4-positive NMOSD patients, in whom 
most relapses occurred after reemergence of mem-
ory B cells129 and in whom B cell depleting thera-
pies perform exceptionally well.130–132

However, a serious comparison of different thera-
pies in terms of efficacy or even the estimation of 
the size of teatment effects is not feasible yet due to 
insufficient evidence (Class IV) and largely missing 
head to head analyses. Randomized controlled tri-
als – as recently published for AQP4-positive 
NMOSD130–132 – are urgently needed also for 
MOG-IgG associated disorders. As such trials are 
difficult to perform due to the rarity of the disorder, 
profund statistical analyses adjusting for known 
covariates of real-world-data, for example, from 
national registries, are definitely an alternative. A 
recent prospective observational study showed an 

impressive risk reduction of relapse due to treat-
ment with mycophenolate mofetil (MMF).133 This 
study included 79 MOG-IgG positive patients pre-
senting with ADEM, optic neuritis, transverse 
myelitis and/or brainstem syndrome compatible 
with deymelination who received either MMF or 
no immune treatment based on consensual deci-
sion with the treating physician and were followed 
for a median of 400 days; additional treatment for 
the acute phase with steroid tappering was allowed. 
Multivariate analyses adjusting for potential con-
founders such as age, sex, previous disease course 
and initial level of MOG-IgG titre revealed that 
MMF treatment resulted in a reduced risk of 
relapse by 86%.133

Laboratory aspects

Validation of MOG-IgG assays
Only when measured using CBAs has an associa-
tion between MOG-IgG and a non-MS demyeli-
nating phenotype been established (reviewed by 
Reindl and Waters 2019134). Recently, first 
blinded multicentre validation studies have 
addressed assay reproducibility between centres. 
The first study compared 394 samples using three 
different MOG-IgG CBAs from three interna-
tional centres in a blinded validation experi-
ment.135 Overall, the concordance for all three 
CBAs was 98%, for the two live CBAs 99%. 
Clinical specificity ranged from 98.1% to 100%. 
Positive predictive values were higher for live 
CBAs (95.5% and 100%) than for fixed CBA 
(82.1%), whereas negative predictive values were 
comparable (78.8–79.8%). The second study 
compared three blinded samples in 13 centres 
using 13 different MOG-IgG CBAs.136 Overall, 
the agreement of assays was 85%. Finally, the 
third study compared the reproducibility of 11 
antibody assays for MOG-IgG [four live CBA-IF, 
three live CBA-FACS, one fixed CBA-IF and two 
enzyme-linked immunosorbent assay (ELISA)] 
and MOG-IgM (one live CBA-IF) from five inter-
national centres on 189 blinded samples.137 Live 
MOG-IgG CBAs for samples previously identi-
fied as clearly positive or negative from four differ-
ent national testing centres showed excellent 
agreement (96%) between the seven live CBAs for 
MOG-IgG. Agreement was lower with fixed 
CBA-IF (90%) and the ELISA showed no con-
cordance with CBAs for detection of human 
MOG-IgG. All CBAs showed excellent inter-
assay reproducibility. However, the agreement of 

https://journals.sagepub.com/home/tan


H Hegen and M Reindl

journals.sagepub.com/home/tan 13

MOG-IgG CBAs for borderline negative (77%) 
and particularly low positive (33%) samples was 
less good. Finally, most samples from healthy 
blood donors (97%) were negative for MOG-IgG 
in all CBAs.

In conclusion these three studies indicate that 
there is a good agreement of currently used live 
CBAs for high-titre, but not for low-titre, positive 
samples. We therefore recommend that results on 
the MOG-IgG status should include not only the 
qualitative results (i.e. positive or negative), but 
also a quantitative estimate (e.g. titre or FACS 
binding ratio with reference range) and the type of 
assay used. This would also help to clarify the pres-
ence of MOG-IgG in MS, which was re-assessed 
by two large studies. The first study analysed 
serum samples of 200 patients with chronic pro-
gressive MS and found that none of the patients 
was positive for MOG-IgG.138 The second study 
analysed serum samples from 685 consecutive 
patients with MS, and found only two of them 
(0.3%) were MOG-IgG positive.139 Both studies 
clearly indicate that MOG-IgG is rare in MS and if 
present indicate either insufficient assay specificity 
or an inappropriate clinical diagnosis.

The clinical relevance of CSF MOG-IgG
The clinical relevance of CSF MOG-IgG was 
recently re-analysed in 80 seronegative patients 
with demyelinating diseases (NMOSD and related 
diseases, MS).140 Three seronegative cases (two 
NMOSD and one ADEM) had CSF MOG-IgG 
(4% of the whole cohort or 7% of cases excluding 
patients with MS). MOG-IgG were also detecta-
ble in the CSF of eight of 13 MOG-IgG seroposi-
tive cases, but in none of 36 patients with 
neurodegenerative disorders. This study and other 
previously published case reports reviewed by the 
authors indicate that analyzing CSF could improve 
diagnostic sensitivity in seronegative patients.

Pathology and pathophysiology of MOG-IgG 
associated diseases
The pathophysiology and neuropathology of 
autoimmune responses to MOG has been well 
established in animal models and has been 
reviewed in detail elsewhere.6

So far, only case reports were available on the neu-
ropathology associated with MOG-IgG in patients 
with inflammatory demyelinating diseases (reviewed 

by Reindl and Waters134). The pathological features 
of MOG-IgG associated disorders were recently 
analysed in a larger series of two autopsies and 22 
brain biopsies from patients with CNS inflamma-
tory demyelinating diseases.141 Both autopsies and 
the 22 brain biopsies had similar clinical, radiologic, 
laboratory and histopathological features. Pathology 
was dominated by the coexistence of both perive-
nous and confluent white matter demyelination, 
with an over-representation of intracortical demyeli-
nated lesions compared with typical MS. Inflam-
matory cellular infiltrates were dominated by 
CD4+ T-cells and granulocytes. Complement dep-
osition was present in all active white matter lesions, 
but a preferential loss of MOG was not observed. In 
contrast to the AQP4-IgG associated NMOSD 
pathology, AQP4 and astrocytes were preserved, 
whereas variable oligodendrocyte and axonal 
destruction was present. These results have most 
recently been confirmed by a second large case 
series from Japan.142 Parallels with MOG-induced 
experimental autoimmune encephalomyelitis (EAE) 
suggest that MOG-IgG may be an amplification 
factor that augments CNS demyelination. Studies 
using the transfer of human MOG-IgG to experi-
mental animal models indicated that human MOG-
IgG can be pathogenic in rodents if they cross-react 
with rodent MOG and the titres and affinities of 
these antibodies are sufficiently high (reviewed by 
Reindl and Waters134). Tissue injury is triggered by 
antibody-mediated injury or augmentation of 
inflammation caused by MOG-reactive T cells. 
When compared with AQP4-IgG the pathogenic 
role of human MOG-IgG is less evident. However, 
since the vast majority of MOG-IgG in patients are 
reactive only to human epitopes an appropriate test 
system available to determine their in vivo patho-
genicity is still missing.

The importance of T-cell mediated inflammation 
was recently confirmed in two studies analysing 
serum and CSF cytokine and chemokine profiles 
in MOG-IgG positive patients.143,144 Both studies 
demonstrated that the CSF cytokine and 
chemokine profile associated with MOG-IgG is 
similar to AQP4-IgG positive NMOSD and dis-
tinct from MS. The inflammatory profile is charac-
terized by coordinated upregulation of T helper 17 
and other cytokines, particularly of interleukin-6.

Conclusion
In the last years, a multitude of studies using 
highly specific CBA have consolidated 
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the clinical spectrum of ADS associated with 
MOG-IgG. Young children most often manifest 
with ADEM, whereas the typical clinical presen-
tation of adults includes optic neuritis or myelitis 
[Figure 1(B)] with certain paraclinical features 
distinct from those observed in MS or AQP4-
positive NMOSD (Table 2). Additional clinical 
phenotypes have also been described in MOG-
IgG positive patients, for example, encephalitis 
other than ADEM15 – frequently showing seizures 
and demyelinating events within intervals of 
months or years – as well as overlap syndromes 
with NMDAR encephalitis.

Apart from the important diagnostic value (Figure 2), 
MOG-IgG also imply some predictive capability. 
Early reversion of MOG-IgG to seronegativity 
shows a fair predictive value for a monophasic dis-
ease (Table 3), even though the predictive value of 
persisting MOG-IgG for a relapsing course is of 
minor importance. In clinical practice, one might 
conclude that MOG-IgG seroreversion encour-
ages a ‘wait and see’ strategy, whereas the sole 
persistence of MOG-IgG does not justify uncriti-
cal initiation of long-term immune therapy.

Treatment of patients with MOG-IgG associated 
neurological disorders is still based on Class IV evi-
dence (Figure 3); however, studies are now com-
ing up that show at least controlled designs (with 
treatment and control arms) and, thus, will pro-
vide the urgently needed evidence of treatment 
efficacy. In the light of all this amazing clinical pro-
gress, high-quality and specific MOG-IgG assays 
are – more than ever – of utmost importance.
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