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Abstract: The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children
will threaten the health system in the upcoming years. The “multiple hit” hypothesis is the currently
accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical
pathological events associated with the development of NAFLD are insulin resistance, steatosis,
oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or
delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved
in NAFLD, no approved standard pharmacological treatment is available. The only currently recom-
mended alternative relies on lifestyle modifications, including diet and physical activity. However,
the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize
new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach
to overcome the reticence toward lifestyle changes. The present study aimed to review some of the
reported compounds with beneficial properties in NAFLD; namely, coffee (and its components),
tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their
mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their
clinical applications.

Keywords: coffee; caffeine; caffeic acid; chicoric acid; tormentic acid; verbascoside; silymarin;
NASH; NAFLD

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is strongly associated with clinical con-
ditions such as overweight or obesity, type 2 diabetes mellitus (T2DM), hypertension,
hypertriglyceridemia, and low (high-density lipoprotein) HDL cholesterol, all of which
constitute the essential elements in the spectrum of the metabolic syndrome (MS). For these
reasons, NAFLD is now considered as the hepatic manifestation of MS [1]. The booming
rates of obesity and other MS elements contribute to the increasing worldwide prevalence
of NAFLD in adults and children. Therefore, NAFLD incidence in children and adolescents
represents a major public health threat in the upcoming years [2,3].

NAFLD is an umbrella term that comprises a wide spectrum of disease and commonly
represented by two phenotypes, namely nonalcoholic fatty liver (NAFL) and non-alcoholic
steatohepatitis (NASH). While NAFL is considered a relatively benign and reversible
accumulation of lipids within the hepatocytes (simple steatosis), NASH is considered a
more severe and often progressive form of the disease [4,5]. NASH tends to progress to
fibrosis and cirrhosis, and eventually to hepatocellular carcinoma (HCC) [6].

The “multiple hit” hypothesis, a more complex and global theory to explain NAFLD
pathogenesis, is widely accepted [7]. This hypothesis takes a wider look of the multitude of
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factors that affect NAFLD development, from the intrahepatic lipid accumulation to the
involvement of “nonhepatic players” such as adipose tissue and gut-related mechanisms.
Moreover, genetic and epigenetic factors also play a role in the disease manifestation [7–9].
Nevertheless, the onset of the disease is still represented by the accumulation of fat in
the liver [9]. Intrahepatic lipid accumulation leads to some critical pathological events
associated with NAFLD development, such as insulin resistance, oxidative stress, inflam-
mation, and fibrosis [5]. These events have been investigated as potential therapeutic
targets of NAFLD.

There is no consensus concerning an effective pharmacological treatment for NAFLD,
and the only currently recommended alternative relies on lifestyle modifications [9]
(diet [10,11] and physical activity [12–14]). However, the lack of compliance is still hamper-
ing this easy and cheap approach. The available drug interventions are mainly based on the
association of several compounds as an attempt to reverse the comorbidities of the metabolic
syndrome. Unfortunately, to date, any proposed drugs have not provided solid results [15].
Thus, there is an evident need for the characterization of new therapeutic alternatives.

Studies of food bioactive compounds became an attractive approach to overcome the
reticence toward lifestyle changes. Several natural compounds have been shown to exert
beneficial effect(s) in the cellular mechanisms involved in the onset and progression of dif-
ferent diseases. These pieces of evidence represent a promising strategy for NALFD, whose
pathogenesis is multifactorial and complex. Despite the reported results on experimental
models, the translation to the clinical setting has been disappointing due to the variations
in the effective dosage, bioavailability, duration of the treatment, differences in the purity
of the compound, and lack of standardization [16–18].

The present study aimed to review some of the reported compounds with beneficial
properties in NAFLD; namely, coffee (and its components), tormentic acid, verbasco-
side, and silymarin. We provide details about their protective effects, their mechanism
of action in ameliorating the critical pathological events involved in NAFLD, and their
clinical applications.

2. Coffee

Coffee prepared from the seeds of the coffee plant (genus Coffea) is one of the most
consumed beverages in the world. Almost 30 years ago, an association between coffee
caffeine consumption and a decreased risk of liver disease was established [19]. Over
100 compounds have been identified in coffee extracts, and the synergistic effects of several
compounds could contribute to the hepatoprotective health benefits reported worldwide
by the scientific community [20,21]. In this section, we review the most recent literature,
summarizing the effects observed on NAFLD of caffeine and two phenolic compounds:
caffeic acid (CA), widely consumed in the human diet and present in most plants (including
coffee); and chicoric acid (ChiA), a derivative of caffeic and tartaric acids, isolated for the
first time from Cichorium intybus, but occurring in several plants.

2.1. Caffeine

The scientific evidence on coffee consumption and its effects on NAFLD reported in the
last 10 years are summarized in Table 1. Here, we will review the main findings described
in those systematic reviews. Saab S. et al. [21] reviewed all the studies published from
1986 to 2012, covering both observational and case-controlled studies. They explored the
interaction between coffee consumption in liver-associated tests, viral hepatitis, NAFLD,
cirrhosis, and hepatocellular carcinoma. As regards NAFLD, extensive evidence has
highlighted the beneficial effect of coffee consumption and caffeine (IUPAC name: 1,3,7-
trimethylpurine-2,6-dione)—the most abundant component in coffee beans—as the main
compound responsible for the decreased risk of disease development [21–23].

Moreover, two of the five studies analyzed by Saab also argued that coffee decreased
the risk for the worst stages of NAFLD, meaning fibrosis alone or fibrosis and NASH [20].
However, controversies remain regarding whether espresso or filtered coffee has the same
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beneficial effects on NAFLD [24]. Chen S. and colleagues [25] were the first authors who
published a systematic review focusing on the relationship between coffee consumption
and NAFLD. They enumerated and discussed the primary mechanisms for which coffee
has been implicated in NAFLD severity reduction, highlighting that the hepatoprotective
effects of coffee can be related more to polyphenols than caffeine. In short, evidence on
polyphenols and their protective properties may be manifested through several mecha-
nisms, including antioxidant, anti-inflammatory, and antifibrotic pathways; modulation
of energy metabolism; reduced insulin resistance; and reduced severity of diabetes [25].
Among the most recent meta-analyses, the study of Hayat M. et al. [26]. summarized in a
first analysis the evidence of the effects of coffee intake on NAFLD between drinkers versus
nondrinkers. In a second analysis, they compared the risk of liver fibrosis development
in the same drinking setup of NAFLD patients. The results of the meta-analysis, which
included 11 studies, revealed a 23% decreased risk of development of NAFLD in subjects
that drank coffee regularly. Moreover, it showed that those subjects with diagnosed NAFLD
that consumed coffee regularly had a 32% reduced risk of developing fibrosis.

The main limitations of these meta-analysis studies were: (a) an unstandardized
definition of coffee consumption among the included articles; (b) incomplete relevant infor-
mation on coffee intake (such as type of coffee used, brewing method, coffee components,
caffeinated or decaffeinated, consumption of other caffeinated beverages, etc.); (c) generally,
meta-analyses included only observational studies showing associations, and not a causal
relationship of coffee as a hepatoprotective agent; and (d) studies were biased (mainly by
gender imbalance, cofounders, etc.).

Considering the limitations mentioned before, further studies using a broad range of
experimental systems with a well-defined dosage of coffee components will be necessary to
establish the causal factors underlying coffee hepatoprotection. From the literature retrieved
on this review, only two studies combined in vivo and in vitro models to explain the
molecular mechanisms and pathways involved in the protective observations by caffeine at
the hepatic level. Zhang S-J. et al. [27] investigated the effects and molecular mechanisms in
which caffeine acts against hepatic steatosis in a high-energy diet model (HED mice). In this
mice model, liver steatosis induced by the diet was diagnosed histologically, and several
biochemical parameters were analyzed after the gavage administration of caffeine (10 or
20 mg/kg). Under this experimental setup, researchers found that caffeine significantly
decreased the mass of fat tissues, lipidemia, and transaminases blood levels.

The study by Fang C. et al. [28] used a high-fat-diet (HFD) mouse model to evidence
that caffeine (20–40 mg/kg) could normalize hepatic lipid content and blood transam-
inases. Moreover, caffeine was able to reduce the hepatic ATP/ADP ratio in a dose-
dependent manner, indicating a decrease in energy metabolism, and activation of the
cAMP/CREB/SIRT3/AMPK/ACC pathway. Subsequently, the authors demonstrated that
suppression of some components of the pathway in oleate-treated HepG2 cells counteracted
the caffeine effects. In summary, the study indicated that caffeine could ameliorate liver
steatosis suppressing fatty acid synthesis and promoting β-oxidation. The observations
also revealed that sirtuin-3 (SIRT3) was a key player in orchestrating caffeine effects. The
observed protection involved the interleukin-6/signal transducer and activator of tran-
scription 3 (IL6/STAT3) pathway and liver–muscle interorgan crosstalk. The experimental
findings were also verified using in vitro cultures of myotubes and hepatocytes; and in
a hepatocyte-specific STAT3 knockout mouse model, demonstrating that the IL6/STAT3
pathway was vital to the hepatoprotective effects of caffeine in NAFLD [28,29].

Aside from caffeine itself, the development of synthetic derivatives paved the way to
future drug development. A new series of caffeine-8-(2-thio)-propanoic hydrazide–hydrazone
derivatives was recently shown to exhibit pro-oxidant effects, and may be considered as
promising structures for the design of future molecules with low hepatotoxicity [30].
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2.2. Caffeic and Chicoric Acid

Caffeic acid (IUPAC name: (E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid) is a phenolic
acid (3,4-dihydroxycinnamic acid) present in several herbs and plants, including grapes,
olives, spinach, asparagus, coffee, Salvia miltiorrhiza, and traditional Chinese herbs [31–34].
Among the properties at the biological level, it exhibits antioxidant potential, prevents DNA
damage, has anticancer activity, inhibits low-density lipoprotein (LDL) lipid peroxidation,
and is also able to reduce blood glucose levels. Using an in vivo mice model, Kim H.M.
et al. [35] evidenced that CA prevented the hepatic steatosis induced by HFD and thus
occurs through endoplasmic reticulum (ER) stress and autophagy regulation. In this model,
CA reduced liver weight and hepatic triacylglycerol content by decreasing the expression of
genes involved in fatty acid synthesis (such as sterol regulatory element-binding protein 1c
or SREBP-1c and fatty acid synthase gene or FAsN), those engaged in β-oxidation, and ER
stress markers (eukaryotic translation initiation factor 2a or eIF2a, activating transcription
factor 4 or ATF4, and CCAAT-enhancer-binding protein homologous protein or CHOP).
On the contrary, protein levels of autophagy markers (light chain 3 or LC3, autophagy
related 7 or ATG7, and autophagy related 5 or ATG5) were significantly elevated in CA-fed
obese mice. These results were also confirmed in vitro, using a palmitate-treated AML12
hepatocyte cell line exposed to CA [35].

Interestingly, Mu H-N. et al. [36] demonstrated in a similar mouse model that CA was
able to revert the imbalance in the gut microbiota generated by the HFD. In addition, in
this case, dietary supplementation with CA mitigated the body weight gain induced by
HFD, with a reduction in liver weight and fat droplets. Moreover, they also observed the
attenuation of hyperlipidemia and glycemia, as well as restored levels of ALT, in serum. At
the biomolecular level, CA attenuated SREBP1, FAS, acetyl-CoA carboxylase (ACC), and
stearoyl-CoA desaturase-1 (SCD1) expression, which are proteins involved in the de novo
lipogenesis and generally upregulated in NAFLD.

Recent experimental studies in animals have drawn attention to the role of LPS from
the gut microbiota in favoring NAFLD occurrence. In agreement with the previous findings,
the authors demonstrated that CA attenuated the increase in serum levels of lipopolysaccha-
ride (LPS), tumor necrosis alpha (TNF-α), and interleukin 6 (IL-6), and several markers of
hepatic inflammation (toll-like receptor 4 or TLR4 expression, activation of phosphorylated
NF-κB p65, and MPO-positive cell infiltration). Moreover, CA supplementation reduced
the relative abundance of several bacteria that were proliferating under the HFD. In this
context, the authors evidenced that CA was beneficial to balance gut LPS-related microbiota
dysbiosis, preventing low-grade chronic inflammation in NAFLD [36].

Complementary information from in vitro studies using oleic-treated HepG2 cells
indicated that CA’s beneficial effects on fatty acid accumulation depended on the up-
regulation of the AMP-activated protein kinase (AMPK) pathway [33]. A reduction in
the expression of downstream target genes involved in lipogenesis (ACC, SREBP-1, FAS,
glycerol-3-phosphate acyltransferase or GPAT, and 3-hydroxy-3-methylglutaryl-CoA re-
ductase or HMGCR) and lipolysis (carnitine palmitoyltransferase 1 or CPT-1, peroxisome
proliferator-activated receptor alpha or PPAR-a, and fatty acid binding protein 1 or FABP-1)
was observed after CA exposure. Moreover, in HepG2 cells, Rafie H. et al. [37] demon-
strated that CA and other polyphenols protected by more than 50% against ROS generation
from oleic acid treatment by suppressing TNF-α expression and the induction of mito-
chondrial biogenesis. Additionally, Vergani L. et al. [38] demonstrated that CA and other
polyphenolic compounds ameliorated lipid accumulation and lipid-dependent oxidative
imbalance in both hepatic and endothelial cells, showing the potential of these compounds
in nutraceutical formulations for tuning down NAFLD and atherosclerosis.

Chicoric acid (IUPAC name: (2R,3R)-2,3-bis[[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]
oxy]butanedioic acid), a natural phenolic compound isolated from chicory (Cichorium in-
tybus), is also present in other plants such as Crepidistrum denticulatum and Echinacea pur-
purea [39]. It exhibited many pharmacological properties, including anti-inflammatory [40],
antioxidant [41], and antiviral [42] activities. Moreover, several reports indicated that
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ChiA may have beneficial effects in type 2 diabetes, hyperglycemia, obesity, and liver
injury [43–45]. In this context, Kim M. et al. [45] investigated the capacity of C. denticulatum
extract and ChiA to mitigate NASH in an methionine-choline-deficient (MCD) mouse
model. Their observations demonstrated that the administration of ChiA or C. denticula-
tum extracts to MCD mice improved liver histology, reducing hepatic lipid contents and
transaminases serum levels. Moreover, at the molecular level, a downregulation of crucial
players in lipogenesis (SREBP-1c, DGAT1, FAS, and SCD-1), oxidative stress (Nrf2, SOD1,
and catalase), inflammation (NF-κB, TNF-α, IL-1b, IL-6, and monocyte chemoattractant
protein-1 or MCP-1), and fibrosis (alpha-smooth muscle actin or α-SMA, collagen type
1 A1 or COL1A1, collagen type 3 A1 or COL3A1, TIMP metallopeptidase inhibitor 1 or
TIMP-1, and transforming growth factor beta or TGFβ) were found. These observations
were replicated in vitro using two different cell models (HepG2 and AML-12). Cells were
exposed to MCD medium and incubated with ChiA for 24 h, obtaining a downregulation of
steatotic, proinflammatory, and profibrotic markers through the modulation of the AMPK
pathway. Similar evidence was obtained by Ding X. et al. [46] both in vivo (HFD-fed
mice) and in vitro (palmitic-acid-treated HepG2 cell model). ChiA treatment reversed
HFD-induced oxidative stress and inflammation both systematically and locally in the liver,
determined by quantifying MDA and SOD in serum and ROS in situ. In the amelioration
of NAFLD, the activation of the AMPK/Nrf2/NF-κB signaling pathway and, interestingly,
a modulation of the microbiota toward a healthier microbial profile (an increase in the
Firmicutes-to-Bacteroidetes ratio) was also evidenced. Additional studies using in vitro
models evidenced the synergistic benefits against NAFLD by combining ChiA with omega-
3 fatty acids, achieving a tune regulation of AMPK-mediated PPARα/UCP-2 SREBP-1/FAS
pathways [47]. It is also worth mentioning that Guo et al. [48] explored, in FFA-treated
HepG2 cells, the role of circadian rhythm signaling during ChiA protection against fatty
acid accumulation. The authors revealed that ChiA was a natural circadian clock modulator,
regulating fatty acid anabolic and catabolic pathways in a BMAL1-dependent manner.
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Table 1. Effects of coffee and its components on NAFLD.

Parameter Compound
Model

Results Ref.
In Vitro In Vivo

Steatosis

Caffeine, green coffee
extracts (GCE)

Female Sprague Dawley rats (HFD)
4.2–5.8 mg/kg/day

Neither caffeine nor GCE alleviated hepatic steatosis, but
GCE-treated rats showed lower hepatic triglyceride levels [49]

Caffeine, chlorogenic acid
100 subjects with T2DM and NAFLD

200 mg caffeine with/without chlorogenic
acid/day

Liver steatosis was not attenuated by caffeine or
chlorogenic acid [50]

Coffee
2819 subjects with NAFLD or ALFD
categorized consumption 0, 1, 2, and

≥3 cup/day

Coffee intake was not associated with any lower odds of
hepatic steatosis [51]

Caffeine Zebrafish in HFD
1–8% caffeine

Caffeine suppressed diet-induced hepatic steatosis by
downregulation of genes associated with lipogenesis, ER

stress, and inflammatory response
[52]

Caffeine HepG2 cells
2 mM

Male C57Bl/6 mice with HFD
10 and 20 mg/kg

Caffeine ameliorated hepatic steatosis by suppressing
fatty acid synthesis and promoting β-oxidation [52]

Colombian coffee extracts 40 male Wistar rats (8–9 weeks old
30–70 mg/kg caffeine/day

Coffee extract attenuated diet-induced changes in
structure and function of the liver and heart without

changing the abdominal fat deposition
[53]

Coffee 1452 subjects
Caffeinated beverage consumption

No association between caffeine consumption and either
the prevalence of fatty liver or serum ALT concentrations [54]

Caffeic acid HepG2 cells
0–200 µM

Caffeic acid reduced lipid accumulation and increased
AMPK phosphorylation, which reduced the expression of
the genes involved in hepatic lipogenesis and increased

those related to hepatic lipolysis

[33]

Caffeic acid AML12 cells
0–200 µM

Mice with HFD
50 mg/kg/day

Caffeic acid ameliorated hepatic steatosis, increasing
autophagy and reducing ER stress [45]
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Table 1. Cont.

Parameter Compound
Model

Results Ref.
In Vitro In Vivo

Oxidative stress

Caffeine Male Wistar rats
20–30 mg/kg/day

Caffeine improved HFD-induced hepatic injury,
suppressing inflammatory response, oxidative stress, and

regulating lipogenesis and β-oxidation
[55]

Caffeic acid HepG2 cells
1, 5, and 10 µM

Polyphenols decreased ROS generation by oleic acid
treatment, increasing the expression of markers of
mitochondrial respiratory complex subunits and

mitochondrial biogenesis

[37]

Caffeic acid, other
phenolic compounds

FaO cells
25 µM/24 h

Polyphenols ameliorated fatty acid accumulation and
endothelial and hepatic lipid-dependent

oxidative imbalance
[38]

Chicoric acid HepG2 cells
50–200 µM/24 h

Chicoric acid enhanced Akt/GSK3b signaling pathways
and modulated the expression of downstream genes

related to lipid metabolism in a
BMAL1-dependent manner

[48]

Inflammation

Caffeine
Hepa 1-6, C2C12,
and 3T3L1 cells

0.5 mg/mL
Male C57Bl/6 HFD Caffeine ameliorated NAFLD via crosstalk between IL-6

production in muscle and liver STAT3 activation [28]

Caffeic acid Male C57Bl/6 HFD
0.08–0.16% caffeic acid supplementation HFD

Caffeic acid reverted the imbalance in the gut microbiota
and related LPS-mediated inflammation, contributing to

normalizing the dysregulation expression of
lipid-metabolism-related genes

[36]

Chicoric acid HepG2 cells
10–20 µM/24 h

Male C57Bl/6 HFD
15–30 mg/kg/day

Chicoric acid modified gut microbiota toward a healthier
microbial profile, ameliorating oxidative stress and

inflammation via the AMPK/Nrf2/NF-κB
signaling pathway

[46]
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Table 1. Cont.

Parameter Compound
Model

Results Ref.
In Vitro In Vivo

Fibrosis

Caffeine 195 severely obese subjects
0–5 g/wk total caffeine intake

Regular coffee consumption was an independent
protective factor for liver fibrosis [20]

Caffeine
306 NAFLD subjects

0–822 (averaged 288 mg/day) mg/day
total caffeine

Coffee consumption was associated with a significant
reduction in the risk of fibrosis among NASH patients [56]

Caffeine, chlorogenic acid

Male TSOD mice spontaneous development of
metabolic syndrome and NASH with

liver tumors.
0.25 mg/caffeine day orally, 1.5 mg

chlorogenic acid

Coffee consumption was associated with the prevention
of metabolic syndrome; antifibrotic effects appeared to be

due to the polyphenols rather than the caffeine
[57]

Chicoric acid
HepG2 and
AML12 cells

20 or 40 µM/24 h

Male C57BL/6 MCD diet
10–30 mg/kg/day

Chicoric acid reduced apoptosis, expression of
lipogenesis-related genes, and fibrosis both in vivo and

in vitro.
[45]



Int. J. Mol. Sci. 2022, 23, 2764 9 of 23

3. Tormentic Acid

Tormentic acid (TA) is a compound classified as a pentacyclic triterpene that is widely
distributed in various plants and exhibits many pharmacological activities. It is also known
as 2α,3β,19α-trihydroxyurs-2-en-28-oic acid (IUPAC name: (1R,2R,4aS,6aR,6aS,6bR,8aR,
10R,11R,12aR,14bS)-1,10,11-trihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,
11,12,13,14b-tetradecahydropicene-4a-carboxylic acid), and the TA skeleton is composed
of six isoprene units (C5) [58,59]. TA has been isolated in various plant foods such as
strawberry fruit, olive, and the leaves of Perilla frutescens, Eriobotrya japonica Lindl, and
Potentilla tormentilla, Potentilla chinensis, and Sarcopoterium spinosum. The majority of the
species containing an abundant TA source belong to the Rosaceae family, mostly in the leaves
and whole herbs [58,60]. This compound was found to possess various pharmacological
properties, including hepatoprotective effects.

TA was investigated in both in vitro and in vivo assays. Although relatively few
studies have examined the effect of TA in NAFLD directly, substantial evidence was still
found in the literature regarding its effects in NAFLD-related pathologies such as steatosis,
oxidative stress, inflammation, and fibrosis. Table 2 summarizes the available data on TA
activities and the mechanisms of its action.

Rosa rugosa roots containing TA were found to improve HFD-induced hyperlipidemia
in rats via the activation of antioxidative mechanisms. HFD rats fed with TA lowered
the HDL-, LDL-, and total cholesterol (TC) levels toward the values of the control group.
Moreover, treatment of rats with TA increased antioxidative enzyme (SOD, glutathione per-
oxidase, and catalase) activities in hepatic tissues, suggesting that the compound prevented
the loss of hepatic antioxidative activity produced by a high-fat diet [61].

Another study investigated the antihyperlipidemic and antihyperglycemic effects of
TA derived from Eriobotrya japonica on HFD-fed mice. Treatment with TA significantly
reduced the body weight gain, weights of white adipose tissue (WAT) (epididymal, perire-
nal, mesenteric WAT, visceral fat), and hepatic triacylglycerol content as compared to
controls. Moreover, TA exhibited a hypolipidemic effect in HF-fed mice by decreasing gene
expressions of fatty acid synthesis enzymes, including acyl-coenzyme A: diacylglycerol
acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides
(TGs) [62].

Using the same mouse model, TA reduced visceral fat mass and hepatic triacylglycerol
contents after HF diet. Moreover, TA significantly decreased both the area of adipocytes
and ballooning degeneration of hepatocytes. The antihyperlipidemic effect was attributed
to downregulation of the hepatic SREBP-1c and apolipoprotein C-III (apo C-III), and an
increased PPAR-α expression [63].

In vitro and in vivo investigations have shown that TA has antidiabetic and nor-
moglycemic properties. The methanolic extracts of Potentilla fulgens containing several
triterpenes, including TA, were found to exhibit inhibitory activity against α-glucosidase.
The intestinal α-glucosidase catalyzed the final step to release absorbable carbohydrates
by hydrolyzing complex polysaccharides into oligosaccharides. Studies suggested that
inhibition of this enzyme prevented a meal-induced increase in blood glucose levels [64].
The inhibition of protein tyrosine phosphatase 1B (PTP1B) is another proposed mechanism
of TA’s antidiabetic effect. PTP1B enhances insulin sensitivity of the cells by negatively
regulating tyrosine phosphorylation-dependent signals in various tissues, including insulin
signaling [65]. Tormentic acid isolated from the plant Eriobotrya japonica Lindl effectively
lowered blood glucose levels and triglyceride levels in HF-fed mice. Moreover, it was also
observed that TA lowered visceral fat mass along with a reduction in free fatty acids and
improved insulin resistance. The mechanism of reducing hyperglycemia acts mainly via
increased skeletal muscular GLUT4 proteins that elevate glucose uptake but suppresses
hepatic glucose production (downregulation of PEPCK and G6 Pase). The increased GLUT4
contents were shown to be mediated by enhanced Akt and AMPK phosphorylation both in
skeletal muscle and in the liver, improving insulin sensitivity. TA increased hepatic fatty
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acid oxidation (PPARα) but suppressed lipogenic enzyme expression (including SREBP-1c
and FAS), thus contributing to lowering triglyceride levels [62,63].

Table 2. Available data on tormentic acid activities in NAFLD-related pathologies.

Parameter Model Results Ref.

Steatosis,
Lipidemia

In vivo: HFD-fed rats Inhibition of hyperlipidemia via the activation of the
antioxidative mechanisms [61]

In vivo: HFD-fed mice
Reduction in body and adipose tissue weights

Decreased expression of enzymes involved in fatty
acid synthesis

[62]

In vivo: HFD-fed mice

Reduced visceral fat mass and hepatic
triacylglycerol contents

Downregulation of SREBP-1c and apo C-III, and
upregulation of PPAR-α

[63]

Glucose
Homeostasis

In vitro: enzymatic assay Inhibition of alpha-glucosidase activity [64]

In vitro: enzymatic assay Inhibition of protein tyrosine PTP1B activity [66]

In vivo: HFD-fed mice Decreased levels of blood glucose, insulin, leptin, and
HOMA-IR index, and attenuated insulin resistance [62]

Oxidative Stress In vitro: rat vascular smooth muscle
cells (RVSMCs)

Decreased ROS generation and downregulated the
expression of iNOS and NADPH oxidase

Prevented phosphorylation of NF-κB subunit p65 and
degradation of the NF-κB inhibitor α (IκBα)

[67]

Inflammation

In vitro: rat vascular smooth muscle
cells (RVSMCs)

Decreased levels of TNF-α, IL-6, and IL-1β
Prevented phosphorylation of NF-κB subunit p65 and

degradation of the NF-κB inhibitor α (IκBα)
[67]

In vivo: acetaminophen-induced liver
damage in mice

Inhibition of iNOS and COX-retention of enzymes
(essential for the antioxidative properties of the liver):

SOD, GPx, CAT
Inhibition of NF-κB activation and inhibition of the

activation of MAPKs

[68]

In vitro: LPS-stimulated human
gingival fibroblasts (HGFs)

Decreased expression of IL-6 and IL-8
Inhibited LPS-induced TLR4 expression; NF-κB

activation; IκBα degradation; and phosphorylation of
ERK, JNK, and P38

[69]

In vitro: LPS-induced inflammation in
BV2 microglial cells

Inhibition of TNF-α and IL-1β
Activation of LXRα and inhibition of NF-κB activation [70]

In vivo: acetaminophen-induced liver
damage in mice

Reduction in TNF-α, IL-1β, and IL-6
Inhibition of NF-κB activation and inhibition of the

activation of MAPKs
[68]

Fibrosis In vitro: activated hepatic stellate cells Decreased the expression of collagen type I and III
Prevented excessive deposition of ECM [71]

Aside from HFD-fed mice, TA was also evaluated in streptozoin diabetic rats. TA
isolated from Poterium ancistroides improved the glucose tolerance test by increasing the
insulin secretory response to glucose. However, no change in insulin and glucose levels
was observed. The effect was similar to that of glibenclamide, suggesting that TA may act
by increasing insulin secretion from the islets of Langerhans [72,73].

Regarding the antioxidant properties of TA, a study on hydrogen peroxide (H2O2)-
induced oxidative stress in rat vascular smooth muscle cells (RVMCs) showed that TA
exhibited antioxidant activities. TA was able to reduce reactive oxygen species (ROS)
generation in RVSMCs exposed to H2O2. The study also demonstrated that TA downregu-
lated the expression of inducible nitric oxide synthase (iNOS) and NADPH oxidase (NOX)
through inhibition of the NF-κB signaling pathway [67]. In another study, the antioxidant
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properties of TA on acetaminophen (APAP)-induced liver damage were investigated in
mice. TA was able to attenuate the APAP-induced production of nitric oxide (NO) and
ROS. Furthermore, protein analysis revealed that TA inhibited iNOS, cyclooxygenase-2
(COX-2), and the activation of NF-κB and mitogen-activated protein kinases (MAPKs) [68].

In H2O2-induced inflammation in rat vascular smooth muscle cells (RVSMCs), TA
significantly decreased the production of TNF-α, IL-6, and IL-1β. Furthermore, TA pre-
treatment inhibited H2O2-induced phosphorylation of the NF-κB subunit p65 and degra-
dation of the NF-κB inhibitor (IκBα) in RVSMCs. TA was therefore suggested to inhibit
H2O2-induced inflammation in RVSMCs through suppression of the NF-κB signaling path-
way [67]. Similarly, a study investigated the anti-inflammatory effects of TA on lipopolysac-
charide (LPS)-stimulated human gingival fibroblasts (HGFs). The results showed that
TA significantly inhibited the LPS-induced IL-6 and interleukin 8 (IL-8) production in a
dose-dependent manner. Furthermore, TA inhibited LPS-induced TLR4 expression; NF-κB
activation; NF-κB inhibitor (IκBα) degradation; and phosphorylation of extracellular signal-
regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 [69]. Similar results were
obtained in LPS-induced neuroinflammation in BV2 microglia cells. Treatment of TA down-
regulated the expression of TNF-α and IL-1β by inhibiting NF-κB and activating liver X
receptor alpha (LXRα) receptors [70].

The above results were supported in an in vivo study of acetaminophen (APAP)-
induced liver damage. TA significantly decreased the serum IL-1β, IL-6, and TNF-α levels
in mice. As with the in vitro studies, the anti-inflammatory effect was attributed to the
inhibition of NF-κB and mitogen-activated protein (MAP) kinase activities [68].

4. Verbascoside

Verbascoside, also known as acteoside, is a phenylethanoid glycoside with the IUPAC
name 6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-(3,4,5-trihydroxy-
6-methyloxan-2-yl)oxyoxan-3-yl] 3-(3,4-dihydroxyphenyl)prop-2-enoate [74]. Verbascoside
can be found in more than 200 plant species, including Plantago and Lippia species [61].
Accumulating evidence has shown that verbascoside can exert various pharmacological
activities, such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, anticancer,
and hepatoprotective effects [75]. As with TA, only a few studies examined the effect of
verbascoside in NAFLD directly. However, there is substantial evidence that showed the
effects of verbascoside in NAFLD/NASH-related pathologies such as steatosis, oxidative
stress, inflammation, and fibrosis. Table 3 summarizes the available data on verbascoside
activities and the mechanisms of its action.

In a HFD rat model, a reduction in body weight was observed between weeks 12 and
18 in the group cotreated with verbascoside as compared to the placebo group. Moreover,
verbascoside ameliorated the serum lipid profile by lowering TC, TGs, and LDL. The
data also suggested that the significant reduction in lipid levels by verbascoside might be
attributed to the regulation of the AMPK and mTOR pathways [76].

In a double-blind, placebo-controlled, and randomized trial in 56 obese/overweight
subjects, the effects of a dietary supplement containing 500 mg of a combination of polyphe-
nolic extracts from Lippia citriodora L. and Hibiscus sabdariffa L. (LC-HS) were evaluated.
Among the phenylpropanoids, verbascoside represented the major compound present in
the supplement. After two months of the trial, the consumption of the LC-HS polyphe-
nols showed significant improvements in body weight, the abdominal circumference of
overweight subjects, and body fat % as compared to controls [77].

Substantial epidemiological evidence indicated that a diet rich in polyphenols, par-
ticularly verbascoside, protected against developing type 2 diabetes. In an in vitro study
utilizing mouse and human pancreatic β-cells, verbascoside protected the cells from the
ER stress. Mechanistic studies revealed that verbascoside mitigated the activation of the
protein kinase RNA-like endoplasmic reticulum kinase (PERK) branch of the unfolded
protein response, thereby encouraging mitochondrial dynamics. As a result, pancreatic
β-cells showed improved viability, mitochondrial activity, and insulin content [78].
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The antidiabetic effects of verbascoside were evaluated in streptozotocin–nicotinamide
(STZ–NA)-induced type 2 diabetic rats. Results revealed that verbascoside-treated rats had
lower blood glucose levels, glycosylated hemoglobin, total cholesterol, triglycerides, and
increased serum insulin compared to control diabetic rats. These effects were comparable
to those caused by the standard antidiabetic drug pioglitazone [79].

Verbascoside from Acanthus mollis leaves showed antioxidant properties in both the
HepG2 and SH-SY5Y cell lines. In vitro scavenging activities of verbascoside using 2,2-
diphenyl-β-picrylhydrazyl (DPPH), hydroxyl, and superoxide assays were comparable
to ascorbic acid as the reference substance [80]. The antioxidant effects of verbascoside
were also evaluated in streptozotocin–nicotinamide (STZ–NA)-induced type 2 diabetic
rats. Verbascoside-treated rats, in comparison to the diabetic control, demonstrated sig-
nificantly reduced malondialdehyde, increased reduced glutathione liver contents, and
attenuated pathological alterations in the liver, suggesting antioxidant properties. Fur-
thermore, verbascoside scavenged the stable free radical 1,1-diphenyl-2-picrylhydrazyl
in vitro [79].

Using an atherosclerotic high-fat-diet rat model, verbascoside was able to ameliorate
the serum levels of inflammatory mediators. IL-1b, IL-6, high-sensitivity C-reactive protein
or hs-CRP, and matrix metallopeptidase 9 or MMP 9 were decreased, and IL-10 was in-
creased in the verbascoside and simvastatin-treated groups compared to the atherosclerosis
group, possibly through regulating the expression of the AMPK and mTOR protein [77].

In the human prostate cancer cell lines Du-145 and PC-3, verbascoside was able
to downregulate the expression level of alpha-smooth muscle actin by inhibiting the
transforming growth factor (TGF-β)/Smad signaling pathway [81].

In addition, the effects of verbascoside in rats with renal fibrosis through unilateral
ureteral obstruction were evaluated. Results showed that fibrosis-related proteins, in-
cluding collagen type I (COL-I), α-smooth muscle actin (α-SMA), and tissue inhibitor of
metalloproteinase 2 (TIMP2), were lowered by verbascoside. In addition, verbascoside
was able to ameliorate macrophage infiltration and alleviate the degree of renal fibrosis
histologically [82].

Table 3. Available data of verbascoside activities in NAFLD-related pathologies.

Parameter Model Results Ref.

Steatosis,
Lipidemia

In vivo: HFD-fed rats Reduction in body weight
Ameliorated serum lipid profile [76]

56 obese/overweight (2 months) Improvements in body weight, abdominal circumference,
and % body fat [77]

Glucose
homeostasis

In vitro: mouse and human
pancreatic β-cells

Increased viability, mitochondrial function, and insulin
content of pancreatic β-cells [78]

In vivo: streptozotocin–nicotinamide
(STZ–NA)-induced type 2 diabetic rats

Lower levels of blood glucose, glycosylated hemoglobin,
and increased serum insulin [79]

Oxidative stress

In vitro: HepG2 and SH-SY5Y cell lines Improved DPPH, OH, and O2 scavenging activities [80]

In vivo: streptozotocin–nicotinamide
(STZ–NA)-induced type 2 diabetic rats

Reduction in MDA levels and restored GSH in livers of
diabetic rats [79]

Inflammation In vivo: high-fat-fed rats Reduction in serum inflammatory markers [76]

Fibrosis

In vitro: Du-145 and PC-3 cell lines Reduction in α-SMA expression [81]

In vivo: renal-fibrosis-induced rats Reduction in COL-I, α-SMA, and TIMP2
Decreased macrophage infiltration [82]

5. Silymarin (Silybum marianum)

Silymarin (IUPAC name: 3,5,7-trihydroxy-2-[3-(4-hydroxy-3-methoxyphenyl)-2-
(hydroxymethyl)-2,3-dihydro-1,4-benzodioxin-6-yl]-2,3-dihydrochromen-4-one), extracted
from the plant seeds and fruits of Silybum marianum (commonly known as milk thistle), has
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been used as a medicinal herb since as early as the 4th century B.C. [83–85]. It has been
widely employed in the treatment of various liver disorders due to its hepatoprotective
properties such as anti-inflammatory [86–89], antiproliferative [90–92], immunomodula-
tory [93], and anticholesterolemic [94,95]. The free radical scavenging property is the most
interesting aspect of silymarin as a therapeutic compound [83,84]. Free radical scavenging
enzymes such as SOD, catalase, and glutathione peroxidase protect cells from oxidative
stress. Both silymarin [96,97] and silibinin can increase the expression of SOD in lympho-
cytes of patients with chronic alcoholic liver disease. In line with these findings, studies
performed in NAFLD animal models (summarized in Table 4) and in patients with liver
disease indicate that silibinin exerts its antioxidant properties by increasing the levels of
glutathione, glutathione peroxidase, and SOD [98,99]. Furthermore, it also was reported
that silibinin decreased the production of ROS and the lipoperoxidation products, such as
malondialdehyde (MDA), observed in NAFLD [98,100–102]. Interestingly, by reducing the
oxidative damage, silibinin improves insulin sensitivity [100], thus reducing the glycemia
and insulinemia and improving the homeostatic model assessment for insulin resistance
(HOMA) index. From a mechanistic point of view, it has been proposed that the insulin
receptor substrate-1 (IRS-1)/PI3K/Akt pathway seemed to be inversely correlated to the
pathogenesis of NAFLD, since knockout of IRS-1 [103] and recovery of the PI3K/Akt ac-
tivity [104] protects the liver from NASH-induced injury. Recent data [98] have shown
that silibinin is able to restore the levels of phosphorylated IRS-1, total IRS-1, PI3K, and
phosphorylated Akt, which are inhibited in NAFLD. The increased ROS generation also
leads to the production of proinflammatory cytokines through activation of the MAPK
pathway [105]. The proinflammatory cytokine TNF-α, mainly produced by Kupffer cells,
plays a pivotal role in several liver diseases, including alcoholic hepatitis and nonalcoholic
steatohepatitis (NASH). TNF-α signaling is regulated by both MAPK and NF-κB [106] in a
crosstalk considered important for the hepatocyte homeostasis [107]. Silibinin exerts an
anti-inflammatory effect by decreasing the levels of some of the proinflammatory cytokines,
such as IL-8 [108], IL-6 [98], MCP-1 [108], and TNF-α [109,110]. This effect is a consequence
of the inhibition of NF-κB activation via the inhibition of IKK-beta and a decreased activity
of p50 and p65. Apoptosis has been recognized as a crucial event in many liver injuries, and
the activation of procaspase-3 has been documented as a prominent pathological feature in
NASH patients and NASH animal models [111,112]. It has been shown that exposure to
silibinin is able to suppress the activation of procaspase-3 to caspase-3 [110]. Moreover this
compound also was reported to inhibit TNF-induced JNK and MEK (a MAPK upstream ki-
nase) activation in a dose-dependent manner (1–50 µM), thus also inhibiting TNF-induced
apoptosis [113].

Silibinin showed antifibrogenic effects by inhibiting collagen type I biosynthesis in
animals with secondary biliary fibrosis [114,115]. Furthermore, this compound was able to
inhibit HSC activation [116] (in terms of α-SMA expression) and PDGF-induced prolifera-
tion and migration [108]. Data from the rat models of CCl4-induced liver damage showed
an increased ERK activity in HSC, suggesting a key role in the proliferation and migration
of this cell type [117]. Along this line was the intriguing evidence of an inhibition of the
entire ERK cascade (Raf, MEK, and ERK) by silibinin (10–100 µM) [118].

In the pathogenesis of NAFLD, an augmented hepatic de novo lipogenesis plays a
central role. Hepatic de novo lipogenesis is combined with dyslipidemia (increased plasma
TG and decreased VLDL clearance), leading to ectopic and whole-body lipid deposition.
Silibinin has been shown to reduce the thrombotic complications associated with this
event by reducing the hepatic TG content [101], as well as serum TG and total cholesterol
levels [119]. Indeed, histological data from several independent studies showed that
silibinin promoted an improvement in liver steatosis, inflammation, and cell ballooning
(summarized in Table 4).

Despite the previously reported data, silymarin has been widely proposed in the treat-
ment of NASH, but definitive data have not been provided so far. Due to its low bioavail-
ability [120,121], some solubilizing compounds (phosphatidylcholine; β-cyclodextrin, and
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vitamin E) were added to the plant extracts to enhance intestinal absorption [122]. Although
data obtained in animal models [123] are promising, the administration and the dosage
are often difficult to be reproduced in humans. On the other hand, data from clinical trials
using silymarin [109,124] are controversial, and the real efficacy has been questioned for
years (reviewed elsewhere [125]). The main limitations are the lack of silymarin standard-
ization among its various formulations and the still-undefined effective dosage [125]. This
situation is even worse among the pediatric and juvenile population, in which the available
information is scarce. Studies of dietary supplements in children have shown inconsistent
effects to benefit children with NAFLD [126].

Finally, when it comes to the biosynthetic derivatives of silybin, most were found to
be effective radical scavengers and lipid peroxidation inhibitors [127]. Although not in a
NAFLD model, one particular interest was in 3-O-palmitoyl-silybin, a de novo synthetized
compound that had stronger antioxidant and anti-lipoperoxidant protective effects than
sylibin [128].

Table 4. Silymarin effects in different in vivo models of NAFLD.

Parameter Model Results Ref.

Liver histology

Rats (8–9 weeks old) + HFD
(100 mg/kg daily orally) for 12 weeks

Improved steatosis
Reduced inflammatory foci [129]

Db/db mice (6 weeks old) + MCD
20 mg/kg daily IP (4 weeks) Improved steatosis [123]

Db/db mice (8 weeks old) + MCD
20 mg/kg daily IP (4 weeks)

Improved steatosis
Reduced lobular inflammation

Decreased cell ballooning
[102]

OLETF rats + MCD
0.5% w/w of diet orally (8 weeks)

Improvement of the NAS score
Improvement of fibrosis (by reducing

HSC activation)
[116]

Male rats + MCD diet
1 g seed powder/kg daily gavages (3 weeks)

Improvement of steatosis, inflammation,
and cell ballooning [110]

Gerbils + HFD
100 mg/kg daily by gastric intubation (8 weeks) Improved steatosis [130]

Rats (4–6 weeks old) + HFD
25 mg/kg daily intragastric (6 weeks)

Decreased the fatty degeneration
and the lobular inflammation [119]

Glucose
homeostasis

Rats (8–9 weeks old) + HFD
100 mg/kg orally (12 weeks) Improved insulin sensitivity [129]

Rats (8 weeks old) high-fructose diet
100–300 mg/kg daily orally (3 weeks)

Decreased glycemia
Decreased insulinemia
Improved HOMA-IR

[101]

Db/db mice (6 weeks old) + MCD
20 mg/kg daily IP (4 weeks)

Decreased glycemia
Decreased insulinemia
Improved HOMA-IR

[123]

Gerbils + HFD
100 mg/kg daily by gastric intubation (8 weeks)

Decreased glycemia
Decreased insulinemia [130]

Rats (4–6 weeks old) + HFD
25 mg/kg daily intragastric (6 weeks) Improved HOMA-IR [119]
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Table 4. Cont.

Parameter Model Results Ref.

Oxidative stress

Db/db mice (6 weeks old) + MCD
20 mg/kg daily IP (4 weeks)

Decreased lipoperoxidation
Restored the GSH and nitrite/nitrate levels [123]

Db/db mice (8 weeks old) + MCD
20 mg/kg daily IP (4 weeks)

Decreased lipoperoxidation, TBARS,
and ROS [102]

Rats (8 weeks old) high-fructose diet
100–300 mg/kg daily orally (3 weeks) Decreased MDA and nitrite content [101]

Male rats + MCD diet
1 g seed powder/kg daily gavages (3 weeks) Decreased MDA and improved GSH [110]

Gerbils + HFD
100 mg/kg daily by gastric intubation (8 weeks) Decreased lipoperoxidation [130]

6. Discussion

Despite the increasing incidence of NAFLD and the related worrisome future perspec-
tives, to date, there is no pharmacological treatment to revert the onset or to avoid the
progression from fatty liver to the more severe stages of the disease. Despite the scientific
community’s efforts, altogether, the relatively benign and reversible characteristics of the
early stages of this disorder, the multifactorial events associated with the worsening of liver
functionality, and the limitations of the tools for an early diagnosis hamper the develop-
ment of an effective drug. It has been well established that lifestyle modification, mainly
through diet and an increase in physical activity, significantly improve many of the factors
associated with NAFLD. Considering that NAFLD is tightly associated with obesity (in
which sedentarism and an unhealthy diet represent the basis of this condition), obtaining
successful results by this approach is not always possible, making this alternative inefficient.
A promising option to overcome the reticence toward lifestyle changes would be the use of
compounds naturally present in food with reported beneficial effects in counteracting the
deleterious events associated with fat accumulation.

Here, we reviewed the selected food derivatives with beneficial effects in NAFLD re-
ported by preclinical and clinical studies. Although NAFLD is a multifactorial disease with
complex mechanisms as proposed in the “multiple hit” model [7], the pathogenesis could
be initially explained by hepatic fat accumulation or steatosis. There are three major mech-
anisms identified as the source of excessive fat accumulation into the liver: (a) increased
visceral adipose tissue (AT) lipolysis; (b) de novo lipogenesis (DNL) by consumption of
excess calories; and (c) insulin resistance [4,5,9]. Lipid accumulation predisposes the liver to
lipotoxicity, which triggers inflammation, mitochondrial dysfunction, and oxidative stress,
leading to steatohepatitis and/or hepatic fibrosis [5]. These critical pathological events
are considered important therapeutic targets to delay the progression of NAFLD. Figure 1
illustrates the pathogenesis of NAFLD and the mechanism of action of the compounds
included in this review.
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Figure 1. Pathophysiological mechanisms of NAFLD and some critical events counteracted by
the compounds. Adipose tissue expansion, insulin resistance, and caloric surplus can lead to free
fatty acid accumulation in the liver, which inhibits VLDL synthesis, and thus increases the TG
intrahepatic pool. These events, along with impaired with β-oxidation, promote steatosis. Lipotoxic
species can then cause oxidative stress, inflammation, and fibrosis. The activation of hepatic stellate
cells marks the promotion of NASH fibrosis. Nonhepatic players can also contribute directly or
indirectly to NASH progression. Changes in gut microbiota composition can yield toxic microbiota
products, or even form a leaky gut to release LPS or bacteria, all of which could contribute to hepatic
inflammation. The compounds’ beneficial effects on NAFLD can be attributed to counteracting these
critical pathological events and other nonhepatic players. Abbreviations: DAG, diacylglycerol; ECM,
extracellular matrix; FFA, free fatty acids; IL-6, interleukin-6; IL-8, interleukin-8; IR, insulin resistance;
IGF-1, insulin-like growth factor 1; LPS, lipopolysaccharides; PDGF, platelet-derived growth factor;
TLR, toll-like receptor; TGF-β, transforming growth factor beta; TNF-α, tumor necrosis—alpha;
VLDL, very-low-density lipoprotein.

Coffee is one of the most commonly consumed beverages worldwide, with epidemi-
ological evidence showing that its consumption is protective against several diseases,
including liver fibrosis, cirrhosis, chronic liver disease, and liver cancer [131]. Specifically,
in the context of NAFLD, the evidence collected over time is quite convincing; several
of its derivatives have demonstrated promising effects in improving many of the events
associated with the disease (Table 1). Overall, caffeine and its derivatives caffeic acid and
chicoric acid were able to counteract steatosis, inflammation, oxidative stress, and fibrosis,
as shown by in vitro and in vivo studies. Of note, caffeic acid and chicoric acid were also
able to modulate the gut microbiota toward a healthy microbial profile, thereby attenu-
ating gut dysbiosis. Gut microbiota, along with other nonhepatic players, are important
components of the complex “multiple hit” model.

However, after all these years of study, we still cannot establish an effective therapeutic
scheme focused on coffee. This is the result of different aspects related to coffee. For instance,
the different coffee species determine the chemical composition of coffee brews. These
differences contribute to the characteristic flavor and quality of coffee beverages made
from each species. Typically, green robusta seeds contain almost twice as much caffeine,
more chlorogenic acids, and less trigonelline than arabica per weight unit. Moreover, the
chemical composition varies greatly depending on the quality of the coffee and roasting
degree [132,133]. Other variables are the modalities of coffee preparation (controversies
remain regarding whether espresso or filtered coffee have the same beneficial effects on
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NAFLD) and the daily average of coffee consumption among studies. Additionally, most
of the trials conducted so far have either been retrospective, observational, and/or cross-
sectional point prevalence studies. Due to the lack of prospective data, the conclusions
can be drawn only from the association between coffee drinking and liver health. The
sum of all these variables resulted in a large heterogeneity among the studies, which
further complicated the reaching of definitive conclusions. Thus, more interventional and
prospective trials under standardized conditions are still needed to define an effective
therapeutic guideline.

More recently, tormentic acid (TA) extract, isolated from various plant foods such
as strawberry fruit, olive, and the leaves of different plants from the Rosaceae family, was
found to possess various pharmacological properties, including hepatoprotective effects. To
date, relatively few studies have examined the impact of TA in NAFLD directly; however,
substantial evidence has been reported on its effects in NAFLD-related pathologies such as
steatosis, oxidative stress, inflammation, and fibrosis. The data collected so far (summarized
in Table 2) suggested that TA might have promising prospects in the future. Interestingly,
TA reduced visceral fat mass, hepatic triacylglycerol contents, and serum triglycerides in an
HF-diet mouse model (Figure 1). However, the lack of solid results in the context of NAFLD,
with appropriate dosage and time of treatment, hamper its use in future clinical trials.

Another emerging compound analyzed herein is verbascoside, which can be found in
more than 200 plant species. This compound can exert various pharmacological activities
such as antioxidant, antimicrobial, anti-inflammatory, neuroprotective, anticancer, and hep-
atoprotective effects, which could be interesting in the context of NAFLD. The preclinical
and clinical studies reported herein suggested that verbascoside exerted protective effects
against NAFLD-related pathologies (Table 3 and Figure 1). The data collected provided
a rationale for the possible use of this compound as a nutraceutical in disease prevention
and treatment. Reliable clinical studies in the context of NAFLD are limited, and must
be expanded together with pharmacodynamics and pharmacokinetic studies for future
application of verbascoside in a clinical setting.

On the other hand, silymarin, which is extracted from plant seeds and fruits of Silybum
marianum, has been used as a medicinal herb from as early as the 4th century B.C. Silymarin
has been widely proposed in the treatment of NASH, although definitive data have not
been provided (reviewed elsewhere [125]). Data from clinical trials using silymarin are
controversial, and the real efficacy has been questioned for years. The main limitations
are the lack of silymarin standardization among its various formulations and the still-
undefined effective dosage. Another limitation is its low bioavailability [120,121]; some
solubilizing compounds (phosphatidycholine; β-cyclodextrin, vitamin E) were added to
the plant extracts to enhance intestinal absorption [122]. An additional limitation of the use
of silymarin is the low comparability among studies; for instance, different formulations
of the drug produced different bioavailabilities and dispositions, even when the same
dose was administered. Additionally, despite the promising data coming from animal
models, the administration and the dosage are often difficult to reproduce in humans. A
better definition of the clinical trial conditions is still necessary to assess the real efficacy of
silymarin in NAFLD.

7. Materials and Methods

For this review, we used the Pubmed and Google Scholar databases to search for
relevant articles using the following mesh terms: “Coffee”, “Caffeine”, “Caffeic Acid”,
“Chicoric Acid”, “Verbascoside”, “Tormentic Acid”, “Silybum Marianum”, “Silymarin”,
“Silybinin”, “Silybin”, “NASH”, “NAFLD”, “Steatosis”, “oxidative stress”, “liver inflamma-
tion”; “liver fibrosis”, and “Diabetes”. If not differently stated in the respective section, we
did not consider the specific time frame.
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8. Conclusions

NAFLD is a chronic liver disease that includes many pathological aspects, including
steatosis, oxidative stress, inflammation, and fibrosis. Moreover, the presence of multiple
mechanisms and comorbidities associated with NAFLD has hampered the search for an
effective drug for the disease. Natural compounds have been studied preclinically and
clinically, providing evidence of their beneficial effects in liver diseases such as NAFLD.
Although lifestyle modifications involving diet and exercise currently remain the first line of
treatment for NAFLD, it appears that the compounds reviewed here could also potentially
improve NAFLD treatment. Overall, the need for effective pharmacologic treatment for
NAFLD, and most importantly, NASH, is evident, but we are still far from achieving this
socioeconomic goal. The issue must be approached using a coordinated translational effort,
which will provide reliable and effective tools to reduce the NAFLD pandemic.
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