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Abstract: The nephrotoxic effects of heavy metals have gained increasing scientific attention in the
past years. Recent studies suggest that heavy metals, including cadmium, lead, and arsenic, are
detrimental to kidney transplant recipients (KTR) even at circulating concentrations within the normal
range, posing an increased risk for graft failure. Thallium is another highly toxic heavy metal, yet the
potential consequences of the circulating thallium concentrations in KTR are unclear. We measured
plasma thallium concentrations in 672 stable KTR enrolled in the prospective TransplantLines Food
and Nutrition Biobank and Cohort Study using inductively coupled plasma mass spectrometry. In
cross-sectional analyses, plasma thallium concentrations were positively associated with kidney
function measures and hemoglobin. We observed no associations of thallium concentration with
proteinuria or markers of tubular damage. In prospective analyses, we observed no association of
plasma thallium with graft failure and mortality during a median follow-up of 5.4 [interquartile
range: 4.8 to 6.1] years. In conclusion, in contrast with other heavy metals such as lead, cadmium,
and arsenic, there is no evidence of tubular damage or thallium nephrotoxicity for the range of
circulating thallium concentrations observed in this study. This is further evidenced by the absence
of associations of plasma thallium with graft failure and mortality in KTR.

Keywords: nephrotoxicity; tubular damage; kidney transplantation; graft failure; heavy metals

1. Introduction

Late kidney allograft failure is a constant threat to kidney transplant recipients (KTR),
necessitating re-initiation of dialysis and/or re-transplantation [1]. Therefore, the search for
potential modifiable causes of graft failure is ongoing. Heavy metal-induced nephrotoxicity
may be a potential cause of kidney graft failure that is often overlooked, yet it has gained in-
ternational attention in the past years [2–5]. While the nephrotoxic effect of circulating high
concentrations of heavy metals is well-established [6], the KTR population may already be
vulnerable to nephrotoxicity at concentrations that would otherwise be considered within
the normal range. This high vulnerability is likely because KTR generally have only one
functioning kidney that is at risk of ischemia-reperfusion injury during the transplantation
procedure and potential hyperperfusion after transplantation [7]. Multiple concomitant
diseases (e.g., diabetes and cardiovascular disease) and strict adherence to an immuno-
suppressive maintenance regimen (usually including persistent exposure to nephrotoxic
calcineurin inhibitors [8]) further add to this strain. Clearly, these circumstances greatly

J. Clin. Med. 2022, 11, 1970. https://doi.org/10.3390/jcm11071970 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11071970
https://doi.org/10.3390/jcm11071970
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-0011-115X
https://orcid.org/0000-0002-0203-7574
https://orcid.org/0000-0002-1886-4451
https://orcid.org/0000-0001-6835-6386
https://orcid.org/0000-0002-2484-6233
https://orcid.org/0000-0001-8645-1627
https://orcid.org/0000-0003-3246-3192
https://orcid.org/0000-0002-1429-4789
https://orcid.org/0000-0003-3356-6791
https://doi.org/10.3390/jcm11071970
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11071970?type=check_update&version=1


J. Clin. Med. 2022, 11, 1970 2 of 12

limit the resilience of the kidney’s ability to handle additional unfavorable factors, such
as exposure to heavy metals. Indeed, it was recently found that high-normal circulating
concentrations of heavy metals, including cadmium, lead, and arsenic are independently
associated with a higher risk of graft failure in KTR [3–5].

Thallium, another heavy metal, is more acutely toxic than the aforementioned heavy
metals [9]. Humans are generally exposed to thallium via air, water, and food, especially in
the vicinity of mining areas, urban-runoff rivers, and factories. However, most exposure
occurs via the contamination of food [10–12]. Symptoms of acute thallium poisoning
include gastrointestinal complaints and neurological symptoms, including polyneuropathy,
but the condition can also be fatal [13–15]. Chronic thallium toxicity can occur after long-
term low-level thallium exposure, generally presenting with anorexia, headaches, and
neurological symptoms [10,16]. Thallium exposure is associated with nephrotoxicity in
rats [17,18], but studies assessing the potential nephrotoxic effects of thallium in humans
are lacking [9].

We therefore aimed to determine plasma thallium concentration and assess the as-
sociations of clinical and biochemical parameters with plasma thallium concentration.
Additionally, we investigated whether plasma thallium concentration is associated with
kidney graft survival and patient survival in a cohort of stable KTR.

2. Materials and Methods
2.1. Design and Study Population

For this prospective cohort study, we used data from patients enrolled in the Trans-
plantLines Food and Nutrition Biobank and Cohort Study. All KTR (≥18 years old) visiting
the University Medical Centre Groningen (UMCG) outpatient clinic with a functioning
graft for approximately 1 year or longer after transplantation, and without any known
drug or alcohol addiction or systemic illnesses, were invited for participation [19]. In the
period between November 2008 and March 2011, 707 KTR were included in the cohort. All
KTR were transplanted at the UMCG and were treated with standard antihypertensive
and immunosuppressive treatments. Data in this cohort included a broad variety of bio-
chemical parameters, questionnaires, and anthropological measurements. Notably, these
analyses were performed on the same population that recent studies had shown evidence of
nephrotoxicity due to cadmium, lead, and arsenic [3–5]. For the current study, participants
without available samples for plasma thallium measurements were excluded. The study
was conducted according to the guidelines laid down in the Declaration of Helsinki and
the study protocol was approved by the Institutional Review Board (METc 2008/186). The
flow of participants through the study is detailed in Supplementary Figure S1.

The primary outcome of this study was death-censored graft failure, defined as end-
stage kidney disease requiring dialysis or re-transplantation. A secondary outcome was
all-cause mortality. There were no losses to follow-up.

2.2. Outcome Measurements

All measurements were performed during a morning visit to the outpatient clinic, as
described in detail previously [19]. Blood pressure and heart rate were measured with
a semi-automatic device (Dinamap 1846, Critikon, Tampa, FL, USA) every minute for a
period of 15 min, and the last three measurements were averaged. Body weight and height
were measured with the participants wearing indoor clothing without shoes. Body mass
index (BMI) was calculated as weight in kilograms divided by height in meters squared
(kg/m2). Information on medical history and medication was extracted from patient
records. Information on smoking behavior and alcohol intake was obtained by using a
questionnaire. Diabetes was based on the definition of the American Diabetes Association.
The estimated glomerular filtration rate (eGFR) was calculated using the creatinine- and
cystatin C-based CKD-EPI formula [20].
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2.3. Laboratory Methods and Thallium Measurement

Blood was drawn in the morning after an 8 to 12 h overnight fasting period after the
completion of 24 h urine collection. In addition, all participants were instructed to collect
24 h urine during the day before their visit to the outpatient clinic.

Plasma thallium concentrations were measured in ethylenediaminetetraacetic acid
(EDTA) plasma samples, which were stored frozen until measurement at −80 ◦C. Plasma
concentrations of thallium, cadmium, lead, and arsenic were determined by inductively
coupled plasma mass spectrometry (Varian 820-MS; Varian, Palo Alto, CA, USA) with a
modified method for the measurement of low concentrations of heavy metals in plasma
using a standard addition method, as described elsewhere [5].

Cystatin C concentration was measured in EDTA plasma using a validated particle-
enhanced turbidimetric immunoassay (Gentian, Moss, Norway). Each patient collected
24 h urine prior to the baseline study visit following strict instructions. Total urinary
protein excretion was determined by means of the Biuret reaction (MEGA AU 510; Merck
Diagnostica). Plasma neutrophil-gelatinase associated lipocalin (NGAL) concentration was
measured in EDTA-plasma using a validated particle-enhanced turbidimetric immunoassay
(Gentian, Moss, Norway). Urinary liver-type fatty acid-binding protein (L-FABP) was
measured with an enzyme-linked immunosorbent assay (human uL-FABP assay kit 96 test;
CMIC holdings Co., Tokyo, Japan). Urinary endothelial growth factor (EGF) concentration
was measured by ELISA (R&D Systems, Minneapolis, MN, USA) and divided by the
urinary creatinine concentration. Other laboratory parameters, including creatinine, high-
sensitivity C-reactive protein (hs-CRP), and glycated hemoglobin (HbA1c) were measured
using routine laboratory methods.

2.4. Statistical Analyses

Baseline characteristics were summarized as the mean ± SD, median [interquartile
range], and count (%) for normally distributed, non-normally distributed, and nominal data,
respectively. Univariable linear regression analyses were performed to assess associations of
plasma thallium concentration with clinical and biochemical parameters. Scatterplots and
Q-Q plots were visually evaluated to assess whether the assumptions of linear regression
analyses were met. Non-normally distributed variables were log2 transformed when
necessary to meet these assumptions. Listwise exclusion was applied in the case of missing
data; the number of missing values is indicated in table footnotes.

The association of plasma thallium concentration with graft failure and mortality were
assessed with Kaplan–Meier curves and the significance of the difference between the
tertiles was calculated using a log-rank test. To further assess the association of plasma
thallium concentration with graft failure and all-cause mortality, Cox-proportional hazards
regression analyses were performed with adjustments for potential confounders, including
age, sex, 24 h urinary protein excretion, eGFR, history of cardiovascular disease, pre-
emptive transplantation, and plasma concentrations of other heavy metals. There was no
evidence for non-proportionality of hazards in any of the Cox models (p > 0.05 for all).
Potential interaction of thallium with age, sex, or eGFR was assessed by adding interaction
terms to the Cox models.

In order to identify whether relatively high plasma thallium concentrations were
associated with an impaired outcome, the Kaplan–Meier curves and log-rank tests were
repeated to compare graft and patient survival among patients with a plasma thallium
concentration >90th and ≤90th percentile. These analyses were repeated with the 95th
percentile as a cut-off.

In additional sensitivity analyses, Cox regression analyses were repeated, where the
thallium concentrations were transformed using log2, the square root, the square, and the
inverse of each value. In addition, potential non-linear associations of plasma thallium
with outcome were assessed by adding restricted cubic spline terms for thallium to the
models. The statistical significance of the improvements in model fit was assessed using
likelihood ratio tests.
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All data were analyzed using R version 4.0.5 (Vienna, Austria). For all analyses,
p < 0.05 indicated statistical significance.

3. Results
3.1. Baseline Characteristics

In total, 672 KTR were included in this study. The mean age was 53 ± 13 years, 42%
were female, the median time after transplantation was 5.4 [1.9 to 11.8] years at the time of
inclusion, and the mean eGFR was 45 ± 19 mL/min/1.73 m2. The mean plasma thallium
concentration was 0.12 ± 0.06 µg/L. The baseline characteristics are presented in more
detail in Table 1.

Table 1. Population characteristics at baseline and linear regression analyses for plasma thallium
concentration.

N = 672 Linear Regression with Plasma Thallium as
Dependent Variable

Plasma thallium (µg/L) 0.12 (0.06) St. β (95% CI) p-Value

Clinical characteristics
Female sex, n (%) 285 (42%) −0.08 (−0.23 to 0.07) 0.3

Age, y 53 (13) −0.12 (−0.20 to −0.04) 0.002
Primary renal disease, n (%)

Unknown 103 (15%) Ref.
Glomerulonephritis 176 (26%) 0.08 (−0.17 to 0.32) 0.5
Interstitial nephritis 82 (12%) 0.12 (−0.18 to 0.41) 0.4

Cystic kidney disease 139 (20%) 0.02 (−0.27 to 0.24) 0.9
Other congenital/hereditary disease 39 (6%) 0.01 (−0.38 to 0.36) 0.9

Renal vascular disease 37 (6%) −0.09 (−0.47 to 0.29) 0.6
Diabetes mellitus 32 (5%) −0.14 (−0.54 to 0.29) 0.5

Other multisystem diseases 45 (7%) 0.06 (−0.30 to 0.41) 0.8
Other 19 (3%) −0.01 (−0.48 to 0.51) 0.9

Height, cm 174 (10) 0.02 (−0.06 to 0.09) 0.7
Weight, kg 80.7 (16.5) 0.02 (−0.06 to 0.09) 0.6

Body surface area, m2 1.95 (0.22) 0.02 (−0.06 to 0.10) 0.6
Body mass index, kg/m2 26.7 (4.8) 0.01 (−0.06 to 0.09) 0.8

Systolic blood pressure, mmHg 136 (17) −0.07 (−0.15 to 0.01) 0.07
Diabetes, n (%) 161 (24%) −0.01 (−0.19 to 0.17) 0.9

History of cardiovascular disease, n (%) 162 (24%) 0.00 (−0.18 to 0.18) 0.9
Smoking status, n (%)

Never 267 (42%) Ref.
History of smoking 285 (45%) −0.02 (−0.19 to 0.15) 0.8

Current smoking 80 (13%) 0.11 (−0.15 to 0.36) 0.4
Pre-emptive transplantation, n (%) 107 (16%) −0.06 (−0.27 to 0.15) 0.6

Duration of dialysis, months # 23 [5 to 47] 0.02 (−0.05 to 0.10) 0.6
Time after transplantation, y # 5.4 [1.9 to 12.8] 0.03 (−0.05 to 0.10) 0.5

History of rejection, n (%) 177 (26%) 0.05 (−0.12 to 0.22) 0.6
History of delayed graft function, n (%) 50 (7%) −0.06 (−0.35 to 0.23) 0.7

Living donor, n (%) 232 (35%) 0.04 (−0.12 to 0.20) 0.6
Routine laboratory measurements

Sodium mmol/L 140.9 (2.8) 0.00 (−0.08 to 0.08) 0.9
Potassium, mmol/L 4.0 (0.5) −0.03 (−0.05 to 0.10) 0.5

HbA1c, % # 5.8 [5.5 to 6.2] 0.02 (−0.06 to 0.10) 0.6
Hemoglobin, mmol/L 8.2 (1.1) 0.15 (0.07 to 0.22) <0.001

Leukocyte count, 109/L 8.1 (2.6) 0.05 (−0.02 to 0.13) 0.2
hs-CRP, mg/L # 1.6 [0.7 to 4.6] −0.01 (−0.08 to 0.07) 0.9
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Table 1. Cont.

N = 672 Linear Regression with Plasma Thallium as
Dependent Variable

Kidney function parameters
Cystatin C, mg/L 1.88 (0.77) −0.12 (−0.19 to −0.04) 0.002

Creatinine, µmol/L # 124 [99 to 159] −0.07 (−0.15 to 0.00) 0.058
eGFR, mL/min/1.73 m2 45 (19) 0.13 (0.05 to 0.21) 0.001

Creatinine clearance, mL/min 66 (26) 0.13 (0.05 to 0.20) 0.001
Urea, mmol/L # 9.5 [7.2, 13.3] −0.10 (−0.18 to −0.03) 0.007

Markers of tubular damage
Urinary protein excretion, g/24 h # 0.2 [0.0 to 0.5] −0.01 (−0.09 to 0.06) 0.7

Urinary liver-type fatty acid-binding
protein, µg/24 h # 2.06 [0.91 to 7.04] −0.06 (−0.14 to 0.03) 0.2

Urinary endothelial growth
factor/creatinine ratio, ng/mg # 6.5 [4.1 to 10.8] 0.08 (−0.00 to 0.16) 0.053

Plasma neutrophil-gelatinase associated
lipocalin, µg/L # 170 [133 to 232] −0.07 (−0.15 to 0.00) 0.065

Other heavy metals in plasma
Cadmium, µg/L 0.06 [0.04 to 0.07] −0.14 (−0.21 to −0.06) <0.001

Lead, µg/L 0.31 [0.22 to 0.44] 0.02 (−0.06 to 0.09) 0.6
Arsenic, µg/L 1.26 [1.04 to 2.04] 0.01 (−0.07 to 0.08) 0.8
Mercury, µg/L 0.29 [0.14 to 0.63] 0.07 (−0.01 to 0.14) 0.088

Medication
Antihypertensive drugs, n (%) 592 (88.1) −0.10 (−0.34 to 0.13) 0.4

Prednisolone, n (%) 665 (99.0) −0.14 (−0.89 to 0.60) 0.7
Calcineurin inhibitor, n (%) 384 (57.1) −0.07 (−0.22 to 0.09) 0.4
Proliferation inhibitor, n (%) 560 (83.3) 0.01 (−0.19 to 0.22) 0.9

mTOR inhibitor, n (%) 23 (3.4) 0.13 (−0.29 to 0.55) 0.5

Normally distributed data are presented as the mean ± standard deviation, skewed data as the median [in-
terquartile range], and categorical data as the count (valid percentage). # Variables were log2-transformed to fulfill
the assumptions of the linear regression analyses. Diabetes was defined according to the American Diabetes
Association criteria [21]. Data on smoking status were missing for 40 patients (6.0%); data on donor age were
missing for 19 patients (2.8%); data on HbA1c were missing for 26 patients (3.9%); data on hs-CRP were missing
for 39 patients (5.8%); data on urinary endothelial growth factor were missing for 52 patients (7.7%); data on
urinary liver-type fatty acid-binding protein were missing for 69 patients (10.1%). All other variables had missing
data for ≤10 patients. Abbreviations: eGFR, estimated glomerular filtration rate as calculated using the creatinine
and cystatin C-based CKD-EPI formula; hs-CRP, high-sensitivity C-reactive protein; mTOR, mammalian target of
rapamycin.

3.2. Associations of Plasma Thallium with Clinical and Kidney Function Parameters

In linear regression analyses, a higher age was associated with a lower plasma thal-
lium concentration (Table 1). In addition, thallium concentration was positively associated
with hemoglobin (St.β 0.15; 95% CI: 0.07 to 0.22). Notably, eGFR and creatinine clearance
were positively associated with plasma thallium concentration, whereas cystatin C was
negatively associated with plasma thallium concentration (Figure 1, p < 0.01 for all). The
association of plasma thallium with serum creatinine, however, was not statistically signifi-
cant. Additional explanatory analyses revealed that the associations of thallium with eGFR,
creatinine clearance, and serum cystatin C disappeared after an adjustment for hemoglobin
(p > 0.05 for all, respectively).

Interestingly, we observed a negative association of plasma thallium concentration
with plasma cadmium concentration (St.β −0.14; 95% CI: −0.21 to −0.06), but it was not
associated with plasma concentrations of lead, arsenic, and mercury.
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concentration with the parameters of kidney function.

3.3. Associations of Plasma Thallium with Parameters of Nephrotoxicity and Tubular Damage

Plasma thallium concentration was not associated with any of the markers of tubular
damage, including 24 h urinary protein excretion, plasma neutrophil-gelatinase associated
lipocalin, urinary liver-type fatty acid binding protein (L-FABP), or the urinary endothelial
growth factor (EGF)/creatinine ratio (p > 0.05 for all). Notably, although insignificant, point
estimates of the association of thallium with urinary EGF/creatinine ratio and plasma
neutrophil-gelatinase associated lipocalin were consistent with tubular protection rather
than damage (St.β 0.08; 95%CI: −0.13 to 0.03 and St.β −0.07; 95%CI: −0.15 to 0.00, respec-
tively). These associations are visually presented in Figure 2.
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3.4. Associations with Outcome

During a median follow-up of 5.3 [IQR: 4.8 to 6.1] years, 80 (11.9%) KTR developed
graft failure and 143 (21.3%) died. There were no significant differences between the tertiles
of thallium in graft failure and all-cause mortality (p = 0.4 and p = 0.5, respectively; Figure 3).
Notably, plasma thallium concentration tended to be associated with a slightly lower risk
of graft failure, although this result did not reach statistical significance. In addition,
univariable and multivariable Cox proportional hazards models showed no prospective
associations between thallium and all-cause mortality or graft failure, as shown in Table 2.
There were no interactions of thallium with age, sex, or eGFR for the association with graft
failure or mortality.
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Table 2. Univariable and adjusted Cox regression analyses of the associations of plasma thallium
with graft failure and mortality.

Graft Failure All-Cause Mortality

Model HR per SD (95% CI) p-Value HR per SD (95% CI) p-Value

Crude 0.89 (0.72 to 1.10) 0.3 0.87 (0.74 to 1.01) 0.073
Model 1 0.90 (0.72 to 1.11) 0.6 1.02 (0.86 to 1.20) 0.8
Model 2 0.90 (0.72 to 1.11) 0.3 1.00 (0.85 to 1.19) 0.9
Model 3 0.90 (0.72 to 1.13) 0.4 1.02 (0.87 to 1.21) 0.8

In total, 80 patients (11.9%) developed graft failure, and 143 (21.3%) died during the median follow-up of 5.4 [IQR:
4.8 to 6.1] years. Model 1 was adjusted for age, sex, estimated glomerular filtration rate as calculated using the
creatinine- and cystatin C-based CKD-EPI formula, and log2 24 h urinary protein excretion. Model 2 was adjusted
for the variables in Model 1 plus pre-emptive transplantation and history of cardiovascular disease. Model 3 was
adjusted for the variables in model 2 plus log2 plasma cadmium, log2 plasma arsenic, log2 plasma lead, and log2
plasma mercury. CI, confidence interval; HR, hazard ratio; SD, standard deviation.

3.5. Sensitivity Analyses

Patients with a plasma thallium concentration >90th percentile (i.e., >0.19 µg/L, in-
cluding 67 patients) or >95th percentile (i.e., >0.22 µg/L, including 34 patients) were no
more or less at risk of graft failure or mortality compared to the rest of the population
(Supplementary Figures S2 and S3). Additional sensitivity analyses where thallium was
transformed also showed no significant associations of thallium with outcome (Supplemen-
tary Table S1). Finally, models including spline terms for plasma thallium did not improve
the model fit for graft failure (p = 0.3) or mortality (p = 0.9) compared to models without
these terms, and none of the spline terms were significantly associated with either outcome
(p > 0.5 for all).

4. Discussion

In this large cohort of 672 well-characterized KTR, thallium was positively associated
with eGFR, but this association was no longer present after adjustment for hemoglobin.
We also observed no cross-sectional associations of plasma thallium concentration with
urinary protein excretion and markers of tubular damage. In addition, plasma thallium
concentration was not associated with graft failure or all-cause mortality.

Recent observations have raised major concerns regarding the nephrotoxicity of heavy
metals, especially in populations with kidney disease, such as KTR [3–5]. Recent studies
have shown that circulating plasma concentrations of heavy metals such as lead, cadmium,
and arsenic were all independently associated with graft failure, even at concentrations
that are generally considered to be within the normal range [3–5]. We therefore studied
associations of the circulating concentration of another toxic heavy metal, thallium, in the
same cohort of KTR as these aforementioned studies.

Previous studies have shown that exposure to thallium can affect human health, but
studies of thallium toxicity in low chronic doses is lacking [9]. Natural exposure to thallium
can occur through air, water, and food, especially in the vicinity of mining areas, urban-
runoff rivers, and factories [10–12]. Coal burning power plants, cement factories, and
smelting operations pollute the air and rivers with thallium [22]. Subsequently, the heavy
metal in the air falls the onto the land, where it is taken up by the crops via their roots and
foliage. When this regional low-level exposure is increased, it may become harmful for the
population. Symptoms of anorexia, headache, fatigue, polyneuropathic symptoms, pain,
and sleep disorders can develop after long-lasting thallium exposure [10,16].

In our study population, mean plasma thallium concentration among KTR was
0.11 µg/L, which is evidently lower than the upper limit of the normal concentration
of 2.5 µg/L suggested by the World Health Organization [23], and slightly lower than the
mean thallium concentration in a previous study of 350 healthy Italians [24].

After intake, thallium is almost entirely absorbed from the gastro-intestinal tract
and quickly deposited in soft tissues, bones, and organs [25]. Accumulation of thallium is
particularly high in the kidneys, followed by accumulation in the bones, stomach, intestines,
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and other organs [26]. Because the kidneys accumulate thallium—and because of the
suggested nephrotoxic effects of other heavy metals in this population—we hypothesized
that kidney function would be lower in patients with higher plasma thallium concentrations.
Our results, on the contrary, suggest a positive association between kidney function and
plasma thallium concentration. Notably, this finding is in line with previous studies in
the general population, and among lead workers, which showed that higher urinary
thallium levels were associated with higher kidney function [27–31]. Although these
associations were statistically significant, their clinical relevance appears limited: less
than 2% of the variation in kidney function could be explained by variations in thallium
concentration. Thallium was also associated with hemoglobin in our study, and we may
therefore speculate that circulating thallium concentrations are dependent on hemoglobin,
similar to other heavy metals [32–34]. Following this logic, and given the established
association of kidney function with hemoglobin, we hypothesized that hemoglobin may
explain the association of kidney function with the circulating thallium concentration.
This notion was indeed supported by our study because the associations of thallium with
kidney function disappeared after adjusting for hemoglobin. Nonetheless, these findings
consistently suggest that low circulating thallium concentrations are not nephrotoxic, even
in populations with kidney disease, such as KTR.

To further assess potential nephrotoxicity, we studied associations of plasma thallium
concentration with parameters of tubular damage, including urinary protein excretion,
plasma NGAL, urinary L-FABP, and the urinary EGF/creatinine ratio [35–37]. Recently, it
was shown in the same cohort that plasma cadmium concentration was indeed associated
with these parameters, indicating nephrotoxicity [5]. Our current study showed that plasma
thallium was not associated with these markers of tubular damage, again suggesting that
thallium concentrations in the observed range do not exert nephrotoxic effects.

The lack of nephrotoxic effects of thallium was further corroborated in prospective
analyses, where plasma thallium concentrations were not associated with either graft
failure or mortality. We may hypothesize that thallium nephrotoxicity may only occur in
patients with a relatively high plasma thallium concentration. However, our sensitivity
analyses also showed no evidence of the detrimental effects of thallium in patients with
plasma thallium concentrations >90th or >95th percentiles. These findings suggest that,
in contrast with other heavy metals, including cadmium and lead, circulating thallium
concentrations in the range that we investigated are not a major concern for kidney health,
which may be relevant for other populations. However, we cannot exclude the possibility
that thallium concentrations higher than those observed in our cohort can exert nephrotoxic
effects. Whether higher thallium exposures may have nephrotoxic effects therefore remains
to be determined in other populations.

The observed negative association of plasma thallium with plasma cadmium concen-
tration may appear surprising. They are in line, however, with observations by Shelley
et al., in a study of lead workers, where a similar negative association between urinary
thallium and cadmium levels was observed [27]. Although the underlying causes for this
association remain unknown, our findings further support the statement by Shelley et al.
that multiple metal analysis approaches are needed to gain a better understanding of heavy
metal handling and nephrotoxicity [27].

A major strength of this study is the large cohort of well-characterized KTR. This
allowed us to assess the associations of plasma thallium with many clinical parameters and
the parameters of kidney function and tubular damage. A second strength of this study
is that the included patients were followed for a long period without losses to follow-up,
which allowed us to thoroughly assess the long-term association between plasma thallium
levels and graft failure. Despite the long follow-up, we cannot exclude the possibility
that potential detrimental effects of thallium become clear only during a longer follow-up.
However, our study population consists mainly of Caucasian participants, included from a
single transplantation center in the Netherlands. This calls for prudence when extrapolating
these results to other populations and geographical areas with potentially different local
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thallium exposure. Future studies in different populations from different geographical
areas with potentially higher thallium exposure are therefore needed. Such future studies
may potentially also investigate thallium inhaled in small particulate matter, as the latter
has been shown to be associated with the occurrence of membranous nephropathy [38].
Finally, we only assessed thallium levels in plasma. Several previous studies found that
urinary thallium concentration showed similar associations with kidney function as the
plasma concentration in our study [27–31]. Future studies on urinary thallium and thallium
clearance may be useful for providing more insight on the effects of thallium on the kidney.
In addition, determination of thallium in other media, such as nails or hair, may be helpful
when exploring the potential effects of long-term thallium exposure in future studies [39,40].

5. Conclusions

Circulating thallium concentrations are not associated with markers of nephrotoxicity,
or with graft failure or mortality in KTR. In contrast with other heavy metals such as lead,
cadmium, and arsenic, there is no evidence of tubular damage or thallium nephrotoxicity
for the range of circulating thallium concentrations observed in this study.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jcm11071970/s1. Figure S1: Diagram visualizing the flow of participants through the study.
Figure S2: Kaplan–Meier analyses for death-censored graft survival and patient survival for patients
with plasma thallium concentrations >90th percentile. The p-value represents the significance of
difference between the groups as assessed using a log-rank test. Figure S3: Kaplan–Meier analyses
for death-censored graft survival and patient survival for patients with plasma thallium concentra-
tions >95th percentile. The p-value represents the significance of difference between the groups as
assessed using a log-rank test. Table S1: Cox regression analyses with transformed plasma thallium
concentrations to identify potential non-linear associations with outcome.
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