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Abstract

Motivation: The Estimation of Model Accuracy problem is a cornerstone problem in the field of Bioinformatics. As of

CASP14, there are 79 global QA methods, and a minority of 39 residue-level QA methods with very few of them working on

protein complexes. Here, we introduce ZoomQA, a novel, single-model method for assessing the accuracy of a tertiary

protein structure/complex prediction at residue level, which have many applications such as drug discovery. ZoomQA

differs from others by considering the change in chemical and physical features of a fragment structure (a portion of a

protein within a radius r of the target amino acid) as the radius of contact increases. Fourteen physical and chemical

properties of amino acids are used to build a comprehensive representation of every residue within a protein and grade

their placement within the protein as a whole. Moreover, we have shown the potential of ZoomQA to identify problematic

regions of the SARS-CoV-2 protein complex.

Results: We benchmark ZoomQA on CASP14, and it outperforms other state-of-the-art local QA methods and rivals state of

the art QA methods in global prediction metrics. Our experiment shows the efficacy of these new features and shows that

our method is able to match the performance of other state-of-the-art methods without the use of homology searching

against databases or PSSM matrices.
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Introduction

Proteins are the drivers of biological action. They are responsible

for everything from locomotion to digestion to the creation of

energy. The ability for proteins to complete these functions is

largely dependent on their tertiary structure: the 3D arrange-

ment of amino acids, the primary building blocks of proteins.

Understanding, predicting and analyzing protein tertiary struc-

ture is therefore a large key to breakthroughs in many different

areas of biology, such as drug discovery [1, 2].

Advancements in next-generation sequencing technologies

allow for efficient and accurate generation of protein sequences.

However, methods for determining their structure, such as

X-ray crystallography and Nuclear Magnetic Resonance, are

time-consuming, costly and in some cases not possible. To

address this, researchers in the bioinformatics field have

developed numerous computational methods for tertiary

structure prediction [3–12]. Computational methods allow for an

abundance of structure predictions, leading to an ever increasing

need for developing methods to evaluate the quality of these

models. The Critical Assessment of Techniques for Protein

Structure Prediction (CASP) is designed to benchmark progress

of computational protein structure prediction methods and

attracts hundreds of research groups around the world every

other year. As CASP is gainingmore exposure, private companies

have begun participating in the recent CASP competitions. In

2020, companies such as Google put their resources toward

protein tertiary structure prediction.Google’s latest AI algorithm,

AlphaFold 2, has revolutionized the field with their performance

in CASP14 [5]. Their method has the capability of making

high-accuracy protein structure predictions comparable to

the expensive and time-consuming lab experiments. This

vast improvement in accuracy highlights the importance of

evaluating the predicted protein decoy, especially the residue-

level accuracy. This is referred to as Estimation of Model

Accuracy problem or the protein Quality Assessment (QA)

problem.

Computational methods for the QA problem aim to quan-

tify the accuracy of a protein decoy in reference to its native

structure but without the knowledge of its ground truth. There

are two metrics that address this: GDT-TS (global distance test

tertiary structure), which refers to the global structure accuracy,

and the LDDT (local distance difference test) for the accuracy

of individual amino acids in the prediction[13, 17]. Methods for

protein quality assessment are improving, as noted in the CASP

13 experiment [18]. Current methods can be further split into

two general approaches: single-model methods which only have

access to a single prediction and must estimate its quality [19–

25] and consensus models that look at manymodels at a time to

evaluate conserved structural patterns in order to infer quality

[26, 27]. Single model methods utilize a range of different input

features and methods in order to predict local or global quality.

For example, DeepQA, a single-model global method utilizing

deep belief networks, predicts global quality using structural,

chemical and knowledge-based energy scores achieved notewor-

thy performance in the CASP12 experiment [28]. Similar to this,

SMOQ predicts absolute local qualities of tertiary structuremod-

els based on structural features (e.g. secondary structures and

chemical properties such as solvent accessibility or hydropho-

bicity) [29]. Another method, VoroMQA, considers a protein’s

atoms and uses Voronoi tessellation of those atoms to calculate

the knowledge-based potential, that is using contacting surfaces

instead of distances, to predict the local quality of amino acids

[30]. The features used in most of those methods are similar

and need input from both the protein sequence and features

from the protein structure, or databases for secondary struc-

ture predictions. Lastly, there are other structural analysis-based

methods for local quality assessment. For example, GMQ [31]

utilizes Conditional RandomFields [32] rather than chemical and

physical properties of local environments. In addition, only a

few methods work on protein complexes (e.g. ProQ2 [33] used

a local linear window in addition to a radius to all other residues

interacting with that local linear window).

Here, we propose ZoomQA, a novel single-model quality

assessment method based on sequential and 3D structural and

chemical features. We benchmarked this tool on the CASP14

released targets and compared its performance to other state-of-

the-art methods. The accuracy achieved in local quality metrics

without the use of database homology searching indicates the

value of the novel features and furthers the validity of using

these features to perform protein quality assessment.

The paper is organized as follows. In the Method section,

we describe the data acquisition, feature generation for the

tool and address the model architecture and training details.

In the Results section, we analyze the performance of ZoomQA

in comparison to other methods. In the Discussion section, we

provide a summary and interpretation of results. In the Conclu-

sion section, we address significant findings from this work and

address future directions.

Methods

ZoomQA uses a novel representation of amino acids in the

protein structure and addresses the residue level protein

quality assessment problem with help of machine learning

techniques.

PDB data analysis

The basis of this work stems from analysis of 55 000 crystal PDB’s

retrieved fromhttp://www.rcsb.org/. The first area of exploration

regards something we refer to as a ‘fragment structure’ which

describes a portion of a protein centered around a target amino

acid and includes all residues within a radius of consideration

r, measured in angstroms, ranging from 5 to r angstroms. The

second area of exploration is an analysis of the occurrence of

torsion angle combinations for four categories: the occurrence

of angles regardless of secondary structure and three values

representing the occurrence of the given torsion angles when

considering the secondary structure categories of alpha-helix,

beta-sheet and coil.

When analyzing the fragment structures, the first action is

extracting the contact map from the PDB. Once the contact map

is extracted, we need each residue’s amino acid letter code,

hydrophobicity, monoisotopic mass, solvent accessibility and

isoelectric point. From this, we were able to generate what we

call ’Zoom Features’, a measure of a certain metric of a fragment

structure as the radius of consideration increases. Examples of

the relative amino acid density graphs can be found in Sup-

plementary Figures 1 and 2, see Supplementary Data available

online at http://bib.oxfordjournals.org/, which demonstrate the

typical environment around the amino acid Alanine and Tryp-

tophan. Since we can see different trends for the amino acid

environment surrounding a specific amino acid, we assumed

that there were trends in these data that could allow us to infer

the quality of an amino acid based off of not only the relative

change in fragment amino acid composition but other chemical

http://www.rcsb.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
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Figure 1. (A) The average hydrophobicity of the fragment structure at a radius of 5 to r centered around the target amino acid with letter codes of amino acids

represented in the figure legend. (B) The average monoisotopic mass of the fragment structure at radius 5 to r centered around the target amino acid with letter codes

of amino acids represented in the figure legend. (C) The average solvent accessibility of the fragment structure at radius 5 to r centered around the target amino acid

with letter codes represented in the figure legend. (D) The fragment structure at radius 5 to r centered around the target amino acid with letter codes represented in

the figure legend. This is generated by the IsoelectricPoint module in Python’s package BioPython [34].

and physical features as well. Figure 1 shows the same change

of fragment structure composition as the radius of consideration

increases for hydrophobicity,monoisotopic mass, solvent acces-

sibility and isoelectric point, respectively. Once this information

is acquired, we can compile the data for the change over the

radius expansion. If we consider the amino acid at index 0 in

the sequence, most methods consider the sliding window of

neighbors in reference to that amino acid in the sequence (i.e.

the residue at index 1, 2, 3, etc.) [33]. However, since proteins are

not strictly linear, other amino acids that may not be directly

next to the target amino acid in the sequence play a role in deter-

mining the target amino acid’s placement. More importantly,

it will be difficult for protein complexes where several chains

are not directly connected. To address this, we analyze the 3D

radius around an amino acid as the target’s environment. We

can extract relevant data from this environment which is amore

representative feature of how amino acids are placed within

proteins.

The second area of exploration was an analysis of dihedral

angles that occur in crystal PDBs. In theory, both phi and psi can

be in a range (-180, 180). However, in practice, the torsion angles

cannot reach that full range. This is due to the amine group

of each amino acid. The size, mass, hydrophobicity and other

factors all play into the placement of the amine group, and thus

the placement of the amine group can sterically prohibit cer-

tain angles from existing in nature. Furthermore, torsion angles

correlate with the secondary structure of the amino acid and

can be used to infer secondary structure. This feature is often

used in quality assessment tools, such as DeepQA, AngularQA

and SMOQ, but is oftentimes encoded as a 0 or 1 describing

whether or not the torsion angles represent the predicted sec-

ondary structure [28, 29, 37]. We can get a more representative

feature of torsion angles and secondary structure by analyzing

the occurrence of these torsion angles regardless of secondary

structure and the torsion angle occurrences when the amino

acid is within secondary structures (alpha-helices, beta-sheets

and coils). Supplementary Figures 3 and 4, see Supplementary

Data available online at http://bib.oxfordjournals.org/, show the

Ramachandran plots that represent the stability scores for two

different amino acids: alanine and proline. Both amino acids

exhibit different common torsion angles dependent on the sec-

ondary structure they are in. These different values led us to

believe that this information could help our model differentiate

the quality of an amino acid based off of its predicted secondary

structure and its predicted stability within that structure.

In order to generate this stability score, we explored various

machine learning techniques before settling on Random Forest

regressors. For each amino acid, a Random Forest was trained

on 97 200 instances of angles with their normalized relative

occurrence and tested on the remaining 32 400 instances of

angles that can come from the combination of angles in the

range (-180, 180).After exploring hyperparameters of the number

of trees and maximum tree depth, the optimal parameters were

found byminimizing the testing average error + maximum error

+ the difference between the testing and training values for

maximum and average error.

Data preparation

The feature input for ZoomQA is protein decoys generated from

the CASP competitions (CASP6 through CASP13) and obtained

from the CASP website http://predictioncenter.org/download_a

rea/ [35]. All PDB’s are then filtered and structurally aligned with

their respective targets. From there, we processed all the PDB’s

into matrices containing raw data for each individual amino

acid. This resulted in over 26 000 000 examples of residue data.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
http://predictioncenter.org/download_area/
http://predictioncenter.org/download_area/
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Next, we filtered out outliers by removing training examples

with amean absolute distance error (in angstroms) of more than

25 angstroms. In order to balance the representation of different

qualities, we randomly shuffled all of the data into 60 batches

of 430 000 training examples with a 61st batch containing the

overflow. We then establish 100 bins with labels ranging from

0.0–0.01 all the way to 0.99–1.00 and select 600 targets for each

bin and batch. Since the data are normalized when selecting

bins, the bin width is 0.25 angstroms. The number of targets

(600) was selected arbitrarily as analysis was performed show-

ing that there were a minimum of 1100 targets in each bin

from each batch, guaranteed to fill the quota for each batch. It

allowed us to generate a sufficiently large dataset for training

while still balancing the data appropriately. This process results

in 61 smaller batches of length 60 000 that are balanced in

their representation of labels. These are then used as a sam-

ple space for training data. One of the 61 batches generated

is withheld from training and used as testing data. Validation

data come from 33 targets of the CASP14 competition, repre-

senting 7736 unique PDBs, which are not used in the training

data set.

Features

ZoomQA utilizes 14 properties regarding the chemical and phys-

ical properties of the target amino acid and its environment.We

will use the term ‘fragment’ to describe a region of a protein that

can be generated by including all amino acids within a radius

of consideration r of a target amino acid where r represents a

distance measured in angstroms. Two datasets were generated:

one where r was set to a minimum of 5 angstroms and a

maximum of 25 angstroms, and another where r was set to a

minimum of 5 angstroms and a maximum of 55 angstroms.

For each dataset generated, the step for considering a new

’fragment’ was 1 angstrom. The average proportion of protein

residues included at the radius of 25 angstroms was 0.5265

and the average proportion of protein residues included at the

radius of 55 angstroms was 0.9393. Unless the description states

otherwise, all described features are normalized by the following

equation:

Zi = (xi − min(x))/(max(x) − min(x)), (1)

where Zi is the normalized value, xi is the value we are trying

to normalize, min(x) represents the minimum value from the

set x and max(x) represents the maximum value from the set

x. Since the maximum and minimum values come from the set

of numbers generated for each residue, the normalized value is

guaranteed to be in the range of 0 and 1.

The first property is the average amino acid density of a

fragment as the radius of consideration increases from 5 to r

angstroms. This is a r x 20 matrix. The columns of this matrix

correspond to the letter codes for all twenty amino acids in

alphabetical order. The rows of this matrix represent the radius

of consideration in the set {5, 6,...,r} (e.g. row 0 represents a

radius of consideration of 5 angstroms, row r represents a radius

of consideration of r angstroms). Each element of this matrix

represents the relative density of the column amino acid in the

fragment with a radius equal to the row + 5 angstroms from the

center amino acid. This property adds a total of 1020 features to

the total feature set.

The second property is the average hydrophobicity of the

fragment of protein in contact with the target amino acid as

the radius of consideration increases from 5 to r angstroms.

This is a vector with length r, where index 0 represents the

average hydrophobicity of all amino acids within the fragment

if the radius of consideration is 5 angstroms. This includes the

hydrophobicity of the target amino acid because that influences

the overall hydrophobicity of the structure. Since the finalmodel

considers a largest radius of 55 angstroms, this property adds 51

features to the total feature set.

The third property is the average monoisotopic mass of

the fragment of protein in contact with the target amino

acid because the radius of consideration increases from 5 to

r angstroms. This is a vector with length r, where index 0

represents the average mass of all amino acids within the

fragment if the radius of consideration is 5 angstroms. This

includes the mass of the target amino acid because it influences

the overall mass of the structure. This vector adds a total of 51

features to the overall feature set.

The fourth property is the average solvent accessibility of the

fragment of protein in contact with the target amino acid as the

radius of consideration increases from 5 to r angstroms and adds

a total of 51 features to the overall feature set. Similarly, this

is a vector with length r, where index 0 represents the average

solvent accessibility of all amino acids within the fragment if

the radius of consideration is 5 angstroms. This includes the

solvent accessibility of the target amino acid as that influences

the overall solvent accessibility of the structure.

The fifth property is the isoelectric point of the fragment of

protein in contact with the target amino acid as the radius of

consideration increases from 5 to r angstroms and once again

adds a total of 51 features to the overall feature set. This is a

vector with length r, where index 0 represents the isoelectric

point of the fragment generated by a radius of consideration of 5

angstroms. In order to generate this, we consider the fragment’s

amino acid sequence as a unique protein and then use the

IsoelectricPoint module in Python’s package BioPython [34] to

calculate the isoelectric point for that fragment.

The sixth property is a length r vector that represents the

average distance of all amino acids to the target amino acid

as the radius of consideration increases from 5 to r, adding 51

features to the total feature set. This value is normalized by the

radius of gyration, defined as the maximal distance between

the target amino acid and any amino acid within the radius

of consideration. This is accompanied by the seventh property

which is a length r vector that represents the standard deviation

in the distance between the target acid and its set of amino acids

in contact as the radius of consideration increases. This adds a

total of 51 features to the input. The input data are normalized

before calculating the standard deviation; thus, the feature is

normalized upon creation. The input data are normalized by

dividing all distances between the target amino acid and its

contacts by the radius of gyration.

The eighth property is a vector with length r that represents

the percentage of the protein as a whole that is within the radius

of consideration as the radius increases from 5 to r angstroms.

This adds a total of 51 features to the input.

The ninth property is very similar to the first feature where

we find the relative density of each amino acid for fragments

as the radius of consideration increases. For this feature, we

weight the occurrence of the amino acids, adding an increased

weight if the amino acid in contact is not sequentially in contact

with the target amino acid. This generates a contact matrix that

emphasizes the contacts resulting from the folding of a protein.

This property has dimensions 20 x 51 resulting in 1020 total

features being added to the feature set.
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The tenth property is the stability score of the target amino

acid’s torsion angles as generated by the Random Forest models

described in the previous section. We generate four stability

scores. The first score is the stability score of the angles regard-

less of the secondary structure. The next three scores are the

stability scores of the torsion angles if the secondary structure

of this amino acid was an alpha-helix, beta-sheet or coil, respec-

tively. We do not consider the secondary structure of this amino

acid coming from the PDB, however. This property adds a total

of four values to our input set.

The rest of the properties all pertain to the center amino acid,

the target. We include the amino acids’ monoisotopic mass, the

hydrophobicity, the solvent accessibility, isoelectric point and

the torsion angles (two values), all normalized to values between

0 and 1. We also include the amino acid letter code and the

secondary structure extracted from protein structure as one-hot

encoded vectors. This results in a total of 31 features constituting

the final row, and we pad with zeroes to make a square matrix

for the model.

Method architecture and prediction process

The final model was trained on 60 000 vectors of the top 100

features for a set of samples of data generated from amaximum

radius of consideration of 55 angstroms.This led to a total of 2397

features being generated for each amino acid in the training set.

The final model selects the top 100 performing features based

on their Pearson correlation to their labels. The Support Vector

Machine is trained as the final model with the RBF kernel, a C

value of 1.0, an epsilon value of 0.1 and a gamma value of 1.0.

The loss function used was absolute distance error per amino

acid as calculated by the following equation:

Loss = abs(ŷ − y). (2)

For the distance calculations, we use the alpha carbon as ref-

erence. Supplementary Table 1, see Supplementary Data avail-

able online at http://bib.oxfordjournals.org/, describes the hyper-

parameter search to achieve the final parameters.

Figure 2 represents the overall process of creating local qual-

ity predictions based off of a single PDB input. In order to use

ZoomQA, PDB format input is required (the input could be single

chain protein or complex). From there, each PDB is loaded and

features are extracted and compiled into a 47 x 51 dimension

matrix. Once this is created, we select the top 100 correlated

features as we found from our experiments. The list of these

features can be found in Supplementary Table 2, see Supplemen-

tary Data available online at http://bib.oxfordjournals.org/. Once

the feature set is established, each amino acid is fed through

the support vector machine producing a local quality score. This

is repeated for all amino acids in the structure. Once all local

quality scores are calculated, the global quality score score is

calculated using the following equation:

Global∼Qaulity =

∑n
i=1

1
(1+(ji∗(ji/12))

n
, (3)

where n is the length of the protein sequence and j is the set

of local distance error predictions for each amino acid [13, 38]

where xi is a local error prediction, and 12 is decided by an

experiment of evaluating the performance of different values

from 5 to 20 on the training dataset (data are not shown).

Results

ZoomQA was benchmarked on the latest CASP 14 dataset and

compared with other top-performing single model QA meth-

ods. In total, 33 targets are used from CASP 14 dataset and

all predictions are filtered so they have the same sequence

in each target. In this work, we primarily analyze local qual-

ity metrics; global quality analysis appears in Supplementary

Figures 5 and 6, see Supplementary Data available online at

http://bib.oxfordjournals.org/. For local quality metrics, we eval-

uate the minimum, average and maximum distance error, LDDT

error, and the absolute distance and LDDT SD in error for targets

over a distribution of bins.

For performance in local quality, Table 1 demonstrates min-

imum, average and maximum distance error for the other local

QA methods tested, while Table 2 represents the minimum,

average andmaximumLDDT error for the overall CASP 14 bench-

mark set including further segregation into the two different

stages (20 out of all server models are selected by organiz-

ers for stage 1, and stage 2 comes from the top 150 models

selected using the Davis-EMA consensus method by the orga-

nizer). When measuring distance error, ZoomQA falls short of

othermethods butmanages to be within 10% of eachmethod for

minimum, average and maximum error. VoroMQA significantly

outperforms ZoomQA in the overall metric with a P-value of

0.008 originating from a T-Test. Similarly, SMOQ outperforms

ZoomQA in thismetric with a P-value of 0.015, also from a T-Test.

When looking at overall LDDT performance, however, ZoomQA

manages to beat both VoroMQA and SMOQ in all overall metrics.

These values are significant with a P-value of 0.0 as reported by

a T-Test. ZoomQA is beaten in Stage 1 performance only by the

method SMOQ on the average and maximum LDDT error with

a P-value of 6.99e-14 but still outperforms VoroMQA here with

a P-value of 3.19e-08. Finally, in stage 2 performance, ZoomQA

outperforms both SMOQ and VoroMQA significantly with both

with P-values of 0.0. Figure 3 demonstrates the SD of distance

error when the target value is in the range 0–19 angstroms with

a bin width of 1 angstrom. ZoomQA outperforms SMOQ and

VoroMQA at ranges 1–7. It is worth noting that all distances

greater than 19 angstroms were grouped into the final bin,

causing a large spike in the deviation of distance error. Figure 4

shows the SD of LDDT error when the target value is in 20 bins,

0–0.05, 0.05–0.010 and so on. ZoomQA outperforms VoroMQA for

all bins and outperforms SMOQ at bins 0–14.

Discussion

Model

As stated earlier, the final model used in ZoomQA is a Support

Vector Machine; this was concluded after rigorous testing using

a radius of consideration of 25 angstroms and evaluating Sup-

port Vector Machines, Random Forests, Multilayer Perceptrons

and Convolutional Neural Networks. Due to time and resource

constraints, this extensive testing was not performed on the

data generated with a radius of consideration of 55 angstroms,

but testing showed that the 55 angstrom data outperformed the

experiments on data generated with a radius of consideration

of 25 angstroms. Results for these experiments can be found

in Supplementary Table 1, see Supplementary Data available

online at http://bib.oxfordjournals.org/. Hyperparameter opti-

mization was performed for Support Vector Machines on the

radius 55 data with the same parameters described in Supple-

mentary Table 1, see Supplementary Data available online at

http://bib.oxfordjournals.org/.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
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Figure 2. Flowchart of ZoomQA method as a whole. PDB data are taken in and features are generated. Each feature set is then fed into a support vector machine that

predicts the local quality of that amino acid. Repeat this process for all amino acids in the PDB.

Table 1. Local QA absolute distance error of ZoomQA versus other tools

Method Stage Min. error Ave. error Max. error

ZoomQA Overall 1.156 12.668 248.751

Stage 1 1.466 22.32 248.751

Stage 2 1.156 8.53 111.494

SMOQ Overall 1.353 12.016 242.104

Stage 1 1.551 20.375 242.104

Stage 2 1.353 8.307 104.962

VoroMQA Overall 1.094 11.798 234.13

Stage 1 1.381 19.844 234.13

Stage 2 1.094 8.290 100.98

Table 1 represents the performance of ZoomQA versus other tools on mean absolute distance error. Values in bold represent significant values, with P-values less than

0.05. Normality of values proven with Chi-Square test for normality.

Table 2. Local QA LDDT error of ZoomQA versus other tools

Method Stage Min. error Ave. error Max. error

ZoomQA Overall 0.063 0.159 0.61

Stage 1 0.069 0.18 0.43

Stage 2 0.0635 0.151 0.402

SMOQ Overall 0.064 0.189 0.718

Stage 1 0.075 0.159 0.355

Stage 2 0.095 0.199 0.415

VoroMQA Overall 0.079 0.218 0.824

Stage 1 0.082 0.12 0.435

Stage 2 0.099 0.228 0.546

Table 2 represents the performance of ZoomQA versus other tools on LDDT error. Values in bold represent significant values, with P-values less than 0.05. Normality

of values proven with Chi-Square test for normality.

In addition to these models described above, we attempted

to train multiple different ResNet’s [14]. Due to time constraints,

the model was not adapted from the architecture described

by He et al. ResNet input shape is a matrix with dimensions

224 x 224 x 3. Since our feature set is much smaller than the

required input size, we duplicated the matrix until we reached

the necessary size. This was done as to maintain the archi-

tecture of the residual blocks, as changing the structure of the

blocks lead to extremely poor performance. Testing was done

on three standard models, one with 18 layers, one with 34

layers, one with 50 layers. These methods achieved an average

error on the CASP 14 validation set of 27.34 angstroms of error,

15.22 angstroms of error and 17.71 angstroms of error, respec-

tively. Further experiments will have to be done to adapt the

ResNet architecture to such a small input size, but initial exper-

iments indicate that the conventional architecture does not

perform well on the given dataset. More experiments will have

to be completed for this technique as well as exploring newer

deep-learning techniques such as Transformers [15], which have

shown excellent results in many natural language processing

tasks.

Feature selection and model optimization

With the generation of all of the features described in Section 2.3,

there are a number of data points which are not correlated to

the outputs and impede the convergence of a model regardless

of the architecture. To get around this, we performed many
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Figure 3. Performance of ZoomQA versus other local QA methods. Each line

represents the SD of the absolute distance error when the ground truth value is

in each bin.

Figure 4. Performance of ZoomQA versus other local QA methods. Each line

represents the SD of the LDDT error when the ground truth value is in each bin.

different feature selection methods before finally deciding to

select features based off of their raw Pearson Correlation. The

feature selection experiments are described below. The final

model used the top 100 features. This was concluded after exper-

iments suggesting diminishing returns including more than 100

features. When including 10 features, the model was roughly

10% worse than including 100 features, and adding 10 features

incrementally to the model improved performance by roughly

1%. After 100 features were included, adding 10 more features

resulted in increases in performance of roughly 0.01%, and with

the top 1000 features included, the model only performed 1%

better than the top 100 features. The features included can

be found in Supplementary Table 2, see Supplementary Data

available online at http://bib.oxfordjournals.org/.

Method 1: Pearson correlation

When selecting the features based on feature correlation, we

calculate Pearson correlation on each feature and select the top n

(in the final model n = 100) features based on the absolute value

of their feature correlation. Once the features are selected, the

features are arranged either into a vector with the top correlated

feature at the beginning of the vector and the lowest at the

end, or into an n x m matrix where coordinate (0,0) represents

the highest correlated feature and the lowest correlation is at

coordinate (n,m). The distinction between creating a vector or a

matrix depends on the method being tested. Vectors are created

when training Random Forests, Support Vector Machines and

Multilayer Perceptrons, whereas matrices are used when train-

ing Convolutional Neural Networks. This method was used in

the final model and achieved all the metrics stated in Section 3.

Method 2: Pearson correlation and clustering

When selecting features based on correlation and clustering,

we repeat the process described above and rank each feature

based on their Pearson correlation. Next, we perform K-Mean

clustering on each feature and generate n number of clusters of

features, while n is the number of features you want to select.

In our case, n is 100 since we selected the top 100 features. Each

feature is selected from each cluster prioritizing features near

the centroid until we have n features. These features are then

arranged into a vector with the highest correlation feature in

the first index and the lowest correlation feature in the last

index, or into an n x m matrix where coordinate (0,0) represents

the highest correlated feature and the lowest correlation is at

coordinate (n, m). The distinction between creating a vector

or a matrix depends on the method being tested. Vectors are

createdwhen training RandomForests, Support VectorMachines

and Multilayer Perceptrons, whereas matrices are used when

training Convolutional Ceural Networks. Ultimately, selecting

features based on Pearson correlation and clustering resulted

in very few effective features being chosen. When the clusters

were generated, a select few of the clusters held the majority

of the high correlation features. When choosing features from

each cluster, we very quickly exhausted the pool of effective

features. Using this technique for feature selection resulted

in an average absolute distance error of 14.03 angstroms,

slightlyworse performing than selecting solely based on Pearson

correlation.

Method 3: Maximum relevance minimum redundancy

Maximum relevance minimum redundancy [16] is a feature

selection technique that aims to maximize the correlation

between selected features and their labels while minimizing

the correlation between chosen features. In order to select the

top n features,we followed the FCQ protocol which specifies that

features be scored according to the quotient of their F Statistic

when compared with their labels, and the correlation between

the feature and the already chosen features. According to the

authors, this method lead to the most stable feature selection

regardless of downstream machine learning technique used.

Utilizing this method, we selected the top 100 performing

feature and came up with 23 features that did not appear in the

feature set generated by the raw feature correlation (method 1).

Of these features, 6 came from the relative amino acid density

change, 6 came from the structure contact matrix, 3 came from

the hydrophobicity change feature, 3 from the isoelectric point

change and the final 5 came from the vector representing the

average distance of amino acids to their center as the radius of

consideration increases.

Overall, this led to a decrease in performance of many

machine learning models on the dataset. The same hyper-

parameter optimization was run on these data as with the

Pearson correlation feature selection method, and a minimum

absolute distance error of 15.24 angstroms was achieved,

whereas the original model used in ZoomQA achieved an

average mean absolute distance error of 12.67. This could be

due to the relatively low correlation of some of the features

chosen by this method. In particular, 5 of the new features

chosen had a Pearson correlation to their labels of less than

0.05. While these features were unique, they did not contribute

any discriminatory ability to the model. This feature selection

technique has been demonstrated to be successful in many

bioinformatics task, but unfortunately is not a good fit for

this method.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
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Figure 5. Case study of ZoomQA on PDB 7JTL. (A) Modeled PDBwith highlights showing the large error regions identified by the tool. (B) Error graph in absolute distance

error for PDB 7JTL.

Efficacy of features

When using all of the features for training, we achieved a mean

absolute distance error of 16.23 angstroms. During efforts to

improve these results, we found a large number of features that

exhibited a very low Pearson correlation with their labels. Upon

this realization, we began filtering our feature set based on the

features’ Pearson correlation with the labels. When evaluating

all features, there are 28 features that have a correlationwith the

targets that is over 0.20. Oncewe go down to the top 100 features,

this correlation only drops to 0.12. Of the top 100 correlated

features, 51 come from the change in solvent accessibility as

the radius of consideration increases, 28 come from the average

distance of amino acids in a fragment to their center, 13 come

from the change in hydrophobicity of protein fragments as the

radius of consideration increases, all of the secondary structure

stability scores are included, as are the hydrophobicity, mass

and isoelectric point values for the target amino acid. Sup-

plementary Figure 7, see Supplementary Data available online

at http://bib.oxfordjournals.org/, helps visualize the distribution

of included features versus the original set of properties. The

performance of the raw features on the validation set can be

found in Supplementary Table 3, see Supplementary Data avail-

able online at http://bib.oxfordjournals.org/, where the Solvent

Accesibility Change at radius 46 and 51 performed best with

a Pearson Correlation value of 0.32. It is interesting to note

that while the isoelectric point values for the target amino

acid are included, data regarding the change in isoelectric point

of the fragment structures around the target amino acid are

not included. In fact, the change in isoelectric point of protein

fragments ranks around the 1700 most influential features with

an average correlation of around 0.02. This indicates that this

feature is not indicative of the quality of an amino acid and was

part of the initial troubles when training a model. This is an

interesting conclusion since all other ZoomQA featureswere, at a

minimum, in the top third of features based off their correlation.

Other features that rank below 0.05 correlation include certain

values coming from the change in amino acid density of protein

fragments and portions of the structure contact matrix. This

was expected as a considerable number of targets do not con-

tain certain amino acids, meaning that there are large portions

of the training set that contain a large portion of zeros. The

usage of these features improved our mean absolute distance

error by roughly 4 angstroms to a value of 12.67 angstroms

of error.

Performance

In regards to performance, ZoomQA manages to outperform

other well-performing models on the CASP14 benchmark

dataset on the LDDT metric and rivals their performance on the

local distance metric. This performance is further highlighted

in Figure 3 where ZoomQA achieves lower distance error

deviation across many of the true values below 7 angstroms,

and in Figure 4 where it outperforms other methods in LDDT

deviation when below 0.60. This can impact the reliability of our

predictions, as if the quality of the model overall is around 2–3

angstroms, our model tends to perform better, but the model

does not tend to work as well as other methods on decoys with

lower overall accuracy.This is a reflection of the current trends in

CASP structure predictions.We achieve these results without the

use of a PSSM and any alignment data obtained from BLAST/PSI-

BLAST. This highlights the efficacy of the features obtained from

ZoomQA and also allows for the tool to be easier to use than

other methods that would require the use of a large database or

the time-consuming process of performing sequence alignment.

For reference, we benchmarked the runtime of the local quality

tools SMOQ and VoroMQA on the 214 examples of CASP target

T1042, a structure with 276 residues, and found that VoroQA

completed the quickest in 635 s (10 min 35 s), ZoomQA finished

next in 3031 s (50 min 31 s) and SMOQ, the only tool requiring

homology search and PSSM, took 44 752 s (12 h 25 min). It also

takes out some of the variation in results as sequences without

homology in the provided database could harm the performance

of methods that require them.

Case study on SARS-CoV-2 protein complex

We used our new ZoomQA tool to validate the quality of exper-

imental complex PDB 7JTL, which is the structure of SARS-

CoV-2 ORF8 accessory protein and has two chains. Figure 5A

shows the structure of the experimental complex, and Figure 5B

demonstrates the prediction from our ZoomQA. As we can see

in Figure 5B, there are a few peaks in our prediction (see the two

cases circled in red), which indicates those regions may have

serious flaws.We identified those two regions in the experimen-

tal complex and highlighted them in red (see Figure 5A), and

indeed, we found out that there are gaps in the experimental

complex. This case shows the potential of using ZoomQA to

identify serious flaws in the experimental or predicted protein

structure.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab384#supplementary-data
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We also evaluated the capability of ZoomQA in scoring pro-

tein–protein docked poses, though ZoomQA was not originally

trained for ranking protein complexes. The global quality score

of the docked pose is estimated by the set of local distance error

predictions for the selected residues around the interface sur-

face using equation (2). The interface residues are determined

using a distance cut-off of 8 angstroms between any two CB

atoms (or CA for Gly) in the pairs of interacting chains. The

neighboring amino acids (i.e. window size 24) surrounding the

selected interface residues are included for the global quality

estimation. The performance was compared to two other scor-

ing algorithms that were developed for ranking protein docked

decoys: DockScore [39] and ZRANK [40]. Targets were collected

from the CAPRI Docking competition [41]. The dataset contained

a total of 15 targets, each with protein decoys predicted by

diverse docking algorithms. These decoys were collected and re-

ranked using ZoomQA, DockScore and ZRANK. The quality of

the top-ranked decoys (top1 and top5) selected by each method

was compared using similarity scores (i.e. lrmsd, irmsdbb, irms-

dsc) [42]. These metrics are also used in the official evaluation

results and provided in the CAPRI scoring decoys database.

The results of model scoring are provided in Supplementary

Tables 3 and 4, see Supplementary Data available online at

http://bib.oxfordjournals.org/. ZoomQA is comparable with the

other two methods on average according to the accuracy of top

1 and top 5 selected decoys. Particularly, ZoomQA picked a near-

native decoy for target T47 that has an lrmsd 1.92, which is

significantly better than the model chosen by DockScore.

Conclusion

In this paper, we purpose a new residue-level protein model

quality assessment tool, ZoomQA, which utilizes novel

sequential and 3D structural features to grade the local quality

of a tertiary structure prediction. It outperforms state-of-the-art

methods in local quality, particularlywhenmeasuring LDDT,and

although ourmethod is not trained using GDT-TS as ametric, the

conversion of local quality assessment scores to global quality

assessment score rivals other methods when compared using

the GDT-TS metric. Our method only needs protein structure as

input and points out a new direction for evaluating the quality

of predicted protein decoy and protein complex.

In the future, we plan on fine-tuning the ZoomQA features

to minimize the production of low-correlated features. This

would eliminate the need for feature selection based on Pear-

son correlation. Additionally, we plan on incorporating more

ZoomQA features to better describe the 3D structure of proteins.

We would also like to explore different forms of deep learning

to gain insights into our data that may not be possible with

conventional machine learning techniques. Finally, we plan to

analyze more details of each feature and also explore the deep

learning techniques, such as the DeepAccNet utilization of deep

learning techniques for protein structure refinement [43].

Key Points

• The change of chemical and physical features in 3D

environment with different radius is important fea-

ture for protein structure prediction.
• The ZoomQA works well in identifying regions in pro-

tein complexes that potentially have serious flaws,

and demonstrated good performance compared with

other methods in the CASP dataset.

• All new features proposed by ZoomQA except for the

change in isoelectric point show great performance

compared with traditional features for validating the

quality of protein structures.
• Feature selection based on Pearson correlation is

effective to improve the performance of our Support

Vector Machine model to evaluate the local quality of

protein structures.
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