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Abstract: The study of meiosis is limited because of the intrinsic nature of gametogenesis 

in mammals. One way to overcome these limitations would be the use of culture systems 

that would allow meiotic progression in vitro. There have been some attempts to culture 

mammalian meiocytes in recent years. In this review we will summarize all the efforts  

to-date in order to culture mammalian sperm and oocyte precursor cells. 
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1. Introduction 

Gametogenesis is the process by which gametes are produced. During this process, haploid cells are 

obtained from diploid progenitors. This is achieved by executing the meiotic program which involves 

two successive rounds of cell division after a single round of DNA replication. The proper execution 

of this program is essential to maintain species ploidy from one generation to the next, as well as to 
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provide genetic variation to the species. Thus, errors produced during meiosis can compromise fertility 

or cause aneuploid embryos. In humans, the impact of errors produced during meiotic divisions is an 

important social problem. Aneuploidy is the major cause of mental retardation and developmental 

issues present in newborns [1]. Moreover, it is believed that most miscarried conceptions do not come 

to term because of the presence of an unbalanced karyotype [1]. Therefore, to understand the origin of 

aneuploidy and infertility, it is crucial to know in detail the processes that happen during meiosis 

and gametogenesis.  

In mammals, gametogenesis is initiated early in development. In mice, around embryonic day 

(E)7.25, specification of germ cells occurs. During this process, a group of cells from the most 

proximal epiblast is induced to differentiate into primordial germ cells (PGCs) [2,3]. These newly 

formed PGCs will proliferate and migrate to the embryonic gonads, where they can be found around 

E10.5. Once in the gonads, PGCs undergo several rounds of mitosis. By E12.5, PGCs express some 

meiotic-specific genes, such as Sycp3 and Dmc1 [4]. Until this point this process is sex-independent. 

Then, in male gonads, germ cells downregulate meiotic-specific genes and initiate a mitotic arrest [5]. 

In contrast, in the female gonads, germ cells enter meiosis, complete meiotic prophase and arrest at 

dictyate stage at least until puberty begins. Meiotic entrance is regulated by the presence of intrinsic 

factors like Dazl, [6] and also by extrinsic ones like retinoic acid (RA) [7,8]. Fetal female gonads have 

much higher concentration of RA than male ones, most likely because male gonads express the 

enzyme responsible for catalysis of RA, CYP25B1 [7]. Moreover, in vitro studies have shown that 

addition of RA to culture media induces meiosis initiation in male embryonic gonads in vitro [7,8].  

Later on, in the adult life of mammalian species, gender-related differences regarding evolution of 

meiosis can be found. While females only have a limited pool of arrested meiotic cells available to 

complete meiosis during their reproductive lifespan, males have an almost unlimited capability to 

create spermatocytes, thus allowing males to have a significantly longer fertility than females. In adult 

males, arrested cells resume mitotic activity, produce spermatogonia which constantly enter meiosis to 

produce sperm during most of the life of the individual.  

The first knowledge about mammalian meiosis arose from the descriptive analysis of different 

species gonads, like rodents (especially mouse and rat), some domestic animals (pig, dog, cattle, etc.) 

and primates, especially humans. With the production of genetically engineered mice and their use to 

study the role of different genes in mouse meiosis, a more detailed image of the mechanisms 

regulating meiosis and gametogenesis have been drawn. Nevertheless, in most cases, and because of 

the intrinsic nature of female gametogenesis, most studies are performed using male samples. It is 

important to notice that male and female gametogenesis, and meiosis in particular, does not respond 

the same way to the same perturbation [9,10]. Therefore, analysis should be carried out in both male 

and female gonads.  

While studies of genetically engineered mice have provided a wealth of information regarding 

many molecular pathways, there are technical limitations imposed by this approach. Some of the more 

important are that the production of genetic engineered mice needs time and substantial economical 

efforts. Thus, it would be very valuable to have a tool to predict the outcome of such an expensive 

experiment. Moreover, having an in vitro culture that could allow meiosis in vitro would certainly 

reduce the number of experimental animals needed to be used in future studies. In addition, it would 

allow a more detailed analysis of the human meiotic process to try to address human infertility and 
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aneuploidy origin directly. An additional advantage of in vitro approaches is that they allow for 

manipulation of meiotic events such as RNA interference and introduction of environmental toxins, as 

just two examples. In this sense, some efforts have been focused on promoting entrance of cells into 

the meiotic program or to culture meiocytes in vitro. In this review we will summarize all the efforts 

carried out until now to study meiosis in vitro and analyze the perspective of this new exiting approach 

for the study of mammalian meiosis.  

2. Stem Cells Culture to Obtain Sperm-Like and Oocyte-Like Cells 

One of the strategies to obtain meiotic cultures arises from the knowledge that germ cells can 

spontaneously originate from embryonic stem (ES) cells in culture [11–14]. ES cells (ESCs) are 

derived from the inner cell mass of the preimplantation embryo and maintain pluripotency, defined as 

the capacity to develop into any cell type of somatic ectodermal, mesodermal, or endodermal lineages. 

ESCs can also develop into the germline, as shown by mouse blastocyst injection [15] and by in vitro 

differentiation of mouse and human ESCs (see below). Several reports have recently documented 

primordial germ cell- (PGC), sperm-, and oocyte-like cell development after mouse and human ESC 

differentiation (see below).  

Several groups noticed that ES cells in culture can differentiate into germ cells precursors. This 

process occurs at a very low rate if no stimuli are applied. To improve it, some groups have now 

developed different strategies to promote differentiation of mouse ES cells into germ cells, some of 

them obtaining haploid cells able to produce progeny.  

The first approach to obtain mammalian germ cells was done by Toyooka and colleagues [13]. 

Because it has been shown that bone morphogenic proteins (BMPs) have a crucial role in promoting 

germ cell differentiation in vivo [16,17], these authors co-cultured ESCs with M15 or trophoblast cells 

that produce high levels of BMPs to induce ESC differentiation into PGCs in vitro. ESCs were 

genetically modified and contained either GFP or the LacZ gene in the endogenous Vasa loci, which 

allowed PGC detection. First signs of differentiation were detectable after one day of co-culture. 

Exposure to BMPs allowed the recovery of almost 300 times more PGCs than in unexposed ESC 

cultures. These knock-in PGCs were transplanted into host testis and eight weeks after transplant 

sperm sharing the same markers than the transplanted PGCs were found [13]. Nevertheless, no 

functionality test of the obtained sperm was performed. More recently, other studies have 

demonstrated that BMPs can also induce PGC differentiation in human ESCs [18].  

Geijsen and colleagues [11] used RA to induce ESC differentiation into PGCs. In this case,  

in vitro differentiation did not stop at PGCs and haploid cells were detectable after culture. Although 

meiotic progression was highly inefficient in this culture setting, this study represents the first one that 

obtained haploid cells from mouse ESCs in vitro. Moreover, 20% of the haploid cells used in a test to 

in vitro fertilize oocytes formed embryos that progressed to blastocyst stage [11]. Other groups have 

used similar approaches using RA to generate haploid cells from mouse ESCs [12]. In this study, 

approximately 30% of the cells in culture after 72 h of RA induction were haploid. Furthermore,  

12 animals were born after intracytoplasmic injection of the in vitro-generated haploid cells into 

unfertilized oocytes and transfer to pseudo-pregnant females (N = 65). Nevertheless, the offspring died 

prematurely, probably due to imprinting problems of the male haploid cells. 
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Another study has reported the derivation of germ cells from bone marrow stem cells [19]. In this 

case, RA was used as an inducing agent to obtain PGC-like cells. However, these cells were unable to 

restore spermatogenesis when transplanted to germ cell-depleted testis. 

More recently, the first report of differentiation of male haploid germ cells from human ES cells has 

been published [20]. In this study, the authors purified PGC-like cells from human ES cells and 

induced their differentiation to meiotic and post-meiotic male germ cells by overexpressing DAZ gene 

family members: DAZL, BOULE and DAZ. Results show that after 14 days of culture, TEKT1, a 

marker of mature sperm, can be detected by RT-PCR. Moreover, approximately 2% of the cells in 

culture are haploid. This study represents the first demonstration that human germ cells can be also 

differentiated from pluripotent ES cells in vitro.  

Hubner et al. [21] reported the differentiation of mouse ESCs into PGCs, these cells were 

transfected with a GFP reporter under the control of the germ cell-specific promoter Oct4. GFP was 

expressed in undifferentiated ESCs but was expected to disappear in differentiated cells, these authors 

also analyzed different markers of differentiation like c-KIT, Vasa expression and c-KIT−/GFP+ 

postmigratory germ cells with high Vasa expression. Germ cells that down-regulated OCT4 expression 

entered meiotic prophase. During days 12 to 26, the floating ESC-derived aggregates developed into 

morphologically visible follicle-like structures that contained putative oocytes. These follicular 

structures also expressed Gdf9, steroidogenic enzymes, and produced estrogen. On day 26, the follicles 

released oocytes of 50–70 μm in diameter that expressed the oocyte specific markers Zp2/3 and Figla. 

Furthermore, pre-implantation stage embryos were observed and were likely the result of 

parthenogenetic oocyte activation. Notably, both XX and XY mouse ESC lines produced  

oocyte-like cells. Nuclear SYCP3 was detected in ESC-derived oocyte-like cells; however, no  

pairing-synapsis was detected. 

Subsequently, Novak et al. [23], performing a protocol similar to the one described by Hubner and 

colleagues [21], observed the presence of follicle-like aggregates and elevated levels of estrogens in 

the supernatant after 12 days of culture of mouse ESCs. Differentiation to oocyte-like cells of 40% was 

observed between 14 and 16 days of culture. The differentiation consisted of cells being SYCP3 

positive; however, nuclear localization was variable. Moreover, instead of the long chromosome axial 

core alignment of SYCP3, only short filamentous structures were observed in the aggregates, 

suggesting an abnormal loading of SCP3. The expression of meiotic genes like Dmc1, Sycp1 and 

Sycp2, was not detected, and synapsis was disrupted. In both cases [21], the ESC-derived  

oocyte-like cells produced were not able to progress into meiosis. 

Similarly, Lacham-Kaplan [22] found differentiation for two to three weeks in testicular 

conditioned media resulted in an increased number and size of follicle-like structures [22,23]. These 

follicle-like cell clusters contained putative oocyte-like cells of up to 35 μm in diameter and expressed 

markers of oogenesis, like Stra8, Figla, and Zp3. However, mouse ESC-derived oocyte-like cell 

maturation, oocyte functionality or their ability to be fertilized and produce offspring was not 

demonstrated. Furthermore, meiotic progression of ESC-derived oocyte-like cells was not assessed. 

Recently, Qing et al. [24], using a two-step method, induced the differentiation of mouse ESCs into 

oocyte-like cells [24]. Under certain in vitro conditions, ESCs can aggregate and grow, forming a 

colony known as an embryoid body (EB). In Qing et al. [24], PGCs were differentiated within the EB 

around day 4 of culture. After that, EBs were co-cultured with ovarian granulosa cells. After  
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10 days, these cells formed germ cell colonies as indicated by the expression of the two germ cell 

markers Vasa and Sycp3. These cells also expressed oocyte-specific genes (e.g., FIGalpha, GDF-9, 

and Zp1-3) but not any testis-specific genes. EB cultured alone, or cultured in granulosa  

cell-conditioned medium or EB co-cultured with Chinese hamster ovary (CHO) cells, or cultured in 

CHO cell-conditioned medium did not express any of these oocyte-specific markers. 

Immunocytochemistry analysis using antibodies against VASA or GDF-9 confirmed that some double-

positive oocyte-like cells were generated within the germ cell colonies. These results demonstrate that 

granulosa cells were effective in inducing the differentiation of ESC-derived PGCs into oocyte-like 

cells most likely through direct cell-to-cell contacts.  

Kerkis et al. [25] used a RA-induced differentiation protocol to produce sperm-like and  

oocyte-like cells from male mouse ESCs. In different experiments they generated male or female 

gametes, using genetically manipulated or preselected ES cells. XY mouse ESCs were differentiated in 

suspension as EBs for 4 days without RA and 4 more days with 0.1 μm RA. Cells on the periphery of 

the EBs appeared to have a different morphology and express germ cell markers including Ssea1, 

Oct4, Dazl, Vasa, Stra8, Sycp1, Sycp3, and Zp3. Although these transcripts were also expressed in 

undifferentiated ESCs, the expression of Gdf9 and Acrosin was low to absent in ESCs and 

substantially increased during differentiation. By cytogenetic analysis, they observed a chromosome 

reduction in ES-derived GC. Finally, they concluded that ESCs with XY chromosomes can produce 

both types of gametes under the same experimental conditions [25]. Differentiation will depend on 

their positional and temporal information within the EB context.  

Finally, Salvador et al. [26], using GFP as a marker under the regulation of the Gdf9 promoter, 

reported the identification of oocyte-like cells in cultures of XX mouse ESCs [26]. After 

differentiation for a day on feeders or in suspension without leukemia inhibitory factor (LIF), GFP 

positive oocyte-like cells were detected in the supernatant. These cells expressed Gdf9 and Zp3. 

Surprisingly, the addition of LIF to the culture media increased the number of GFP positive cells by  

three-fold. However, follicle-like structures were not detected, and the oocyte-like cells quickly 

degenerated, which the authors related to the inability of the ESC-derived oocytes to properly  

execute meiosis. 

Many challenges need to be overcome to achieve robust and functional gamete differentiation from 

ESCs. Particularly, the low efficiencies of ESC-derived oocyte-like cell maturation reported to date 

may be unavoidable because naturally in mammals most oocytes undergo atresia during fetal 

development. However, the optimization of methods to direct ESC-derived germ cell specification, 

oocyte commitment, and oocyte maturation may increase efficiencies and enable functional 

oocyte production. 

3. Culture of Adult Male Germ Cells  

Cultures of mammalian male germ cells are rare and not many reports have been published. 

Nevertheless, the few published studies succeeded in promoting meiotic progression in vitro and 

obtaining haploid cells.  

Some of the first attempts to culture mammalian male germ cells were carried out by Durand and 

colleagues over the past decade [27–31]. Over this time they have developed a co-culture technique 
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that allows meiotic progression of rat spermatocytes. Briefly, it consists of co-culture of prepuberal rat 

spermatocytes on a monolayer of Sertoli cells in a bicameral chamber [31]. In their experiments, 

meiotic progression was followed by different approaches, including electron microscopy 

ultrastructural analysis of the cultured cells, analysis of the DNA content by fluorescence activated cell 

sorting (FACS) and expression of some postmeiotic specific genes. All analysis performed suggested 

the existence of meiotic progression in vitro achieving haploid cells after three weeks of culture [27]. 

Moreover, when the culture was seeded with BrdU-labeled leptotene-stage spermatocytes,  

BrdU-positive round spermatids were observed after 21 days of culture [30]. More importantly, 

evolution of spermatogenesis in vitro followed similar dynamics to what happened in vivo [28] 

Nevertheless, the functionality of the haploid cells has never been tested.  

Another approach to culture male germ cell was described by Feng and colleagues [32], who 

purified undifferentiated type A spermatogonia from 6 days postpartum mice and immortalized them 

by overexpressing TERT. Then, they induced their differentiation by culturing them in the presence of 

stem cell factor (SCF), which is known to play a crucial role in the initiation of spermatogenesis. After 

a week in culture, there was a seven-fold increase in the number of cells with four sets of 

chromosomes, presumably indicating an increase in the number of primary spermatocytes. During 

culture, SYCP3 positive cells were evident and chismata could be observed in Giemsa-stained cells. 

After two weeks in culture, expression of postmeiotic markers, like SP-10 and protamine-2, were 

observed. Approximately 60% of the cells in culture were haploid after three weeks of SCF induction. 

Nevertheless, authors never observed any structure resembling sperm tails nor did they test the 

competence of the haploid cells obtained in culture [32].  

Finally, another culture system has been developed to cultivate testis cells from non-obstructive 

azoospermic in vitro fertilization clinic patients [33]. Testis biopsies were dissociated and the obtained 

cells were cultured in a collagen matrix for 12 days. Analysis after this time revealed a decrease in the 

number of pachytene-stage spermatocytes as well as an increase in the number of spermatids. Thus, 

authors suggest that human haploid cells can be formed in vitro, but again more experiments should be 

performed to check if these spermatid-like cells are able to fertilize oocytes [33]. 

Culture of adult spermatocyte cell precursors is nowadays close to being a reality. Obtaining 

haploid cells from diploid progenitors represents complete meiotic progression in vitro. Therefore, it is 

only a matter of time until more refined techniques will be available to address some key issues about 

meiosis. In fact, some studies are already using cultures of spermatogenic cells to test toxicity of 

certain drugs or agents on mammalian gonads [29,34]. 

4. Attempts to Culture Mammalian Fetal Oocytes 

The culture of human fetal oocytes has been tried by a few researchers and a great variety of 

techniques as well as a variety of culture media has been evaluated. The oldest reports are from 

Blandau [35] who reported the presence of living oogonia and oocytes for almost 80 days [35]. During 

culturing, he observed active migration of oogonia, mitotic divisions and growth of the fetal tissue. He 

concluded that oogonia entered meiosis, and generated oocytes that reached late stages of meiosis. 

Later reports [36] analyzed the progression in culture of human ovarian fragments from fetuses of  

16–20 weeks of gestation. Ovaries used were from fresh as well as frozen samples. Results, published 
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by Zhang and colleagues included the persistence of primordial follicles in culture and oocytes that 

had extruded a polar body. 

More recently reports from [37] evaluated human fetal ovaries aged 13–16 weeks. Ovaries were 

cultured in mini-blocks (0.3 × 0.3 × 0.3 mm) with minimal essential medium alpha (MEMα) 

supplemented with fetal calf serum (FCS) and follicle stimulating hormone. Another two supplements 

were added depending on the group (human female serum and FCS suitable for stem cells). The 

cultures were analyzed after 7 to 40 days. These authors observed that the number of oocytes and the 

percentages of zygotene stage and pachytene stage cells increased with the time of culture. The 

elevated initial number of degenerated cells decreased with the time of culture. Oocytes cultured with 

human female serum and FCS for stem cells showed a higher number of oocytes after 14 days of 

culture. Cultured oocytes showed the presence of lateral element of synaptonemal complex, indicating 

meiotic progression. The analysis of the formation of the synaptonemal complex showed a high index 

of asynaptic nucleus, self synapsis and non-homologous synapsis. The authors concluded that human 

oocytes survive in culture, and more importantly, can progress through prophase I in vitro. 

A few years later, the first mouse fetal ovary culture was described [38]. One hundred and sixty-two 

ovaries from 13, 14 or 17 days post-coitum embryos were cultured in αMEM supplemented with fetal 

calf serum for stem cells (ES-FCS), penicillin, and streptomycin. This media was used for half of the 

cultures; the other half was cultured with the addition of stem cell factor (SCF), insulin growth factor I 

and LIF. The cultures were analyzed for meiotic pairing-synapsis and recombination after three or four 

days. Authors reported a significant increase in the number of oocytes that reached pachynema after 

four days of culture in those supplemented cultures. However, none of the cultured oocytes displayed 

MLH1 (a cytological marker for crossover formation which appears around pachynema). Nevertheless, 

authors concluded that supplementation with SCF, LIF and IGF-I promotes female meiosis in vitro, 

and proposed that this increment in cells at pachytene stage could be related to an increment of 

premeiotic oogonias that entered meiosis because of the growth factor stimuli. 

Roig et al. [39] described another culture approach to promote oocyte I progression in vitro. 

Ovaries were cut in blocks (approximately 15 × 20 × 20 mm) and cultured in αMEM, supplemented 

with human albumin, insulin, transferrin, selenium, penicillin and streptomycin for one to five weeks. 

Analysis of meiotic progression focused on homologous pairing as well as synapsis progression. This 

study demonstrated that human fetal oocytes could survive in vitro up to five weeks [39]. In three of 

the four cases they observed meiotic progression. Although the percentages of oocytes at the different 

stages of meiosis as well as the proportions among the different cases were different from the ones 

observed in fresh oocytes, pairing and synapsis efficiency was similar to those described in fresh 

oocytes. Finally, these authors also described an increment of degenerated cells in relation with the 

time of culture.  

More recently another report has been published in which the effects of different culture approaches 

are compared in order to culture human fetal oocytes [40]. Authors reported that disaggregation by 

mechanical methods increased the total number of oocytes found in culture, but also decreased the 

number of degenerated cells. Similarly, oocytes cultured with SCF, independently of the 

disaggregation method used, showed a higher proportion of oocytes that reached pachynema and 

decreased the number of degenerated cells. This study also evaluated meiotic recombination in oocytes 

from ovaries disaggregated with mechanical methods and cultured with SCF. The ranges of MLH1 
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foci found in cultured oocytes, as well as the means, mimic the values reported in fresh oocytes. 

Therefore, authors concluded that oocytes cultured with this method resembled, for the studied 

parameters, the oocytes found in vivo. 

In summary, all the published reports to-date present a promising future in order to culture fetal 

oocytes. It is now clear that oocytes can be maintained and progress in vitro, but more interestingly, 

that meiosis can be initiated in culture.  

5. Follicle and Oocyte Growth and Development in Culture 

Adult mammalian ovaries contain follicles, which are the structures in which a post-prophase I 

oocyte develops. They consist of the oocyte themselves, surrounded by granulose and theca cells. In 

the adult ovary, one can find follicles at different developmental stages, the most abundant are 

primordial follicles. Based in morphology, human follicles can be classified (Figure 1, reviewed  

by [41]). Human follicles can be classified as primordial follicles (those that contain a primary oocyte 

embraced by flattened granulosa cells, Figure 1A), primary follicles (have a full cuboidal granulosa 

cell layer, Figure 1B), preantral follicles (growing primary oocytes enclosed by several granulosa cell 

layers, Figure 1C) and antral follicles (which contain a cavity with follicular fluid, granulosa cells 

differentiate into mural and cumulus cells, Figure 1D). Except for the oocytes from antral follicles, that 

usually need a short period of manipulation and maturation in culture, oocytes from small antral 

follicles and pre-antral follicles require long periods of growth in vitro to acquire developmental 

competence. There are many publications related to this field, in this sense we will only mention some 

of the most representative ones. 

Figure 1. Follicle development in the adult mouse ovary. Primordial (A), primary (B),  

pre-antral (C) and antral (D) follicles stained with PAS-hematoxilin [42].  
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The success of in vitro growth (IVG) and in vitro maturation (IVM) methods are influenced by the 

characteristics of the tissue, the culture environment and the stage of the oocyte at the start of culture. 

Many culture systems have been developed to culture follicles based on the needs of each species. To 

obtain the best results, culture medium, supplementation, temperature, concentration of oxygen and 

culture method have to be standardized. 

The most common medium used is minimal essential medium (to cite a few studies, [43,44]) 

although other media like Waymouth [45] and McCoy’s 5a have also been used [43,45,46]. Different 

medium supplements has been used to improve follicle development at culture, some examples are: 

antibiotics/antimycotics, ITS (insulin, transferrin and selenium), growth factors, gonadotrophins, 

activin or apoptosis inhibitors. Doses of gonadotrophins are critical for the proper progression of the 

culture. For instance, supplemented medium with follicle stimulant hormone (FSH) and LH are 

essential for the progression of the follicle from preantral stages to antral follicle stage [46–48].  

The supplementation with serum is a topic of considerable debate. Serum contains multiple 

substances which could promote cell adhesion and proliferation. Serum acts as a source of albumin, 

which balances the osmolarity, and as a scavenger that protects from potentially harmful molecules 

like free oxygen radicals. Serum also acts as a source of precursors for steroid biosynthesis [49]. 

However, supplementation with serum has been related to a diminution of proliferation rates [50,51]. 

Other important conditions are the media used for transportation and maintaining the tissue [52,53], 

culture medium pH [54], characteristics of the extracellular matrix [54,55] and the percentage of 

oxygen [56]. The efficacy of supplements depends on the culture system used but it is considered that 

FSH, insulin, activin A, growth and differentiation factor 9 (GDF9) promote follicular development 

and survival (reviewed by [57]). 

The characteristics of the ovary vary with the species used; in other words, ovaries from mouse, 

cow, cattle, pig or human are anatomically and physiologically different. In mouse, follicles can be 

obtained from neonatal, pre-puberal or adult ovaries. Follicles from neonatal or pre-puberal ovaries 

permit a greater number of follicles to be obtained than adult ovaries. Moreover, obtaining the follicles 

from neonatal and pre-puberal ovaries also improves follicular culture because all follicles are at the 

same developmental stage, they are all primordial follicles [58,59]. 

Different follicle isolation methods (mechanical and enzymatic) have been developed to obtain  

pre-antral follicles to seed the cultures. The isolation method is chosen taking into account the 

characteristics of specie selected to be cultured. There are pros and cons associated with each isolation 

method. In general, mechanical isolation keeps the structure of the follicle intact but the number of 

follicles obtained could be lower than using enzymatic methods [46]. On the other hand, enzymatic 

methods permit a greater number of follicles but can induce cell damage which may compromise the 

subsequent culture [50,51,60].  

Different protocols have been described to culture follicles, in summary we can separate them into 

those that culture ovarian pieces and those that culture isolated primordial follicles (reviewed  

by [48,57]). Ovarian tissue culture has been conducted for a number of species (mouse, cattle, baboon, 

monkey and human) over varying time of culture, culture media and supplements, but definitely the 

best result were obtained in mice [46,54,61–63].  

The first live mouse pup from cultured follicles was described by Epigg and O’Brien [60] using a 

two steps protocol. Authors took mouse ovaries and cultivated them for eight days, after that they 
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enzymatically disaggregated the ovary and obtained isolated preantral follicles. These preantral 

follicles were further cultivated for another 14 days. This method was successful in part because the 

characteristics of the development of the mouse make it possible: mouse follicles are formed a few 

days after birth and the numbers of follicles and the stage of development are very similar among all 

the follicles. In fact, nowadays the mouse is the only specie that allows the progression of primordial 

follicle to a competent oocyte in vitro (reviewed by [57]). Using this method, follicles may remain 

viable and morphologically normal for up to three weeks in culture. Furthermore, multilayer pre-antral 

follicles have been isolated following the culture of fragments of ovarian cortex [46] or after culture of 

mouse follicles and ovaries [45,60].  

Telfer et al. [46] cultured stroma-free small human ovarian cortex slices containing only primordial 

follicles. After six days of culture in serum-free medium, they observed pre-antral follicles. After that, 

obtained pre-antral follicles were cultured for four days more in an Activin A supplemented medium. 

Follicles treated with Activin displayed normal morphology, intact oocytes and antral formation. 

Authors demonstrated that with an adequate supplement, human primordial follicles could progress to 

pre-antral follicles [45]  

Many protocols have used isolated primordial follicles from multiple species to seed the culture (to 

mention some of the first ones in different species see pig [64], bovine [65] and humans [66,67]. In 

most culture conditions, a great number of primordial follicles are viable following extraction but after 

24 h they rapidly lose their three dimensional structure: the follicles collapse, the pre-granulosa cells 

migrate away from the follicle and oocyte degenerate [43,68]. A more recent study described a 

reproducible two-step culture method for isolated mouse primordial follicles [69]. Isolated follicles 

were cultured for six days, avoiding the theca cell to attach to the culture surface. After these six days 

of culture, attachment of theca cells was allowed and follicles were cultured for another 12 days. 

Authors described an average meiotic maturation, as defined by oocytes being able to mature to 

metaphase II after appropriate hormonal stimulation. Nevertheless, estrogen secretion was lower than 

that obtained from pre-antral cultured follicles.  

Finally, many efforts have been applied to culture pre-antral follicles either obtained from fresh 

tissues or from some of the culture techniques mentioned above. Pre-antral follicle culture methods 

can be divided into those that allow follicle attachment, thus losing the architecture of the  

follicle [43,44] or those culture systems that maintain tridimensional follicle integrity. Three 

dimensional methods (3D) maintain the architecture of the follicle and they usually use serum-free 

medium [46,51,62], hydrophobic membranes [70] or a collagen matrix [71,72] or alginate gels to 

encapsulate the follicles [73,74]. In general, all these methods allow rodents follicles to reach  

mid-pre-antral sized follicles after six days. Rodent follicles cultured with 3D methods have apparently 

normal morphology and steroid production [68–70], respond to exogenous ovulatory stimulus [75] and 

the obtained oocytes could be fertilized [68].  

Pre-antral follicle culture has also permitted the successful in vitro development of follicles 

obtained from either fresh [43] and cryopreserved tissues [76–78]. Follicles obtained from cultures that 

used an attachment IVG method, showed an oocyte diameter, chromatin configuration, transcriptional 

activity and meiotic competence similar to those seen in vivo [79]. 3D IVG methods originated for the 

culture of mouse pre-antral follicles [43,50,68,70,71], but also could be applied to follicles from 

domestic ruminants and human. In these species, the use of extracellular matrices to support the 
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architecture of follicles in inert alginate hydrogels has been shown to be a good option. The alginate 

matrix mimics the stromal microenvironment of the ovary and is a good support to the growth and 

maturation of multilayered secondary follicles in pigs, cattle, ruminants, primates and  

humans [76,80–86]. Early reports demonstrated that murine follicles grown in alginate capsules 

reached the sizes observed in vivo [81,87]. Extended growth, coordinated differentiation of follicular 

cell types, antral cavity formation, theca cell differentiation, oocyte maturation and hormone 

production were described in 3D methods for mouse, monkey and human (reviewed by [57]). 

Nonetheless, the quality of the oocytes derived from follicles with accelerated growth rates needs to be 

fully verified, especially before these systems can be considered for clinical use.  

Nevertheless, in most of these reports, meiotic progression is not directly evaluated and the 

progression in culture is related to the specie. Only in mouse is it possible to obtain a live pup from a 

primordial follicle, in the other cases the outcome depends on the stage of the follicle at the start of 

the culture.  

6. Conclusions 

The study of mammalian meiosis is a crucial topic to understand the basis of human infertility and 

aneuploidy origin. However, due to the shortage of samples and the impossibility to manipulate human 

gonads, studies in humans are scarce. Therefore, most knowledge obtained until today comes from the 

study of model organisms, like mouse, that permit genetic manipulations. Nevertheless, as discussed 

before, generating genetically engineered mice involves time and substantial costs to create and 

maintain the line. Thus, achieving a culture technique that would allow meiotic progression in vitro 

could be a very useful tool to study mammalian meiosis. Not only would it permit the manipulation of 

the human meiotic process and thus to test hypotheses that for the moment cannot be tested, but also it 

could complement the in vivo studies performed in mutant mice. For instance, a meiotic culture could 

enable the study of synapsis progression live under the microscope. Also, a synchronic culture could 

be a very powerful tool to study certain meitoic processes from a biochemical point of view, to 

mention some of the multiple possibilities that such a technique could offer. Meiotic culturing is 

already being used to test the genotoxicity of physical and chemical agents on spermatogenesis [29,34] 

or oogenesis [88]. 

Some of the results obtained to date are promising and, although most culture techniques are far 

from being a ready-to-use protocol for many labs, it is exciting to see a future in which protocols to 

culture mammalian sperm or oocytes precursor cells will be a common and useful instrument for the 

study of gametogenesis and meiosis.  

Acknowledgements 

MAEB has a fellowship from the Ministry of Foreign Affairs and Cooperation (AECI, Spain) 

(#0000447445) and the National Council of Science and Technology (CONACYT, México) 

(#166825). This work was funded by a grant from CIDEM (Catalan Government),  

VALTEC09-1-0007. 

  



Genes 2011, 2              

 

163 

References  

1. Hassold, T.; Hunt, P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. 

Genet. 2001, 2, 280–291. 

2. Ginsburg, M.; Snow, M.H.; McLaren, A. Primordial germ cells in the mouse embryo during 

gastrulation. Development 1990, 110, 521–528. 

3. Lawson, K.A.; Hage, W.J. Clonal analysis of the origin of primordial germ cells in the mouse. 

Ciba Found. Symp. 1994, 182, 68–84, discussion 84–91. 

4. Chuma, S.; Nakatsuji, N. Autonomous transition into meiosis of mouse fetal germ cells in vitro 

and its inhibition by gp130-mediated signaling. Dev. Biol. 2001, 229, 468–479. 

5. McLaren, A. Primordial germ cells in the mouse. Dev. Biol. 2003, 262, 1–15. 

6. Lin, Y.; Gill, M.E.; Koubova, J.; Page, D.C. Germ cell-intrinsic and -extrinsic factors govern 

meiotic initiation in mouse embryos. Science 2008, 322, 1685–1687. 

7. Bowles, J.; Knight, D.; Smith, C.; Wilhelm, D.; Richman, J.; Mamiya, S.; Yashiro, K.; 

Chawengsaksophak, K.; Wilson, M.J.; Rossant, J.; Hamada, H.; Koopman, P. Retinoid signaling 

determines germ cell fate in mice. Science 2006, 312, 596–600. 

8. Koubova, J.; Menke, D.B.; Zhou, Q.; Capel, B.; Griswold, M.D.; Page, D.C. Retinoic acid 

regulates sex-specific timing of meiotic initiation in mice. Proc. Natl. Acad. Sci. USA 2006, 103, 

2474–2479. 

9. Hunt, P.A.; Hassold, T. Sex matters in meiosis. Science 2002, 296, 2181–2183. 

10. Morelli, M.A.; Cohen, P.E. Not all germ cells are created equal: aspects of sexual dimorphism in 

mammalian meiosis. Reproduction 2005, 130, 761–781. 

11. Geijsen, N.; Horoschak, M.; Kim, K.; Gribnau, J.; Eggan, K.; Daley, G.Q. Derivation of 

embryonic germ cells and male gametes from embryonic stem cells. Nature 2004, 427,  

148–154. 

12. Nayernia, K.; Nolte, J.; Michelmann, H.W.; Lee, J.H.; Rathsack, K.; Drusenheimer, N.; Dev, A.; 

Wulf, G.; Ehrmann, I.E.; Elliott, D.J.; Okpanyi, V.; Zechner, U.; Haaf, T.; Meinhardt, A.; Engel, 

W. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate 

offspring mice. Dev. Cell 2006, 11, 125–132. 

13. Toyooka, Y.; Tsunekawa, N.; Akasu, R.; Noce, T., Embryonic stem cells can form germ cells in 

vitro. Proc. Natl. Acad. Sci. USA 2003, 100, 11457–11462. 

14. Clark, A.T.; Bodnar, M.S.; Fox, M.; Rodriquez, R.T.; Abeyta, M.J.; Firpo, M.T.; Pera, R.A. 

Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum. Mol. 

Genet. 2004, 13, 727–739. 

15. Saiti, D.; Lacham-Kaplan, O. Mouse Germ Cell Development in-vivo and in-vitro. Biomark 

Insights 2007, 2, 241–252. 

16. Lawson, K.A.; Dunn, N.R.; Roelen, B.A.; Zeinstra, L.M.; Davis, A.M.; Wright, C.V.;  

Korving, J.P.; Hogan, B.L. Bmp4 is required for the generation of primordial germ cells in the 

mouse embryo. Genes Dev. 1999, 13, 424–436. 

17. Ying, Y.; Liu, X.M.; Marble, A.; Lawson, K.A.; Zhao, G.Q. Requirement of Bmp8b for the 

generation of primordial germ cells in the mouse. Mol. Endocrinol. 2000, 14, 1053–1063. 



Genes 2011, 2              

 

164 

18. Kee, K.; Gonsalves, J.M.; Clark, A.T.; Pera, R.A. Bone morphogenetic proteins induce germ cell 

differentiation from human embryonic stem cells. Stem Cells Dev. 2006, 15, 831–837. 

19. Nayernia, K.; Lee, J.H.; Drusenheimer, N.; Nolte, J.; Wulf, G.; Dressel, R.; Gromoll, J.;  

Engel, W. Derivation of male germ cells from bone marrow stem cells. Lab. Invest.; J. Tech. 

Meth. Pathol. 2006, 86, 654–663. 

20. Kee, K.; Angeles, V.T.; Flores, M.; Nguyen, H.N.; Reijo Pera, R.A. Human DAZL, DAZ and 

BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009, 462, 

222–225. 

21. Hubner, K.; Fuhrmann, G.; Christenson, L.K.; Kehler, J.; Reinbold, R.; De La Fuente, R.;  

Wood, J.; Strauss, J.F., III; Boiani, M.; Scholer, H.R. Derivation of oocytes from mouse 

embryonic stem cells. Science 2003, 300, 1251–1256. 

22. Lacham-Kaplan, O.; Chy, H.; Trounson, A. Testicular cell conditioned medium supports 

differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells 

2006, 24, 266–273. 

23. Novak, I.; Lightfoot, D.A.; Wang, H.; Eriksson, A.; Mahdy, E.; Hoog, C. Mouse embryonic stem 

cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells 2006, 

24, 1931–1936. 

24. Qing, T.; Shi, Y.; Qin, H.; Ye, X.; Wei, W.; Liu, H.; Ding, M.; Deng, H. Induction of oocyte-like 

cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation 

2007, 75, 902–911. 

25. Kerkis, A.; Fonseca, S.A.; Serafim, R.C.; Lavagnolli, T.M.; Abdelmassih, S.; Abdelmassih, R.; 

Kerkis, I. In vitro differentiation of male mouse embryonic stem cells into both presumptive 

sperm cells and oocytes. Cloning Stem Cells 2007, 9, 535–548. 

26. Salvador, L.M.; Silva, C.P.; Kostetskii, I.; Radice, G.L.; Strauss, J.F., III. The promoter of the 

oocyte-specific gene, Gdf9, is active in population of cultured mouse embryonic stem cells with 

an oocyte-like phenotype. Methods 2008, 45, 172–181. 

27. Hue, D.; Staub, C.; Perrard-Sapori, M.H.; Weiss, M.; Nicolle, J.C.; Vigier, M.; Durand, P. 

Meiotic differentiation of germinal cells in three-week cultures of whole cell population from rat 

seminiferous tubules. Biol. Reprod. 1998, 59, 379–387. 

28. Perrard, M.H.; Hue, D.; Staub, C.; Le Vern, Y.; Kerboeuf, D.; Durand, P. Development of the 

meiotic step in testes of pubertal rats: comparison between the in vivo situation and under in vitro 

conditions. Mol. Reprod. Dev. 2003, 65, 86–95. 

29. Perrin, J.; Lussato, D.; de Meo, M.; Durand, P.; Grillo, J.M.; Guichaoua, M.R.; Botta, A.;  

Berge-Lefranc, J.L. Evolution of DNA strand-breaks in cultured spermatocytes: the Comet Assay 

reveals differences in normal and gamma-irradiated germ cells. Toxicol. In Vitro 2007, 21, 81–89. 

30. Staub, C.; Hue, D.; Nicolle, J.C.; Perrard-Sapori, M.H.; Segretain, D.; Durand, P. The whole 

meiotic process can occur in vitro in untransformed rat spermatogenic cells. Exp. Cell Res. 2000, 

260, 85–95. 

31. Weiss, M.; Vigier, M.; Hue, D.; Perrard-Sapori, M.H.; Marret, C.; Avallet, O.; Durand, P.  

Pre- and postmeiotic expression of male germ cell-specific genes throughout 2-week cocultures of 

rat germinal and Sertoli cells. Biol. Reprod. 1997, 57, 68–76. 



Genes 2011, 2              

 

165 

32. Feng, L.X.; Chen, Y.; Dettin, L.; Pera, R.A.; Herr, J.C.; Goldberg, E.; Dym, M. Generation and in 

vitro differentiation of a spermatogonial cell line. Science 2002, 297, 392–395. 

33. Lee, J.H.; Gye, M.C.; Choi, K.W.; Hong, J.Y.; Lee, Y.B.; Park, D.W.; Lee, S.J.; Min, C.K. In 

vitro differentiation of germ cells from nonobstructive azoospermic patients using three-

dimensional culture in a collagen gel matrix. Fertil. Steril. 2007, 87, 824–833. 

34. Geoffroy-Siraudin, C.; Perrard, M.H.; Chaspoul, F.; Lanteaume, A.; Gallice, P.; Durand, P.; 

Guichaoua, M.R. Validation of a rat seminiferous tubule culture model as a suitable system for 

studying toxicant impact on meiosis effect of hexavalent chromium. Toxicol. Sci. 2010, 116,  

286–296. 

35. Blandau, R.J. Observations on living oogonia and oocytes from human embryonic and fetal 

ovaries. Am. J. Obstet. Gynecol. 1969, 104, 310–319. 

36. Zhang, J.; Liu, J.; Xu, K.P.; Liu, B.; DiMattina, M. Extracorporeal development and ultrarapid 

freezing of human fetal ova. J. Assist. Reprod. Genet. 1995, 12, 361–368. 

37. Hartshorne, G.M.; Barlow, A.L.; Child, T.J.; Barlow, D.H.; Hulten, M.A. Immunocytogenetic 

detection of normal and abnormal oocytes in human fetal ovarian tissue in culture. Hum. Reprod. 

1999, 14, 172–182. 

38. Lyrakou, S.; Hulten, M.A.; Hartshorne, G.M. Growth factors promote meiosis in mouse fetal 

ovaries in vitro. Mol. Hum. Reprod. 2002, 8, 906–911. 

39. Roig, I.; Garcia, R.; Robles, P.; Cortvrindt, R.; Egozcue, J.; Smitz, J.; Garcia, M. Human fetal 

ovarian culture permits meiotic progression and chromosome pairing process. Hum. Reprod. 

2006, 21, 1359–1367. 

40. Brieno-Enriquez, M.A.; Robles, P.; Garcia-Cruz, R.; Roig, I.; Cabero, L.; Martinez, F.; Garcia 

Caldes, M. A new culture technique that allows in vitro meiotic prophase development of fetal 

human oocytes. Hum. Reprod. 2010, 25, 74–84. 

41. Smitz, J.E.; Cortvrindt, R.G. The earliest stages of folliculogenesis in vitro. Reproduction 2002, 

123, 185–202. 

42. Pacheco, S. Cell Biology, Physiology and Immunology Department, Universitat Autònoma de 

Barcelona, Cerdanyola del Vallès, Spain. Unpublished work, 2010. 

43. Cortvrindt, R.; Smitz, J.; van Steirteghem, A.C. In-vitro maturation, fertilization and embryo 

development of immature oocytes from early preantral follicles from prepuberal mice in a 

simplified culture system. Hum. Reprod. 1996, 11, 2656–2566. 

44. Eppig, J.J.; Schroeder, A.C. Capacity of mouse oocytes from preantral follicles to undergo 

embryogenesis and development to live young after growth, maturation, and fertilization in vitro. 

Biol. Reprod. 1989, 41, 268–276. 

45. Muruvi, W.; Picton, H.M.; Rodway, R.G.; Joyce, I.M. In vitro growth of oocytes from primordial 

follicles isolated from frozen-thawed lamb ovaries. Theriogenology 2005, 64, 1357–1370. 

46. Telfer, E.E.; McLaughlin, M.; Ding, C.; Thong, K.J. A two-step serum-free culture system 

supports development of human oocytes from primordial follicles in the presence of activin. Hum. 

Reprod. 2008, 23, 1151–1158. 

47. Adriaens, I.; Cortvrindt, R.; Smitz, J. Differential FSH exposure in preantral follicle culture has 

marked effects on folliculogenesis and oocyte developmental competence. Hum. Reprod. 2004, 

19, 398–408. 



Genes 2011, 2              

 

166 

48. Picton, H.M.; Harris, S.E.; Muruvi, W.; Chambers, E.L. The in vitro growth and maturation of 

follicles. Reproduction 2008, 136, 703–715. 

49. Hulshof, S.C.; Figueiredo, J.R.; Beckers, J.F.; Bevers, M.M.; van der Donk, J.A.;  

van den Hurk, R. Effects of fetal bovine serum, FSH and 17beta-estradiol on the culture of bovine 

preantral follicles. Theriogenology 1995, 44, 217–226. 

50. Eppig, J.J.; O’Brien, M.J. Comparison of preimplantation developmental competence after mouse 

oocyte growth and development in vitro and in vivo. Theriogenology 1998, 49, 415–422. 

51. Newton, H.; Picton, H.; Gosden, R.G. In vitro growth of oocyte-granulosa cell complexes isolated 

from cryopreserved ovine tissue. J. Reprod. Fertil. 1999, 115, 141–150. 

52. Schmidt, K.L.; Ernst, E.; Byskov, A.G.; Nyboe Andersen, A.; Yding Andersen, C. Survival of 

primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. 

Hum. Reprod. 2003, 18, 2654–2659. 

53. Lucci, C.M.; Kacinskis, M.A.; Lopes, L.H.; Rumpf, R.; Bao, S.N. Effect of different 

cryoprotectants on the structural preservation of follicles in frozen zebu bovine (Bos indicus) 

ovarian tissue. Theriogenology 2004, 61, 1101–1114. 

54. Hovatta, O.; Wright, C.; Krausz, T.; Hardy, K.; Winston, R.M. Human primordial, primary and 

secondary ovarian follicles in long-term culture: effect of partial isolation. Hum. Reprod. 1999, 

14, 2519–2524. 

55. Scott, J.E.; Zhang, P.; Hovatta, O. Benefits of 8-bromo-guanosine 3',5'-cyclic monophosphate (8-

br-cGMP) in human ovarian cortical tissue culture. Reprod. Biomed. Online 2004, 8, 319–324. 

56. Hu, Y.; Betzendahl, I.; Cortvrindt, R.; Smitz, J.; Eichenlaub-Ritter, U. Effects of low O2 and 

ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture. Hum. 

Reprod. 2001, 16, 737–748. 

57. Smitz, J.; Dolmans, M.M.; Donnez, J.; Fortune, J.E.; Hovatta, O.; Jewgenow, K.; Picton, H.M.; 

Plancha, C.; Shea, L.D.; Stouffer, R.L.; Telfer, E.E.; Woodruff, T.K.; Zelinski, M.B. Current 

achievements and future research directions in ovarian tissue culture, in vitro follicle development 

and transplantation: implications for fertility preservation. Hum. Reprod. Update 2010, 16,  

395–414. 

58. Carambula, S.F.; Goncalves, P.B.; Costa, L.F.; Figueiredo, J.R.; Wheeler, M.B.; Neves, J.P.; 

Mondadori, R.G. Effect of fetal age and method of recovery on isolation of preantral follicles 

from bovine ovaries. Theriogenology 1999, 52, 563–571. 

59. Figueiredo, J.R.; Hulshof, S.C.; Van den Hurk, R.; Ectors, F.J.; Fontes, R.S.; Nusgens, B.;  

Bevers, M.M.; Beckers, J.F. Development of a combined new mechanical and enzymatic method 

for the isolation of intact preantral follicles from fetal, calf and adult bovine ovaries. 

Theriogenology 1993, 40, 789–799. 

60. Eppig, J.J.; O’Brien, M.J. Development in vitro of mouse oocytes from primordial follicles. Biol. 

Reprod. 1996, 54, 197–207. 

61. Wright, C.S.; Hovatta, O.; Margara, R.; Trew, G.; Winston, R.M.; Franks, S.; Hardy, K. Effects of 

follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian 

follicles. Hum. Reprod. 1999, 14, 1555–1562. 



Genes 2011, 2              

 

167 

62. Picton, H.M.; Campbell, B.K.; Hunter, M.G. Maintenance of oestradiol production and expression 

of cytochrome P450 aromatase enzyme mRNA in long-term serum-free cultures of pig granulosa 

cells. J. Reprod. Fertil. 1999, 115, 67–77. 

63. Webber, L.J.; Stubbs, S.A.; Stark, J.; Margara, R.A.; Trew, G.H.; Lavery, S.A.; Hardy, K.; 

Franks, S. Prolonged survival in culture of preantral follicles from polycystic ovaries. J Clin 

Endocrinol. Metab. 2007, 92, 1975–1978. 

64. Greenwald, G.S.; Moor, R.M. Isolation and preliminary characterization of pig primordial 

follicles. J. Reprod. Fertil. 1989, 87, 561–571. 

65. Gigli, I.; Byrd, D.D.; Fortune, J.E. Effects of oxygen tension and supplements to the culture 

medium on activation and development of bovine follicles in vitro. Theriogenology 2006, 66, 

344–353. 

66. Abir, R.; Roizman, P.; Fisch, B.; Nitke, S.; Okon, E.; Orvieto, R.; Ben R.Z. Pilot study of isolated 

early human follicles cultured in collagen gels for 24 hours. Hum. Reprod. 1999, 14, 1299–1301. 

67. Oktay, K.; Nugent, D.; Newton, H.; Salha, O.; Chatterjee, P.; Gosden, R.G. Isolation and 

characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil. 

Steril. 1997, 67, 481–486. 

68. Spears, N. In-vitro growth of oocytes. In-vitro growth of ovarian oocytes. Hum. Reprod. 1994, 9, 

969–970. 

69. Lenie, S.; Cortvrindt, R.; Adriaenssens, T.; Smitz, J. A reproducible two-step culture system for 

isolated primary mouse ovarian follicles as single functional units. Biol. Reprod. 2004, 71,  

1730–1738. 

70. Nayudu, P.L.; Osborn, S.M. Factors influencing the rate of preantral and antral growth of mouse 

ovarian follicles in vitro. J. Reprod. Fertil. 1992, 95, 349–362. 

71. Carroll, R.S.; Corrigan, A.Z.; Vale, W.; Chin, W.W. Activin stabilizes follicle-stimulating 

hormone-beta messenger ribonucleic acid levels. Endocrinology 1991, 129, 1721–1726. 

72. Hirao, Y.; Nagai, T.; Kubo, M.; Miyano, T.; Miyake, M.; Kato, S. In vitro growth and maturation 

of pig oocytes. J. Reprod. Fertil. 1994, 100, 333–339. 

73. West, E.R.; Xu, M.; Woodruff, T.K.; Shea, L.D. Physical properties of alginate hydrogels and 

their effects on in vitro follicle development. Biomaterials 2007, 28, 4439–4448. 

74. Xu, M.; Kreeger, P.K.; Shea, L.D.; Woodruff, T.K. Tissue-engineered follicles produce live, 

fertile offspring. Tissue Eng. 2006, 12, 2739–2746. 

75. Rose, U.M.; Hanssen, R.G.; Kloosterboer, H.J. Development and characterization of an in vitro 

ovulation model using mouse ovarian follicles. Biol. Reprod. 1999, 61, 503–511. 

76. Newton, H.; Illingworth, P. In-vitro growth of murine pre-antral follicles after isolation from 

cryopreserved ovarian tissue. Hum. Reprod. 2001, 16, 423–429. 

77. Sadeu, J.C.; Cortvrindt, R.; Ron-El, R.; Kasterstein, E.; Smitz, J. Morphological and 

ultrastructural evaluation of cultured frozen-thawed human fetal ovarian tissue. Fertil. Steril. 

2006, 85, 1130–1141. 

78. Smitz, J.; Cortvrindt, R. Follicle culture after ovarian cryostorage. Maturitas 1998, 30, 171–179. 

79. Pesty, A.; Miyara, F.; Debey, P.; Lefevre, B.; Poirot, C. Multiparameter assessment of mouse 

oogenesis during follicular growth in vitro. Mol. Hum. Reprod. 2007, 13, 3–9. 



Genes 2011, 2              

 

168 

80. Gutierrez, C.G.; Ralph, J.H.; Telfer, E.E.; Wilmut, I.; Webb, R. Growth and antrum formation of 

bovine preantral follicles in long-term culture. Biol. Reprod. 2000, 62, 1322–1328. 

81. Kreeger, P.K.; Deck, J.W.; Woodruff, T.K.; Shea, L.D. The in vitro regulation of ovarian follicle 

development using alginate-extracellular matrix gels. Biomaterials 2006, 27, 714–723. 

82. McCaffery, F.H.; Leask, R.; Riley, S.C.; Telfer, E.E. Culture of bovine preantral follicles in a 

serum-free system: markers for assessment of growth and development. Biol. Reprod. 2000, 63, 

267–273. 

83. Picton, H.M.; Danfour, M.A.; Harris, S.E.; Chambers, E.L.; Huntriss, J. Growth and maturation of 

oocytes in vitro. Reprod. Suppl. 2003, 61, 445–462. 

84. Thomas, F.H.; Campbell, B.K.; Armstrong, D.G.; Telfer, E.E. Effects of IGF-I bioavailability on 

bovine preantral follicular development in vitro. Reproduction 2007, 133, 1121–1128. 

85. Thomas, F.H.; Leask, R.; Srsen, V.; Riley, S.C.; Spears, N.; Telfer, E.E. Effect of ascorbic acid on 

health and morphology of bovine preantral follicles during long-term culture. Reproduction 2001, 

122, 487–495. 

86. Xu, M.; West-Farrell, E.R.; Stouffer, R.L.; Shea, L.D.; Woodruff, T.K.; Zelinski, M.B. 

Encapsulated three-dimensional culture supports development of nonhuman primate secondary 

follicles. Biol. Reprod. 2009, 81, 587–594. 

87. Pangas, S.A.; Saudye, H.; Shea, L.D.; Woodruff, T.K. Novel approach for the three-dimensional 

culture of granulosa cell-oocyte complexes. Tissue Eng. 2003, 9, 1013–1021. 

88. Brieno-Enriquez, M.A.; Garcia Caldes, M. Universitat Autònoma de Barcelona, Barcelona, Spain. 

Unpublished data, 2010. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


