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ABSTRACT

Viral integration plays an important role in the devel-
opment of malignant diseases. Viruses differ
in preferred integration site and flanking sequence.
Viral integration sites (VIS) have been found
next to oncogenes and common fragile sites.
Understanding the typical DNA features near VIS is
useful for the identification of potential oncogenes,
prediction of malignant disease development and
assessing the probability of malignant transform-
ation in gene therapy. Therefore, we have built a
database of human disease-related VIS (Dr.VIS,
http://www.scbit.org/dbmi/drvis) to collect and
maintain human disease-related VIS data, including
characteristics of the malignant disease, chromo-
some region, genomic position and viral–host
junction sequence. The current build of Dr.VIS
covers about 600 natural VIS of 5 oncogenic
viruses representing 11 diseases. Among them,
about 200 VIS have viral–host junction sequence.

INTRODUCTION

The contribution of infectious agents to the development
of serious human diseases, especially tumors, is increas-
ingly understood (1). It is estimated that viral infections
contribute to 15–20% of all human cancers (2). Research
has revealed that integration of viral genomes into human
chromosomes is necessary for most viral induction of
tumor development, which can activate or inactivate
host genes by means of provirus insertion (2,3). This
holds not only for retroviruses such as human T-cell
leukemia virus (4), but also for a number of
non-retroviruses such as human papillomavirus (5) and
hepatitis B virus (2,6). Finally, integration events can

cause rearrangements of viral and host sequences (7),
expression of fused transcripts, deletions of chromosomal
sequences and transpositions of viral sequences from one
chromosome to another (8–10). Viral integration is
site-specific in many cases (11). Moreover, viruses differ
in their preferred insertion site (12). Viral integration sites
(VIS) have become a key to associating viral infection and
human malignant disease.
Up to date, at least seven viruses have been compel-

lingly associated with human malignant diseases,
including:

(1) HTLV-1 (adult T-cell leukemia and tropical spastic
paraparesis) (13);

(2) HPV (cervical cancer, head and neck cancer and ano-
genital cancer) (14,15);

(3) HHV-8 (Kaposi’s sarcoma) (16);
(4) EBV (Burkitt’s lymphoma) (17);
(5) HBV (hepatocellular carcinoma) (18);
(6) MCV, Merkel cell polyomavirus (Merkel cell carcin-

oma) (19); and
(7) HIV (AIDS and B-cell lymphoma) (1).

There are many viruses that are potentially associated
with human malignant diseases such as Simian virus 40
(brain cancer, bone cancer and mesothelioma), BK virus
(prostate cancer) and so on (1–3). Some are still under
study, such as xenotropic murine leukemia virus-related
virus whose relationship with prostate cancer is still
controversial (20–22). Most of those viruses have a signifi-
cant integration step in viral infection and disease
development.
Viral integration can activate gene expression to cause

malignant disease if the VIS is close to an oncogene. This
process known as insertional mutagenesis (23), has
allowed identification of potential cellular oncogenes
through mapping of retroviral integration sites (23,24).
This work has also led to the development of a database
of cancer-associated genes (23,25).
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Gene therapy holds promise for curing many malignant
diseases. However, current gene therapy methods have
limited control over where a therapeutic virus inserts
into the human genome. It was reported that several
patients developed T-cell leukemia during treatment of
X-linked severe combined immunodeficiency (SCID-X1),
because of viral integration near the proto-oncogenes
LMO2, BMI1 and CCND2 (23,26).
Therefore, understanding the genes and DNA features

near disease-related VIS will abet the identification of po-
tential oncogenes, prediction of malignant disease devel-
opment and assessment of the probability of malignant
transformation in gene therapy. However, numerous
identified VIS are still widely scattered in published
papers. In this study, we developed a database of human
disease-related VIS (Dr.VIS) to collect and maintain those
data from the literature (PubMed) and public databases
(GenBank) (27). Furthermore, each VIS is linked to the
UCSC Genome Browser (28) and Ensembl Genome
Browser (29) for more detailed viewing of genomic traits.

MATERIALS AND METHODS

Data model of VIS and clusters

The following characteristics are listed for each human
disease-related VIS: virus name, chromosome region,

locus, genomic position, viral–host junction sequence
and corresponding human disease. The chromosome
region is denoted as cytogenetic band. The locus must
have been approved by HGNC (30) and can be a
microRNA or an interrupted gene with specific coordin-
ates of subcomponents (exons or introns). Genomic
position is the position of the insertion point in the
genome as represented in the Human Genome Assembly
2009 (hg19) (31). Viral–host junction sequence is always
recorded as ‘human genome–viral genome–human
genome’.

In Dr.VIS, VIS representing the same virus name,
chromosome region and human disease, are clustered to
generate a unique data entry called a viral integration
cluster (or VIS cluster) for convenient data organization.
Genomic traits of a VIS cluster include common fragile
site (32), microRNA, gene distribution and son on. More
detailed traits are crosslinked to HGNC (30), UCSC (33)
and Ensembl (29), through their chromosome coordinates.
Furthermore, each VIS cluster is assigned a confidence
code (Table 1) to indicate its frequency.

Collection of VIS associated with human diseases

VIS related to human disease were collected from PubMed
and GenBank (Figure 1). All VIS deposited in Dr.VIS are
sequenced or detected from natural samples of patients. A
Perl script extracted viral–host junction sequences from
GenBank by matching keywords (i.e. integration site)
and annotation of both host and virus (i.e. Homo
sapiens and a virus) as regular expressions. The script ex-
tracted PMIDs from the original literature reporting
junction sequences, for subsequent manual retrieval and
processing curation from PubMed.

Figure 1. Work flow of data collection and re-mapping.

Table 1. Confidence codes

Code Description Integration sites count

WK Well known f� 5
SS Strongly supported 1< f< 5
SO Single observation f=1
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Papers reporting disease-related viral integration into
the human genome were collected from PubMed in two
ways, by script as described immediately above, and by
manual search of the keywords virus, integration site,
cancer, tumor, malignancy and disease. About 200 ini-
tially selected papers were obtained and filtered for rele-
vance; curators read nearly 80 finally selected papers in
full to extract the VIS characteristics required in the
data model. In some cases, exact junctions were
transcribed from illustrations in the papers. Sequences
denoted with accession numbers are downloaded directly
from GenBank.

Re-mapping of VIS

Three fields of a VIS (genomic position, chromosome
region and locus) are updated by re-mapping according
to the viral–host junction sequence obtained (Figure 1).

Mapping of genomic position. The genomic position of a
VIS in the Human Genome Assembly 2009 (hg19) (31) is
identified using BLAT from UCSC (33), provided that the
identity of the BLAT result exceeds 80%. When there are
two or more positive alignments, a manual check helps to
choose the correct one.

Mapping of locus. The locus of integration is always inter-
rupted, and potentially inactivated, by viral insertion. Loci
were identified using the Genes and Gene Tracks Table
from UCSC (34), and VIS were mapped to the gene com-
ponent (exon, intron, 30-untranslated region, promoter) on
the basis of BLAT hit. All recognized loci were required to
have been approved by the HGNC (30).

Mapping of chromosome region. The chromosome region
(cytogenetic band) was subsequently calculated based on

the insertion site’s genomic position and the Chromosome
Band Table from UCSC (34).

Clustering of VIS

As described in the data model, VIS are conditionally
clustered as a unique data entry termed viral integration
cluster (VIS cluster). A confidence code is assigned to each
VIS cluster indicating its frequency, according to the
number of insertion sites that it contains (Table 1).
Statistics of integration clusters compellingly associated
with human malignant disease are illustrated for the
current build in Figure 2.

Web interfaces

Data browser. The data browser presents a catalog of
links to chromosome, virus and disease. Currently, there
are 24 chromosomes, 12 viruses and 12 diseases, which can
be browsed for VIS.

Data search. Three search engines (keywords, position
and the jQuery search engine) are implemented in the
data interface. Users can search Dr.VIS with keywords
of disease, virus, chromosome region, and so on, using
the keyword search engine. VIS clusters can also be
selected on the basis of genomic position or chromosome
region (cytogenetic band). Users can filter the search result
through the jQuery search engine, which is embed in the
table list and is powered by jQuery.

Data visualization. For each VIS cluster, Dr.VIS provides
an interface (Figure 3) with details and links to the UCSC
Genome Browser and the Ensembl Genome Browser. The
graphic view (Figure 4) summarizes the distribution of

Figure 2. Distribution of VIS clusters associated with human malignant diseases. (A) Frequency of VIS clusters by virus type, (B) frequency of VIS
clusters versus chromosome.
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Figure 4. Screenshot of the graphic view of VIS located in human chromosome 1.

Figure 3. Screenshot of the VIS details interface.
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VIS clusters over any human chromosome. Any or all of
the viruses can be selected for display.

DISCUSSION

VIS associated with malignant disease were always
detected in samples from patients. Many useful
approaches have been applied or newly developed to
identify VIS such as fluorescence in situ hybridization
(FISH), linear amplification mediated PCR (LAM-PCR)
(35), amplification of papillomavirus oncogene tran-
scripts assay (APOT), detection of integrated papilloma
sequences PCR (DIPS-PCR) and next-generation
sequencing (36–38). In addition to VIS, directly detected
in naturally infected samples, many integration sites have
been indentified in artificial experiments or in silico (39),
as with SeqMap (23). Dr.VIS was developed as a compre-
hensive database of VIS associated with human malignant
diseases. Dr.VIS is intended to facilitate biomedical appli-
cations or systematic researches into molecular causation
and anomalies. The current build focuses on, oncogenic
viruses demonstrably associated with human cancers.
Viruses potentially resulting in anomalies are also of
great interest. Updates of Dr.VIS will be continuously
supported, since causative viruses continue to be identified
and the number of documented VIS is rapidly increasing.
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22. Sakuma,T., Hué,S., Squillace,K.A., Tonne,J.M., Blackburn,P.R.,
Ohmine,S., Thatava,T., Towers,G.J. and Ikeda,Y. (2011) No
evidence of XMRV in prostate cancer cohorts in the Midwestern
United States. Retrovirology, 8, 23.

23. Hawkins,T.B., Dantzer,J., Peters,B., Dinauer,M., Mockaitis,K.,
Mooney,S. and Cornetta,K. (2011) Identifying viral integration
sites using SeqMap 2.0. Bioinformatics, 27, 720–722.

Nucleic Acids Research, 2012, Vol. 40, Database issue D1045



24. Buchberg,A.M., Bedigian,H.G., Jenkins,N.A. and Copeland,N.G.
(1990) Evi-2, a common integration site involved in murine
myeloid leukemogenesis. Mol. Cell. Biol., 10, 4658–4666.

25. Akagi,K., Suzuki,T., Stephens,R.M., Jenkins,N.A. and
Copeland,N.G. (2004) RTCGD: retroviral tagged cancer gene
database. Nucleic Acids Res., 32, D523–D527.

26. Hacein-Bey-Abina,S., Von Kalle,C., Schmidt,M.,
McCormack,M.P., Wulffraat,N., Leboulch,P., Lim,A.,
Osborne,C.S., Pawliuk,R., Morillon,E. et al. (2003)
LMO2-associated clonal T cell proliferation in two patients after
gene therapy for SCID-X1. Science, 302, 415–419.

27. Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J. and
Sayers,E.W. (2011) GenBank. Nucleic Acids Res., 39, D32–D37.

28. Sanborn,J.Z., Benz,S.C., Craft,B., Szeto,C., Kober,K.M.,
Meyer,L., Vaske,C.J., Goldman,M., Smith,K.E., Kuhn,R.M. et al.
(2011) The UCSC Cancer Genomics Browser: update 2011.
Nucleic Acids Res., 39, D951–D959.

29. Flicek,P., Amode,M.R., Barrell,D., Beal,K., Brent,S., Chen,Y.,
Clapham,P., Coates,G., Fairley,S., Fitzgerald,S. et al. (2011)
Ensembl 2011. Nucleic Acids Res., 39, D800–D806.

30. Seal,R.L., Gordon,S.M., Lush,M.J., Wright,M.W. and
Bruford,E.A. (2011) genenames.org: the HGNC resources in 2011.
Nucleic Acids Res., 39, D514–D519.

31. The Genome Sequencing Consortium. (2001) Initial sequencing
and analysis of the human genome. Nature, 409, 860–921.

32. Thorland,E.C., Myers,S.L., Gostout,B.S. and Smith,D.I. (2003)
Common fragile sites are preferential targets for HPV16
integrations in cervical tumors. Oncogene, 22, 1225–1237.

33. Kent,W.J. (2002) BLAT–the BLAST-like alignment tool.
Genome Res., 12, 656–664.

34. Karolchik,D., Hinrichs,A.S., Furey,T.S., Roskin,K.M.,
Sugnet,C.W., Haussler,D. and Kent,W.J. (2002) The UCSC
Table Browser data retrieval tool. Nucleic Acids Res., 32,
D493–D496.
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