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Abstract 

Purpose:  Potential sources of inaccuracy in leg length discrepancy (LLD) measurements commonly arise due to pos-
tural malalignment during radiograph acquisition. Preoperative planning techniques for total hip arthroplasty (THA) 
are particularly susceptible to this inaccuracy, as they often rely solely on radiographic assessments. Owing to the 
extensive variety of pathologies that are associated with LLD, an understanding of the influence of malpositioning on 
LLD measurement is crucial. In the present study, we sought to characterize the effects of varying degrees of lateral 
pelvic obliquity (PO) and mediolateral limb movement in the coronal plane on LLD measurement error (ME).

Methods:  A 3-D sawbones model of the pelvis with bilateral femurs of equal-length was assembled. Anteroposterior 
pelvic radiographs were captured at various levels of PO: 0°, 5°, 10°, and 15°. At each level of PO, femurs were individu-
ally rotated medio-laterally to produce 0°, 5°, 10°, and 15° of abduction/adduction. LLD was measured radiographically 
at each position combination. For all cases of PO, the right-side of the pelvis was designated as the higher-side, and 
the left as the lower-side.

Results:  At 0° PO, 71% of tested variations in femoral abduction/adduction resulted in LLD ME < 0.5-cm, while 29% 
were ≥ 0.5-cm, but < 1-cm. ME increased progressively as one limb was further abducted while the contralateral limb 
was simultaneously further adducted. The highest ME occurred with one femur abducted 15° and the other adducted 
15°. Similar magnitudes of ME were seen in 98% of tested femoral positions at 5° of PO. The greatest ME (~ 1 cm) 
occurred at the extremes of right-femur abduction and left-femur adduction. At 10° of PO, a higher prevalence of 
cases exhibited LLD ME > 0.5-cm (39%) and ≥ 1-cm (8%). The greatest errors occurred at femoral positions similar to 
those seen at 5° of PO. At 15° of PO, half of tested variations in femoral position resulted in LLD ME > 1-cm, while 22% 
of cases produced errors > 1.5-cm. These clinically significant errors occurred at all tested variations of right-femur 
abduction, with the left-femur in either neutral position, abduction, or adduction.

Conclusion:  This study aids surgeons in understanding the magnitude of radiographic LLD ME produced by varying 
degrees of PO and femoral abduction/adduction. At a PO of ≤5°, variations in femoral abduction/adduction of up 
to 15° produce errors of marginal clinical significance. At PO of 10° or 15°, even small changes in mediolateral limb 
position led to clinically significant ME (> 1-cm). This study also highlights the importance of proper patient position-
ing during radiograph acquisition, demonstrating the need for surgeons to assess the quality of their radiographs 
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Introduction
Total hip arthroplasty (THA) is recognized as a reliable 
intervention usually performed to relieve pain, optimize 
hip mobility and stability, and improve patient function 
[1, 2]. Maintaining or restoring equal limb length during 
this procedure is key for achieving optimal hip biome-
chanics and patient satisfaction [3, 4].

Although the boundary between acceptable and unac-
ceptable levels of leg length discrepancy (LLD) after 
THA remains undefined, it’s generally accepted that 
LLD magnitudes greater than 15–20 mm are perceiv-
able by patients, lead to poorer functional outcomes and 
patient dissatisfaction [5, 6], and are associated with a 
higher incidence of adverse effects [7, 8]. These include 
compensatory gait abnormalities [9, 10], sciatic, femo-
ral, or peroneal nerve palsies, chronic lower back pain, 
and degenerative arthritides of the lower extremities 
and lumbar spine [11, 12]. Some adverse manifestations, 
including neuropathic pain and LLD-induced motor defi-
cits have been shown to improve following equalization 
of limb length [13, 14]. To achieve the most favorable 
outcomes and prevent potential complications, it is gen-
erally suggested that surgeons aim for a LLD of less than 
10 mm during THA [15, 16]. All these factors highlight 
the importance of obtaining proper limb length measure-
ments pre- and intra-operatively.

To minimize the risk of postoperative LLD, most sur-
geons consider preoperative templating to be crucial for 
planning a successful THA [17]. Templating is typically 
performed on anteroposterior (AP) pelvic radiographs 
and allows surgeons to reliably predict the size of the 
prosthesis required and the appropriate amount of off-
set, as well as, to anticipate for any necessary limb length 
restoration [17–19]. While several preoperative templat-
ing methods have been described in the orthopedic lit-
erature, the ready-availability and low cost of AP pelvic 
radiography makes it the most widely used tool and the 
method-of-choice for THA [20]. Although clinicians are 
not united in regard to the most accurate LLD measure-
ment technique as applied on pelvic radiographs [21, 22], 
LLD is most often determined as the distance between 
a line passing through the teardrop points medial to the 
acetabula or the ischial tuberosities to the tip of the lesser 
trochanter [21, 23].

Based on etiology, LLD can be conceptualized as fall-
ing into one of two main categories: 1) structural or ‘true’ 

LLD and 2) functional or ‘apparent’ LLD [24, 25]. True 
LLD is attributable to actual shortening of bony struc-
tures, usually as a result of defective pelvic or femoral 
anatomy. In contrast, apparent LLD implies no actual 
bony defect is present, but instead is the result of altered 
biomechanics of the lower limbs. Clinically, apparent 
LLD is associated with postural asymmetry and is often 
caused by soft-tissue contractures or PO [26]. Moreo-
ver, apparent LLD is considered to be the measure of 
the limb length inequality that is actually perceivable by 
the patient. In some instances, both structural and func-
tional LLDs can be present simultaneously. In such cases, 
the discrepancies may amplify or balance one another, 
depending on the sides involved.

In the present study, we explore the relationship 
between PO, femoral positioning, and LLD measurement 
using a three-dimensional model. We characterize and 
quantify the effects of increasing degrees of PO and vari-
ous amounts of medio-lateral femoral rotation on result-
ing LLD measurement error (ME). In the context of our 
study design, ME reflects the difference between known 
‘true’ LLD and ‘apparent’ LLD, as determined by radio-
graphic measurement. We explore the functional LLD 
introduced by postural malalignment and determine the 
postural parameters required to produce clinically signif-
icant errors in LLD measurement.

Methods
Hip model
A large-sized Sawbones model (Sawbones USA: Vashon 
Island, WA, United States) of the pelvis, with bilat-
eral articulating femurs of equal length, was assembled 
to simulate normal hip structure (Fig.  1). Sawbones 
composite bone modeling material was chosen for its 
topographic similarity to human cadaver bone and its 
radiopaque cortical shell, allowing capture of high-reso-
lution radiographic images.

For calibration and reference purposes, a 25-mm 
steel ball was affixed to the model at the level of the 
hip joint and a 2-mm metallic marker was affixed at 
the level of the lesser trochanters, bilaterally (Fig.  2). 
Rapid sequential fluoroscopy images (R90 Fluoros-
copy System, Philips, Amsterdam, Netherlands) were 
captured at various levels of PO and various degrees 
of femoral abduction and adduction with the model in 
supine position and femurs internally rotated 15°. The 

before performing preoperative templating for THA, and accounting for PO (> 5°) when considering the validity of LLD 
measurements.

Keywords:  Leg length discrepancy, Lateral pelvic obliquity, Postural positional malalignment, Femoral abduction 
adduction, Radiographic measurement error, Total hip arthroplasty THA
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following levels of PO were assessed: 0° (neutral, level 
pelvis), 5°, 10°, and 15° (Fig. 3). At each level of obliq-
uity, the left and right femurs were individually rotated 
medio-laterally in the coronal plane to produce 0°, 5°, 
10°, and 15° of abduction and adduction. All combina-
tions of left/right femoral abduction/adduction were 
modeled and captured radiographically for each level of 
PO, except those that occurred at the unlikely extremes 
of motion. These unlikely extremes occurred exclu-
sively at pelvic obliquities of 10° and 15°. All in all, 49 
radiographs each were obtained for pelvic obliquities 
of 0° and 5°, while 36 were obtained for obliquities of 
10° and 15°. A total of 170 radiographs were captured, 

each representing a different combination of pelvic and 
femoral positioning.

Positioning of the model at each PO was based on a 
horizontal reference axis established with the pelvis in 
neutral position (Fig.  3), bisecting the inferior aspects 
of the ischial tuberosities. Medio-lateral rotation of each 
of the model femurs was based on a horizontal refer-
ence axis established by alignment of the centers of the 
femoral heads with the tips of the greater trochanter. This 
was considered the neutral femoral position, without 
any abduction or adduction. All levels of PO and femo-
ral rotation were verified radiographically using image 
markup software (dicomPACS, OR Technology, Oehm 
und Rehbein, Germany). This served to validate that the 
Sawbones model was properly oriented for each of the 
evaluated postures.

LLD Measurement & Error Reporting
Measurement of LLD was performed digitally using 
medical imaging annotation software (dicomPACS, OR 
Technology, Oehm und Rehbein, Germany). The bony 
landmarks used for measurement were based on Wool-
son et al’s. measurement technique [19]. By this method, 
a horizontal line is drawn bisecting the lower-edge of 
the acetabular teardrops, bilaterally (inter-teardrop line; 
ITL). Then, for each limb, the perpendicular distance 
between the ITL and the medial tip of the lesser tro-
chanters (LT) is determined. The difference in measure-
ment between the two limbs represents the LLD. LLD 
was measured using this method on all 170 radiographs 
obtained.

The Sawbones model we constructed was designed to 
have an inherent ‘true’ LLD of zero, given the bilateral 
equivalence of limb length. Therefore, the radiographi-
cally measured LLD values reflect the ‘apparent’ LLD 

Fig. 1  (A) Anterior and (B) superior view of the assembled Sawbones model, consisting of a pelvis and bilateral articulating acetabular joints. 
The composite model material is designed to mimic human cadaveric bone. The material’s radiopaque cortex allows capture of high-resolution 
radiographs. Femurs are equal in length bilaterally

Fig. 2  Anteroposterior (AP) radiograph of the Sawbones model, 
demonstrating its radiopaque cortical shell. For calibration 
and reference, a 25-mm steel ball is placed at the level of the 
acetabulofemoral joint and a 2-mm metallic marker at the lesser 
trochanter
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introduced by the respective pelvic/femoral position 
being evaluated. The difference between this ‘apparent’ 
LLD and the ‘true’ LLD reflects the measurement error 
(ME). Since the ‘true’ LLD is simply zero, then the ‘appar-
ent’ LLD is itself equal to the ME.

Statistical analysis
Data analysis was performed using SPSS (SPSS Statis-
tics for macOS, Version 24.0., IBM Corp.: Armonk, NY, 
United States) and Excel (Microsoft Excel for macOS, 
Version 16.47., Microsoft Corp.: Redmond, WA, United 
States). Measured outcomes were found to satisfy the 
conditions of normality, equal variance, and independ-
ence. Therefore, statistical analysis of study data was 
achieved using parametric statistical methods: independ-
ent sample t-testing and one-way analysis of variance 
(ANOVA). A p-value less than 0.05 was considered sta-
tistically significant.

Results
A total of 170 radiographs were captured including: 49 at 
neutral pelvic position, 49 at a PO of 5°, 36 at an obliquity 
of 10°, and 36 at an obliquity of 15°.

At neutral pelvic position (Fig. 4), 35 of 49 tested vari-
ations in femoral abduction/adduction (~ 71%) resulted 
in LLD ME < 0.5 cm. The remaining 14 of 49 postural 
variations (~ 29%) were greater than 0.5 cm, however, 
none were ≥ 1 cm at a PO of 0°. Similar results were 
seen at a PO of 5° (Fig. 5), which demonstrated 34 of 49 
cases (~ 69%) to have MEs < 0.5 and 14 of 49 (~ 29%) to 
have a MEs > 0.5 cm but < 1 cm. A single case (~ 2%) in 

which the limb on the lower side of the pelvis (left) was 
adducted 15°, and the contralateral limb on the higher 
side of the pelvis (right) was abducted 15° was found to 
produce a ME of 1.07 cm. Statistical analysis demon-
strated that the LLD MEs found at PO = 5° (mean ME: 
0.087 ± 0.467 cm) were not significantly different than the 
MEs seen at neutral pelvic position (obliquity = 0°; mean 
ME: 0.000 ± 0.448 cm), t (96) = − 0.943, p = 0.348. Over-
all, the MEs seen at a PO of 5° were approximately 98% 
similar to the MEs seen with a neutral pelvis.

At a PO of 10° (Fig.  6), a higher portion of the tested 
postural variations exhibited MEs > 0.5 cm (14 of 36 
cases; ~ 39%) and > 1 cm (3 of 36 cases; ~ 8%). However, 
the majority of postural variations continued to produce 
MEs < 0.5 cm (22 of 36 cases; ~ 61%). The highest MEs 
occurred in cases in which the femur on the lower side 
of the pelvis (left) was adducted and the contralateral 
limb on the higher side of the pelvis was abducted. The 
increased MEs seen with the pelvis and femurs oriented 
in this way are similar to those seen at a PO of 5°. Statisti-
cal analysis demonstrated that the LLD MEs at PO = 10° 
(mean ME: 0.388 ± 0.410 cm) were significantly higher 
than the MEs seen at PO = 0°, t (83) = − 4.094, p = 0.000. 
Moreover, the LLD MEs occurring at PO = 10° were sta-
tistically significantly higher than those seen at PO = 5°, t 
(83) = − 3.093, p = 0.003.

At a PO of 15° (Fig.  7), 16 of 36 tested postural vari-
ations (~ 44%) resulted in a ME > 1 cm. Moreover, 8 of 
36 cases (~ 22%) had a ME > 1.5 cm. Only 7 of 36 cases 
(~ 19%) had a ME < 0.5. As seen with prior pelvic obliq-
uities, the highest MEs occurred when the limb of the 

Fig. 3  Shown are 2-dimensional pictorial representations of varying degrees of PO portrayed by views of the pelvis in the coronal plane. Depiction 
in this way simulates the AP radiographic view of the pelvis commonly used to measure LLD in the clinical setting. Each depiction demonstrates 
one of the four levels of PO assessed with our Sawbones model. To establish neutrality (PO of zero), a level horizontal axis bisecting the inferior 
aspects of the ischial tuberosities was established. All other levels of obliquity (5°, 10°, and 15°) were produced with reference to this horizontal axis. 
Note that for the purposes of our assessment, the right side of the pelvis is considered the higher side, while the left is considered the lower side. At 
each of the four pelvic obliquities shown, four levels of femoral abduction (0°, 5°, 10°, 15°) and adduction (0°, 5°, 10°, 15°) were evaluated
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higher-side of the pelvis (right) was abducted and the 
limb of the lower-side was adducted (left). Statistical 
analysis demonstrated that the LLD MEs at PO = 15° 
(mean ME: 0.988 ± 0.537 cm) were significantly higher 
than the MEs seen at PO = 0°, t (83) = − 9.240, p = 0.000. 
LLD MEs at PO = 15° were also statistically significantly 
higher than those seen at PO = 5°, t (83) = − 8.251, 
p = 0.000, and those seen at PO = 10°, t (70) = − 5.330, 
p = 0.000.

Discussion
In the present study, we determined the extent of radi-
ographic LLD ME introduced as a result of pelvic and 
femoral malposition. Clinically, the assessed variations 

in posture are usually a consequence of either intrin-
sic bony or soft tissue malformations, improper patient 
positioning during radiography, or by the simultane-
ous occurrence of both circumstances [27]. We dem-
onstrate that, depending on the degree of lateral PO 
and femoral abduction/adduction present, ME may be 
significant enough to lead to the exhibition of clinically 
relevant apparent discrepancies, even when in actuality, 
none truly exists. By constructing a 3-dimensional arti-
ficial bone model with an inherent true LLD of zero, we 
were able to simulate postural variance and ascertain the 
resulting functional discrepancies that manifested on AP 
pelvic radiographs. By using this method, we’ve been able 
to quantitatively correlate degrees of pelvic and femoral 

Fig. 4  Measurement error in centimeters seen at varying limb positions when the pelvic is set to 0 degrees of lateral obliquity (level pelvis in 
neutral position)

Fig. 5  Measurement error in centimeters seen at varying limb positions when the pelvic is set to 5 degrees of lateral obliquity
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postural variation with LLD ME, expressed as the dif-
ference between known true LLD and radiographically 
measured apparent LLD.

Four levels of coronal PO were assessed in our study: 0°, 
5°, 10°, and 15°. These were chosen based on previously 
published works demonstrating the range of obliquities 
most commonly seen clinically in THA [28, 29]. Categor-
ically, PO can be classified as suprapelvic, intrapelvic, and 
infrapelvic, depending on its origin. Suprapelvic obliquity 
results secondary to spinal pathology, such as scoliosis 
or degenerative disease of the lumbosacral spine, while 
intrapelvic obliquity results secondary to architectural 
bony defects inherent in the hemipelvis [27]. The lat-
ter often goes on to lead to ischial and ilium hypoplasia. 

Infrapelvic obliquity, the most common type implicated 
in THA cases, and the focus of this study, is considered to 
result secondary to abduction or adduction hip contrac-
tures or limb length inequalities [30]. It has been shown 
that most patients undergoing THA with radiographic 
evidence of infrapelvic obliquity do so with a severity 
ranging from 0° to 15°, with the majority of patients hav-
ing an obliquity ≤10° [30–32].

As indicated by our results, assessments performed 
in which the pelvis was kept in neutral position (lat-
eral obliquity of 0°) with the femurs simultaneously and 
individually abducted and adducted from 0° to 15° con-
sistently demonstrated LLD MEs of marginal clinical sig-
nificance (≤10 mm). Similar assessments, but with the 

Fig. 6  Measurement error in centimeters seen at varying limb positions when the pelvic is set to 10 degrees of lateral obliquity

Fig. 7  Measurement error in centimeters seen at varying limb positions when the pelvic is set to 15 degrees of lateral obliquity
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pelvis laterally rotated to an obliquity of 5°, demonstrated 
comparable magnitudes of ME, with 98% of tested vari-
ations in femoral abduction and adduction resulting in 
apparent LLDs of marginal clinical significance. Predict-
ably, these results were not maintained at increasing 
degrees of PO. At 10° and 15° of obliquity, even small 
changes in femoral position led to significant magnitudes 
of ME (> 10 mm), with the greatest errors occurring at 
the latter. While 8% of tested variations in femoral posi-
tion resulted in clinically significant ME at 10° of PO, 44% 
of cases reached this threshold at 15° of obliquity. Inter-
estingly, across all levels of PO, the greatest magnitudes 
of ME occurred at positions in which the femur of the 
high-side of the pelvis was abducted and the femur of the 
low-side of the pelvis was adducted. Assessment of the 
biomechanics associated with this position allows us to 
shed light on why this may have been the case. The high-
side of the pelvis can be considered as one that is affected 
by an adduction contracture. Alternatively, the low-side 
of the pelvis can be considered as having an abduc-
tion contracture. In either case, this results in the high-
side of the pelvis appearing functionally shorter in leg 
length, while the low-side of the pelvis appears function-
ally longer [33]. The effects of femoral position (adduc-
tion or abduction) may either magnify or offset the hip’s 
effects on leg length. As shown by Sarin et al., 2005 and 
again more recently by Kawamura et  al., 2021, femoral 
adduction can lead to functional limb lengthening, while 
femoral abduction can lead to functional limb shorten-
ing [34, 35]. In our case, femoral abduction compounds 
the shortening effects of the pelvic adduction contracture 
on the high-side of the pelvis. This maximizes the magni-
tude of functional limb shortening which is achievable by 
manipulation of pelvic and femoral structures in the con-
straints of this study’s parameters. On the contralateral 
side (low-side) of the pelvis, femoral adduction magnifies 
the lengthening effects of the pelvic abduction contrac-
ture, thus producing a maximally lengthened apparent 
limb.

The results of this study highlight the importance of 
achieving proper pelvic and femoral positioning during 
capture of radiographs. Moreover, our results stress that 
when PO is present on radiographs, it’s paramount that 
orthopedic surgeons take this into account when meas-
uring LLD, especially when obliquity is greater than 5°. 
This is important to consider pre-, intra-, and post-opera-
tively, particularly in the context of planning, performing, 
and following-up THA procedures.

Radiographs are the most commonly used modality in 
the evaluation of LLD before and after THA, with meas-
urements usually achieved on AP views of the pelvis and 
proximal femurs [23]. Although several other methods 
for assessing LLD have been described, their use is often 

limited by inherent disadvantages in accuracy, reliability, 
susceptibility to magnification error, radiation exposure, 
cost, need for special equipment, or overall inconven-
ience [36]. For instance, clinical methods, such as those 
involving use of a tape measure and standing blocks, have 
consistently been found to be less accurate compared to 
conventional imaging modalities. Despite this, clinical 
methods have been noted to be useful screening tools 
[37–40]. In addition to plain radiography, other proposed 
imaging modalities for achieving LLD measurement 
include computed radiography, slit scanograms, micro-
dose digital radiography, CT scanograms, and MRI scans 
[36]. Each has their own advantages and disadvantages, 
a full description of which is outside the scope of this 
article.

To accurately and reliably determine LLD via radio-
graphic measurement on AP views of the pelvis, radio-
graphs must always be obtained using validated and 
standardized imaging protocols, whenever possible [41]. 
Error-free LLD measurement is highly dependent on 
image quality, which itself is highly dependent on both 
technique and patient positioning. Variability in the lat-
ter can substantially impact a surgeon’s ability to detect, 
diagnose, and quantify structural abnormalities. AP 
pelvic radiographs can be obtained with the patient in 
standing, weight-bearing position or in supine position. 
Cleveland et al. previously compared LLD measurements 
achieved using both standing and supine pelvic radio-
graphs and, using 10 mm as the threshold for meaning-
ful difference, reported no difference between the two 
tests [42]. Despite this, surgical planning for THA has 
traditionally preferred supine AP radiographic images 
of the pelvis. Standing images, when obtained, are typi-
cally used as an adjunct and not a replacement for supine 
imaging [43]. This is largely attributable to the signifi-
cant differences in pelvic tilt and acetabular anteversion 
and inclination seen between supine and standing posi-
tions [43]. If tilt or rotation of the pelvis is evident with 
the patient lying supine, suspicion and diagnosis of hip 
contracture or lumbosacral pathology is more readily 
established [27]. The ideal AP radiographic view cap-
tures the top of the iliac crests and extends distally, just 
beyond the lesser trochanters. With the patient lying in 
the supine position on a level surface, most standard-
ized protocols direct that the patient’s hips be internally 
rotated 15° to 20°. This ensures a view in which the pelvis 
and femoral neck are forward-facing. This is particularly 
significant for the latter, as the femoral neck has a nor-
mal anteversion of 15° to 20°. If radiographs are obtained 
with the hips externally rotated, a gross underestimation 
of femoral offset may result [27]. Typical technique also 
dictates that the X-ray tube be placed 1 m above and ori-
ented perpendicularly to the table, and the radiographic 
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plate/film be placed 5 cm beneath the table. This allows 
for a magnification of ~ 20% (± 6%) [44]. Magnification 
is directly proportional to the distance between the pelvis 
and the radiographic plate/film. For adequate preopera-
tive planning, surgeons need to know the magnification 
of the hip radiographs, so as to account for it when tem-
plating and establishing their measurements. Increased 
magnification should be expected and accounted for in 
obese patients, and conversely reduced magnification for 
thin patients [27]. For patients requiring absolute preci-
sion, magnification markers of known diameter can be 
positioned along the patient’s coronal plane at the level 
of the greater trochanter [45]. The X-ray beam itself is 
commonly centered on a point midway between the 
superior border of the patient’s pubic symphysis and a 
line drawn connecting the anterior superior iliac spines 
[43, 46]. Lowering the X-ray beam to be aligned centered 
near the pubis ensures that the whole proximal third of 
the femurs are visible and are more or less located in the 
same horizontal plane as the X-ray source. This prevents 
excessive distortion in the resulting image. Considering 
the many factors involved in radiograph acquisition, it’s 
not surprising that obtaining an ideal image can be chal-
lenging in clinical practice, particularly in patients who 
present with inherent bony or soft tissue abnormalities 
causing intrinsic postural variation that deviates signifi-
cantly from normal anatomy. A summary of the proper 
techniques for capturing supine AP pelvic radiographs 

is outlined in Fig. 8. The described procedure focuses on 
proper patient positioning and the relative arrangement 
of radiological equipment required to successfully cap-
ture a pelvic view at the commonly used magnification 
of ~ 20%. Figure 9 describes a method by which surgeons 
are able to review and assess the quality of their radio-
graphs before accepting them as adequate for planning 
a THA and using them for LLD measurements. At its 
core, this method entails assessment of femoral rotation, 
sagittal pelvic inclination, coronal and transverse pelvic 
rotation, and pelvic/femoral symmetry. Many of the radi-
ographical features described in the method can be seen 
in Fig. 10, which demonstrates various levels of PO rang-
ing from 0° to 15° on AP pelvic radiographs.

The widespread use of pelvic radiography for preop-
erative templating and determining LLD emphasizes 
the significance of the present study. Given the com-
monplace occurrence by which pelvic and femoral 
malpositioning is present on captured radiographs, 
it’s important that surgeons understand the potential 
measurement errors introduced by varying degrees 
of lateral obliquity and mediolateral femoral rotation. 
Only by recognizing the magnitudes of error involved 
can surgeons adequately determine whether the degree 
of postural variation is within acceptable limits, or 
whether radiographs should be recaptured, alterna-
tive views be obtained, or whether alternative imaging 
modalities are warranted.

Fig. 8  Supine AP pelvic radiographs are routinely used for planning hip arthroplasties

The most crucial aspects of proper radiograph acquisition for this projection are described, with special focus on patient and equipment 
positioning. We focus on supine rather than standing AP pelvic radiographs given the practical considerations relevant to performing THA -- supine 
radiographs can be compared directly to pelvic radiographs captured intra-operatively or at early follow-up when the patient may have restricted 
weight bearing.
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While the results of this study have promising implica-
tions, it was subject to several limitations. Firstly, given 
that a single model was used to simulate pelvic and femo-
ral position, the generalizability of the magnitudes of ME 
is limited. Despite this, the relative measurements we 
obtain with each of the tested postural variations remains 
valid. Future studies could potentially explore LLD ME 
introduced by more complex models which better repli-
cate the functional deformities that are commonly seen 
in clinical practice. The importance of this is highlighted 
by the fact that ME is proportional to patient size and 
varies depending on the relative distance between the 
lesser trochanters and the centers of the femoral heads. 
An investigation using more diverse models would serve 
to strengthen the applicability of our results. Secondly, 
we chose to construct a model with a true LLD of zero 
in order to facilitate determination of ME and introduced 
apparent LLD. A more comprehensive characteriza-
tion of the magnitudes of error detected at each posture 
would be possible using models with preexisting true 
LLD. By overcoming this limitation, studies would be 
able to expound on any potential compounding effect 
that, taken together, may worsen or lessen the overall 
ME. Finally, this study was limited in that it examined 

only two parameters of postural variation, both occurring 
in the coronal plane: lateral PO and mediolateral femo-
ral abduction and adduction, and both measured on a 
single radiographic view: supine bilateral AP pelvis. The 
effects of posteroanterior pelvic tilt and pelvic rotation 
in the transverse plane were not assessed, although they 
are commonly implicated in radiographic malposition-
ing. Moreover, discrepancy arising from the variations 
in the femoral shaft, knee, tibia, or ankle were also not 
accounted for.

We’ve seen that the LLD depicted on any given AP 
pelvic radiograph is dependent on the pelvic orienta-
tion of the subject during X-ray acquisition. We’ve also 
demonstrated that non-neutral variations in PO can 
directly alter LLD measurements to a clinically rele-
vant degree, and that the magnitude of the introduced 
error is directly related to the degree of PO. Based on 
these findings, we may now also consider --- what other 
measurable radiographic parameters are quantitatively 
or qualitatively altered to a clinically relevant degree 
when subject to variations in PO? Can these changes 
influence the diagnosis of acetabular pathologies or 
adversely affect surgical planning? Unfortunately, a 
non-ambiguous characterization of this highly-relevant 

Fig. 9  The significance of properly reviewing radiographs and assessing their quality before carrying our measurements such as LLD cannot be 
understated. A method for assessing AP pelvic radiographs, including practical considerations for recognizing PO and other postural malalignments 
is described. The five quintessential radiographic properties outlined in this figure should all be satisfied before deciding to accept a pelvic 
radiograph as sufficient for producing accurate LLD measurements or for use in preoperative templating for THA
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topic remains elusive, and the answers to these ques-
tions vary significantly depending on the parameter 
and pathology under consideration. Underlying this are 
conflicting results between studies, small study sizes, 
and a lack of standardized widely-accepted investiga-
tion techniques [47–51]. For instance, in an experi-
mental setup involving 20 cadaveric pelvises, Tannast 
et al. ventured to explore the effects of pelvic tilt (rang-
ing from − 24° to 24°) and PO (ranging from − 12° to 
12°) on 11 radiographic parameters [50]. These inves-
tigators found no quantitatively relevant change in the 
following parameters as they varied PO: lateral center-
edge angle (LCEA), acetabular index (AI), extrusion 
index (EI), ACM angle, Sharp angle, and cranio-caudal 
coverage. In contrast, they found that anteroposterior 
acetabular coverage, crossover and posterior wall signs, 
and retroversion index exhibited clinically relevant 
changes. In a similar cadaveric study, Monazzam et al. 
found that PO significantly affected LCEA, AI, and 
Sharp angle measurements -- contradicting Tannast 

and colleagues results [22]. Currently, although there is 
an abundance of articles within the orthopedic litera-
ture which explore and characterize the effects of pelvic 
tilt on radiographic parameters, significantly fewer arti-
cles explore the effects of PO [52–55].

Future research focusing not only on more com-
plex and diverse modeling, but also on validating our 
results in vivo with patients of varying sizes and func-
tional deformities would be well suited for expanding 
our understanding of the effects of postural variation 
on radiographic measurement. Assessments of other 
parameters in addition to LLD by the same manner 
would be beneficial. By comprehensively characterizing 
and quantifying the effects of postural variation, algo-
rithm-based software applications which calculate cor-
responding ME become within the realm of possibility. 
Modern advancements in artificial intelligence and 
software design could potentially allow corrections to 
be calculated in the time it takes to capture or upload 
an image of the inadequately malpositioned radiograph.

Fig. 10  A An AP pelvic radiograph of a patient with a level pelvis is shown. Notice the relative bilateral symmetry in the size and shape of the 
obturator foramina, the iliac wings, the ischial spines, and the ischial tuberosities. This symmetry, viewed in context of the relative vertical alignment 
of coccyx and the midline of the pubic symphysis gives us an overall impression of a lack of PO. B A PO of 5° is seen in this radiograph. Notice the 
bilaterally asymmetric heights of the iliac crests and the relatively increased vertical malignment of the tip of the coccyx and the midline of the 
pubis compared to the neutral pelvis. C At a PO of 10°, the asymmetry between the bilateral obturator foramina and the heights of the iliac crest 
become much more profound. D Demonstrating even greater postural asymmetry, this radiograph shows a PO of 15°



Page 11 of 12Hamad et al. Journal of Experimental Orthopaedics            (2022) 9:71 	

Conclusion
The present study aims to help surgeons understand the 
magnitude of LLD ME produced by increasing degrees 
of lateral PO and at varying degrees of femoral abduction 
and adduction. When the pelvis is level or at a PO of ≤5°, 
variations in femoral abduction or adduction of up to 15° 
produce errors of marginal clinical significance. As we 
approach a PO of 10° or 15°, even small changes in medi-
olateral limb position led to clinically significant LLD ME 
(> 1 cm). This study highlights the importance of proper 
patient positioning when obtaining radiographs for meas-
urement of LLD and describes the relationship between 
true and functional LLD as affected by coronal pelvic and 
femoral orientation.
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