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Integrative analysis of genomic and epigenomic
regulation of the transcriptome in liver cancer
Hyun Goo Woo 1,2, Ji-Hye Choi1,2, Sarah Yoon1, Byul A. Jee1,2, Eun Ju Cho3, Jeong-Hoon Lee 3, Su Jong Yu3,

Jung-Hwan Yoon3, Nam-Joon Yi4, Kwang-Woong Lee4, Kyung-Suk Suh4 & Yoon Jun Kim3

Hepatocellular carcinoma harbors numerous genomic and epigenomic aberrations of DNA

copy numbers and DNA methylation. Transcriptomic deregulation by these aberrations

plays key driver roles in heterogeneous progression of cancers. Here, we profile DNA

copy numbers, DNA methylation, and messenger RNA expression levels from 64 cases of

hepatocellular carcinoma specimens. We find that the frequencies of the aberrancies of the

DNA copy-number-correlated (CNVcor) expression genes and the methylation-correlated

expression (METcor) genes are co-regulated significantly. Multi-omics integration of the

CNVcor and METcor genes reveal three prognostic subtypes of hepatocellular carcinoma,

which can be validated by an independent data. The most aggressive subtype expressing

stemness genes has frequent BAP1 mutations, implying its pivotal role in the aggressive

tumor progression. In conclusion, our integrative analysis of genomic and epigenomic

regulation provides new insights on the multi-layered pathobiology of hepatocellular

carcinoma, which might be helpful in developing precision management for hepatocellular

carcinoma patients.
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Recent large-scale and multi-omics profiling of cancers has
provided a systematic picture of genomic and epigenomic
deregulation in these diseases. Genomic alterations due to

DNA copy-number aberration or mutations occur frequently during
tumorigenesis, stimulating cancer progression. Epigenetic regulation
of the cancer genome by DNAmethylation also plays pivotal roles in
heterogeneous cancer behaviors. In particular, in hepatocellular
carcinoma (HCC), genomic profiling studies have demonstrated the
enormous heterogeneity of genomic and epigenomic deregulation1.
In this cancer, aberrations of DNA copy number play key regulatory
roles in HCC progression2–4, and transcriptional deregulation
resulting from such aberrations is a potential driver event in HCC
progression5, 6. In addition, DNA methylation profiling studies
have revealed the biological and clinical significance of epigenetic
regulation in HCC progression7–11. Several key cancer-related genes
such as IGF212 and UHRF113 exert their regulatory functions by
modulating DNA methylation.

However, despite the genome-wide impact of aberrations
of DNA copy numbers and DNA methylation on cancers, it
remains unclear whether DNA copy-number aberration is
systematically related to epigenetic DNA methylations, and, if so,
whether this connection plays any role in cancer progression.
In this study, we profiled DNA copy numbers, DNA methylation,
and messenger RNA (mRNA) expression levels in a cohort
of HCC patients. To identify genes whose expression levels
are regulated by genomic and/or epigenomic deregulation,
we defined DNA copy-number-correlated (CNVcor) and
DNA methylation-correlated (METcor) genes, based on their
corresponding gene expression levels across samples, respectively.
CNVcor genes represent the transcriptional deregulation depen-
dent on DNA copy number, whereas METcor genes represent
transcriptional deregulation dependent on DNA methylation.
Expression of CNVcor genes was significantly correlated with
expression of METcor genes, suggesting concomitant regulation
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Fig. 1 Identification of DNA copy-number-correlated (CNVcor) and DNA methylation-correlated (METcor) genes in HCC. a Distribution of the correlation
coefficients between the mRNA expression levels and DNA copy numbers or DNA methylation across the samples are shown, respectively. b A Venn
diagram shows the counts of CNVcor and METcor genes. The counts of overlapped genes between CNVcor and METcor are indicated. c Proportional
frequencies of the CNVcor or METcor genes against total gene counts in each chromosome arm are shown, respectively. d Genomic positions of
DNA methylation probes are categorized based on the positional relations with CpG islands (right) and genes (left), respectively. The proportional
frequencies in each category of DNA methylation for the whole genes and METcor genes are compared, respectively. e A barplot shows the frequencies
of up- or down-expressed CNVcor genes or METcor genes in each sample (top). Each of CNVcor and METcor genes is categorized as upregulated
(CNVcor_UP and METcor_UP) or downregulated (CNVcor_DOWN and METcor_DOWN) genes, respectively. Heatmaps show the up- (red) and
down-expressed (blue) CNVcor (middle) and METcor (bottom) genes, respectively. f Dot plots show the pairwise correlations among the frequencies of
CNVcor_UP, CNVcor_DOWN, METcor_UP, and METcor_DOWN genes, respectively
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of cancer transcriptomes by alterations in genomic DNA copy
number in addition to epigenetic DNA methylation. Moreover,
by performing multi-omics integration of CNVcor and METcor
genes, we could identify distinct molecular subtypes that were
significantly associated with prognostic outcomes of HCC.
Further systematic analysis could identify new mutations that
could be used as precision targets or biomarkers for subtype
distinction.

Results
Transcriptome deregulation by DNA copy number or methy-
lation. Genomic and epigenomic profiles of DNA copy-number
variation (CNV), DNA methylation (MET), and gene expression
(EXP) were obtained from 64 HCC patients. Raw data profiles
were preprocessed as described in “Methods.” To assess the global
effects of genomic and/or epigenomic aberrations, we calculated
the correlation coefficients between DNA copy number or DNA
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Fig. 2 Identification of molecular subtypes of HCC using CNVcor and METcor genes. a, b Plots show the non-negative factorization (NMF) cluster results
for the CNVcor in CNV data (a) and for the METcor in MET data (b), respectively. Kaplan–Meier plot analyses for subtypes identified by NMF clustering of
the CNVcor and METcor genes are shown for overall survival (OS) and time to tumor recurrence (TTR), respectively. c Heatmaps show the expression
patterns of subtypes identified by iCluster analysis. The subtypes identified by the CNVcor or METcor genes using NMF cluster methods are indicated with
colored bars (top). The frequencies of aberrant expression of CNVcor_UP, CNVcor_DOWN, METcor_UP, and METcor_DOWN genes in each subtype are
shown (bottom). d Kaplan–Meier plot analyses for subtypes identified by iCluster (iCl1, iCl2, and iCl3) are shown for overall survival (OS) and time to
tumor recurrence (TTR), respectively
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methylation profiles with the corresponding mRNA expression
profiles. The correlation coefficient r was normalized to stabilize
variance by applying Fisher’s Z-transformation: z ¼ 1

2 ln
1þr
1�r

� �
.

Consistent with previous studies, the overall distribution of
correlation coefficients between DNA copy numbers and the
corresponding gene expression profiles exhibited a significant
skew to the right (skewness= 0.224, P< 2.2 × 10−16, D’Agostino
test). By contrast, the correlation coefficients between DNA
methylation profiles and corresponding gene expression profiles
were skewed to the left (skewness= −0.153, P= 7.9 × 10−11)
(Fig. 1a). This result reflects the overall impacts of positive and
negative transcriptional deregulation due to aberrant DNA copy
numbers and DNA methylation, respectively.

We next identified the positively correlated gene signatures for
DNA copy number (CNVcor, n= 813) and the negatively
correlated gene signatures for DNA methylation (METcor,
n= 321), which were determined based on the Fisher’s
Z-transformed correlation coefficients with 95% confidence
interval (≥ 1.96 or≤ −1.96, P< 0.05). (Supplementary Data 1).
CNVcor genes exhibited DNA copy-number-dependent tran-
scriptional deregulation, whereas METcor genes exhibited DNA
methylation-dependent transcriptional deregulation. The
CNVcor and METcor were not likely to overlap each other
showing only 24 genes were overlapped, which may imply
exclusive regulation of CNVcor and METcor genes in transcrip-
tional deregulation (Fig. 1b). The CNVcor genes exhibited a
regional genomic preference for DNA copy-number aberration,

particularly on the p and q arms of chromosome 8 (Fig. 1c).
Consistent with previous studies, the abundance of the CNVcor
genes on chromosome 8 indicated regional sensitivity of gene
expression to DNA dosage5, 14. By contrast, the METcor genes
were not distributed in preferred chromosome regions. Moreover,
in comparison with all probes, METcor genes frequently resided
in the inter-genic open sea regions rather than CpG islands
(Fig. 1d, left). In relation to genic position, DNA methylation was
more frequent in gene body regions than near transcription start
site (TSS) or first-exon regions (Fig. 1d, right), indicating
that methylation in open sea and/or gene body regions might
function in transcriptional deregulation. In addition, gene
ontology analysis revealed differential enrichment of gene
functions between CNVcor and METcor genes. CNVcor genes
were enriched in functions related to protein transport (enrich-
ment score, ES= 4.1), metabolism (ES= 3.88), and the cell cycle
(ES= 2.29), whereas METcor genes were enriched in functions
related to inflammation (ES= 3.41) and metabolism (ES= 3.12)
(Supplementary Fig. 1). Although further studies are required,
our results imply that CNVcor and METcor genes play distinct
functional roles in transcriptional deregulation of HCC.

Because the CNVcor and METcor genes were thought as the
aberrations with concomitant transcriptional deregulation, we
further interrogated the association between the expression of
the CNVcor and METcor genes by calculating the frequencies
of transcriptional deregulation of both types of genes in
each patient. This analysis revealed that patients with frequent
deregulation of the CNVcor genes were more likely to exhibit
frequent deregulation of the METcor genes (Fig. 1e). In addition,
we designated up and downregulated CNVcor (CNVcor_UP
and CNVcor_DOWN) and METcor (METcor_UP and
METcor_DOWN) genes whose expression levels differed
by more than twofold between tumors and surrounding
non-tumoral tissues. Pairwise comparison of the frequencies of
up- and down-regulated CNVcor or METcor genes revealed
significant correlations between the two sets (P< 0.001, Pearson’s
correlation test, Fig. 1f). Thus, we suggest that the frequencies of
DNA copy-number- and DNA methylation-dependent transcrip-
tional deregulation were highly correlated with each other.

Molecular subtypes based on CNVcor and METcor genes. Next,
we investigated whether the expression profiles of CNVcor and
METcor genes could predict prognostic subgroups. For each gene
set profile, we applied a non-negative matrix factorization (NMF)
cluster analysis with cluster number k from 2 to 5, and then
determined k for each profile: CNV, k= 3; MET, k= 4 (Fig. 2 and
Supplementary Fig. 2). Interestingly, the subtypes identified by
CNVcor overlapped significantly with the subtypes identified by
METcor (P= 1.36 × 10−5, χ2-test), consistent with the associated
regulation of CNVcor and METcor genes in HCC. In addition,
Kaplan–Meier plot analyses demonstrated that the subtypes iden-
tified by CNVcor or METcor genes could predict patients’ clinical
outcomes of time to recurrence (TTR), respectively (CNVcor: TTR,
P= 0.004; METcor: TTR, P= 0.07). Kaplan–Meier plot of overall
survival (OS) also revealed distinct prognostic outcomes among the
groups, although the difference was not statistically significant
(CNVcor: OS, P= 0.22; METcor: OS, P= 0.7), possibly due to the
smaller sample size in each subtype.

We next sought to identify molecular subtypes that reflected the
multi-layered expression patterns of the CNVcor and METcor
genes. To integrate the genomic data regarding DNA copy
numbers, DNA methylation, and RNA expression, we employed
an integrated cluster method, iCluster15. Clustering analysis was
performed with cluster numbers k= 3 and 4, which were
determined as the number of clusters from the NMF analyses on

Table 1 Clinico-pathological features of the molecular
subtypes of SNU data

iCl1 (n= 9) iCl2 (n= 24) iCl3 (n= 31) P value
(χ2-test)

Sex
Male 8 19 29 0.276
Female 1 5 2

Age
<60 (years) 5 12 16 0.960
≥60 (years) 4 12 15

Stage
T1/T2 5 21 27 0.065
T3/T4 4 3 4

Nodal metastasis
No 7 24 30 0.060
Yes 1 0 0

Tumor size
<5 cm 6 10 12 0.319
≥5 cm 3 14 19

Vascular invasion
No 1 15 19 a0.002
Yes 7 16 5

Gross type
Simple nodular 3 16 14 0.110
Multi nodular/
infiltrative

6 7 16

AFP
<400 (ng/ml) 5 18 25 0.286
≥400 (ng/ml) 4 5 6

Grade
I, II 2 11 19 0.278
III, IV 4 5 10

aStatistical significance P< 0.05
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the individual data sets, respectively. This analysis revealed three
distinct subtypes with k= 3, iCl1, iCl2, and iCl3, which were
consistent with the classification based on the NMF analysis for
individual CNV and MET data, respectively (P= 3.65 × 10−11 and
1.09 × 10−5; χ2-test). Interestingly, the frequencies of aberrant
CNVcor and METcor genes were much higher in subgroups
iCl1 and iCl2 than in iCl3 (Fig. 2c, bottom), indicating that the
subtypes were distinct from one other concerning the correlated
regulation of transcriptomes by genomic and epigenomic
aberrations.

Notably, Kaplan–Meier plot analysis revealed that, among the
three subgroups, iCl1 had the worst prognostic outcomes of TTR
and OS (TTR, P= 1.86 × 10−11; OS, P= 0.26, Fig. 2d). We also
compared clinico-pathological features among the iCl1, iCl2, and
iCl3 subgroups, and found that iCl1 tumors had more frequent
vascular invasion than iCl2 or iCl3 tumors (P= 0.002, Table 1).
Other clinical features did not differ among the subgroups. These
results are consistent with the distinct aggressiveness properties
of the molecular subtypes. Based on these findings, we suggest that
integrated analysis of CNVcor and METcor genes can identify
molecular subtypes, each of which features a different combina-
tion of genomic and epigenomic features related to transcriptional
deregulation, associated with distinct prognostic outcomes.

Validation of the molecular subtypes in an TCGA data set. To
validate the robustness and consistency of our molecular classi-
fication using the CNVcor and METcor genes, we applied the
same method to an independent HCC data set from TCGA
(LIHC, Liver Hepatocellular Carcinoma). Consistent with the
aforementioned analysis, in the LIHC data, we observed that the
overall distribution of correlation coefficients between the CNV
and transcriptome was shifted to the right (skewness= 0.367, P<
2.2 × 10−16, D’Agostino test), whereas the correlation coefficients
for DNA methylation were shifted to the left (skewness= −0.237,
P< 2.2 × 10−16) (Fig. 3a). CNVcor (n= 388) and METcor (n=
1496) genes were identified from the LIHC data using the same
analysis pipeline (Fig. 3b). Consistent with the Seoul National
University (SNU) data, CNVcor genes were enriched on chro-
mosome 8, whereas the METcor genes did not exhibit a chro-
mosomal preference (Fig. 3c). METcor genes were more frequent
in open sea and gene body regions than in CpG islands and TSS
regions (Fig. 3d). In addition, the correlation between the fre-
quencies of aberrant CNVcor and METcor genes was validated in
the LIHC data (r= 0.82, P= 1.69 × 10−88, Fig. 3e).

In addition, we determined the molecular subtypes of LIHC
data using the same method that we applied to the SNU data.
This analysis also revealed three subtypes (C1, C2, and C3), which
had clear differences in their frequencies of CNV and methylation
aberrations (Fig. 3f). Group C1 had the highest rate of aberrations
in DNA copy number and DNA methylation, whereas group C3
had the lowest rate (Fig. 3f, g). As expected, the three groups had
distinct prognostic outcomes, with the worst OS (P= 0.001) and
recurrence-free survival (RFS, P= 0.015) in group C1, and the
most favorable clinical outcomes in the group C3 (Fig. 3h). These
results confirmed that our strategy for classifying tumors based
on CNVcor and METcor can identify prognostic subgroups with
distinct genomic and epigenomic regulation that reflect the
clinical outcomes of HCC patients. Thus, the profile of CNVcor
and METcor genes can predict prognostic molecular subtypes
independent of patient cohort and data platforms.

Coordinated aberrations of DNA copy numbers and methyla-
tion. We also compared the frequencies of the aberrant DNA copy
number and DNA methylation in the entire genome in the inte-
grated SNU and LIHC data set (n= 428) after correcting for batch

effects as described in “Methods.” The DNA copy-number gain
(CNVgain) and loss (CNVloss) and the DNA hypermethylation
(METhyper) and hypomethylation (METhypo) were determined
with the cutoff of the fold difference 0.2 compared to the average
value for each probe of non-tumoral tissues. The frequencies of
CNVgain were significantly correlated with the frequencies of
CNVloss (r= 0.43, P= 1.5 × 10−20, Fig. 4a). By contrast, the fre-
quencies of DNA hypermethylation were negatively correlated with
the frequencies of DNA hypomethylation
(r= −0.27, P= 2.25 × 10−8, Fig. 4b). In addition, as with the fre-
quencies of CNVcor and METcor aberrations, the frequencies of
the aberrant DNA copy number, including CNVgain and CNVloss,
were significantly correlated with the frequencies of aberrant DNA
methylation, including METhyper and METhypo (r= 0.41,
P= 2.25 × 10−18, Fig. 4c). Directional aberrations of CNVgain and
CNVloss, and METhyper and METhypo, were also closely corre-
lated, indicating that the correlations were independent of direc-
tional changes (Fig. 4d–g). Taken together, we suggest that the HCC
patients with frequent aberration of DNA copy number are more
likely to have frequent aberration of DNA methylation. These
correlated frequencies of aberrant CNVcor and METcor genes may
imply the close relationships between the aberrations of DNA copy
number and DNA methylation, and which were not dependent to
patient cohorts or data platforms.

Identification of genomic key features in the HCC subtypes.
Next, we examined the mutation profiles of LIHC to determine
whether they were associated with our subclassification. After
filtering out the synonymous mutations, we obtained gene-level
mutations of missense and nonsense variants. Overall, mutation
frequencies did not differ among the subtypes (Supplementary
Fig. 3). Among the 189 recurrently mutated genes with more than
10 mutations across the samples, we identified 37 differentially
mutated genes, which had >5% difference of the mutational
frequencies among the subgroups of C1, C2, and C3 (Fig. 5a).
Interestingly, BAP1 was the most frequently mutated gene in C1
(n= 10, 14.7%), but it was mutated less frequently in C2 (n= 4,
2.25%) and C3 (n= 6, 5.12%). BAP1 expression is associated with
multiple tumor types and high tumor phenotype penetrance16. By
contrast, CTNNB1 mutation was more frequent in the favorable
prognostic groups (C2, n= 18, 10.16%; C3, n= 13, 11.11%),
but less frequent in the aggressive subtype C1 (n= 2, 2.91%).
Supporting this, previous studies have shown that the CTNNB1
mutation is associated with favorable HCC prognosis17. Taken
together, these findings suggest that molecular HCC subtypes
associated with DNA copy numbers and DNA methylation are
also linked to BAP1 and CTNNB1 mutations, which might play
regulatory roles in subtype progression of HCC.

In addition, to address the functional determinants of the
subtypes, we performed a network analysis using the core
CNVcor genes (n= 95) and METcor genes (n= 179) shared
between the SNU and LIHC data. Interestingly, the UBC gene was
highly connected by physical and genetic interactions to most of
the core CNVcor genes (77 out of 95, 81%), although UBC itself
was not a member of CNVcor genes (Fig. 5b). UBC encodes
ubiquitin C, which regulates multiple biological functions, and its
expression is associated with tumor progression18. This suggests
that dysregulation of CNVcor genes could be effectively
suppressed by modulating ubiquitination, although further
studies would be required to investigate this possibility in detail.
The core METcor genes did not have a significant hub gene in
this network analysis.

Furthermore, to delineate key distinctive features of the
subtype transcriptomes, we identified differentially expressed
genes (DEGs) among subtypes that are commonly found in
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both SNU and LIHC data sets, including up- (n= 121) and
down-expressed (n= 366) genes. Notably, we identified that
CA9 was the top-ranked gene that was differentially expressed in
iCl1/C1 tumors in comparison with other tumor subtypes (Fig. 5c,
top). Indeed, CA9 is a marker of hypoxia, and its overexpression
is a poor prognostic marker in HCC19. In addition, in comparison

with the other subtypes, the aggressive iCl1 and C1 tumors
expressed high levels of stemness-related genes such as KRT19,
EPCAM, and PROM1. Consistent with this, a recent study
reported that CA9 expression is associated with stemness-related
phenotypes in HCC20. These results indicate that the aggressive-
ness of iCl1 and C1 tumors might be associated with expression
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indicate the frequencies of CNVcor_UP, CNVcor_DOWN, METcor_UP, and METcor_DOWN genes are shown in each subtype of C1, C2, and C3,
respectively. h Kaplan–Meier plot analyses of the HCC subtypes for overall survival (OS) and recurrence-free survival (RFS) are shown, respectively
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of stemness traits. Based on this finding, we also evaluated the
known stemness gene sets (i.e., gene sets for ESC, Nanog, Oct4,
Sox2, Myc1, and Myc2). This analysis revealed that the iCl1
and C1 tumors exhibited significant differential expression of
stemness genes in comparison with the other subgroups (Fig. 5c,
middle). CA9 expression might represent a promising candidate
marker for the most aggressive subtype of tumors (iCl1 or C1).

We also compared our classification with the previous studies
that have defined molecular classifiers for HCC subtypes. By
applying nine different molecular classifiers as described in
“Methods,” we evaluated their enriched expression in SNU and
LIHC data sets, respectively. When we compared each of the
HCC classifier with the DEGs (n= 487), only a subset of the HCC
signature genes were overlapped with DEGs, suggesting that each
classifier represents distinct biological characteristics (Fig. 5c,
bottom left). However, Kim_65 genes (34 out of 65), Yama-
shita_EpCam_DOWN (7 out of 18), Woo_CLHCC_DOWN (203
out of 374), and Boyault_G123_DOWN (26 out of 50) genes
showed substantial overlaps with the DEGs (>20%), indicating
their expression similarity of the subtypes from those studies.
Although not all the classifiers were matched to our classification,
most of them exhibited differential enrichment among the
subtypes. Particularly, C1 and iCl1 tumors exhibited differential
expression of the prognostic signatures compared to the other
subgroups, including Hoshida et al., Kim_65 genes, Roes-
sler_PT_UP, Woo_CLHCC, Yamashita_EpCAM, and
Boyault_G123 signatures (Fig. 5c, bottom right). This also imply
that the expression of these previous classifiers might be
associated with the frequencies of the aberrations of CNVcor
and METcor genes. Collectively, we suggest that the C1 and
iCl1 tumors might share functional features of those subtypes
such as aggressiveness or stemness.

As shown in Fig. 5a, c, BAP1 mutation is linked with the
expression of stemness in C1 tumors. To clarify this association,
we evaluated the effects of BAP1 suppression on the expression of
stemness genes in liver cancer cells. Knockdown of BAP1
expression by transfecting the BAP1-targeting short hairpin RNAs
(shRNAs) in Huh7 cells significantly upregulated the expression of
stemness genes including CA9, KRT19, EPCAM, and PROM1
(Fig. 5d). These results strongly support our finding that the BAP1
mutation may contribute, at least in part, to the progression of an
aggressive HCC subtype expressing stemness genes.

Discussion
Previous studies demonstrated that integrative analysis of multi-
layered genomic features of cancers could identify molecular
subtypes, providing novel mechanistic and clinical insights into
tumor heterogeneity, as well as revealed candidate therapeutic
targets and biomarkers. However, unveiling the enormous
complexity of cancer genome data remains challenging. Indeed,
HCC has heterogeneous etiological backgrounds, which may also
impede extraction of biologically meaningful information from
genomic data. With this concern in mind, in this study, we
enrolled patients who had a homogenous etiological background
of hepatitis B virus (HBV) infection and had experienced the
same clinical management in one hospital. As a strategy for
integrating multi-layered genomic and epigenomic data, we
defined the genomic and epigenomic deregulators of CNVcor and
METcor genes, and demonstrated that these correlated genes
could successfully identify subtypes of HCC that reflected
their distinct, multi-layered molecular features, as well as their
distinct prognostic outcomes. Our findings were validated in an
independent TCGA data set, notwithstanding its heterogeneous
sample composition. Moreover, we found that HCCs with
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Fig. 4 Coordinated aberrations of DNA copy number and DNA methylation in liver cancer. a, b The SNU and LIHC data sets of DNA copy numbers or DNA
methylation are integrated by applying “combat” method as described in “Methods.” Aberrations of DNA copy numbers or DNA methylation were
determined with cutoff fold difference >0.2 compared to those of the average values of the non-tumoral tissues, respectively. Directional alterations of
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are plotted. d–g Plots show the pairwise frequencies of CNVgain, CNVloss, METhyper, and METhypo genes in individual samples
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higher frequencies of CNVcor aberration had higher frequencies
of METcor aberration, demonstrating that that the patients who
have frequent aberration of DNA copy numbers are prone to
have frequent aberration of DNA methylation. This observation
highlights the fact that aberrations of DNA copy number and
methylation need to be considered together in data analysis.

Remarkably, our classification analysis based on CNVcor and
METcor revealed novel molecular key features that represent new
precision targets and biomarkers for HCC management. When
we compared the mutation profiles among the subtypes, we

observed differential mutation rates of BAP1 and CTNNB1. In
particular, C1 tumors had frequent mutations at BAP1 (14.7%),
although less frequent in overall HCC samples. BAP1, a tumor
suppressor gene, encodes a nuclear deubiquitinase that is thought
to mediate its effects through chromatin modulation, transcrip-
tional regulation, and possibly the ubiquitin-proteasome system
and DNA damage response pathway. Recently, mutations in
BAP1 have been detected in various malignancies, in which they
confer increased susceptibility for tumorigenesis21–24. Recurrent
BAP1 mutations have also been observed in intrahepatic
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cholangiocarcinoma25, and a recent study showed that loss of
Bap1 in mice increases expression of H3K27me3 and Ezh2 while
suppressing expression of PRC2 targets26. Dysregulation of
Polycomb genes is frequently observed in tumors expressing
stemness traits27. This is consistent with our finding that C1
tumors had the top-ranked expression of stemness genes,
including CA9, KRT19, EPCAM, and PROM1 (encoding CD133)
(Fig. 5c), well-known markers of stemness traits, as well as
poorer prognostic outcomes in HCC28–31. Similarly, depletion of
BAP1 results in loss of differentiation and gain of stem-like
properties in uveal melanoma cells32. In liver cancer cells, we also
observed same results (Fig. 5d). These data raise a possibility
that the aggressive behavior of C1 tumors might be mediated,
at least in part, by BAP1 mutation and the resultant induction
of stemness traits.

In addition, by integrating our data with TCGA data, we
identified UBC as a potential key regulator that acts as a hub
gene for most CNVcor genes in the network. UBC encodes a
component of the ubiquitin system whose activity yields free
ubiquitin. The ubiquitin system has recently been identified as a
target for cancer treatment18, 33, and UBC is implicated in diverse
tumor types, contributing to both tumorigenesis and cancer
progression34, 35. Thus, drugs targeting the ubiquitin/proteasome
system, such as bortezomib, represent candidates for attenuating
the aberrant regulation of CNVcor genes in aggressive iCl1/C1
tumors.

Besides the most aggressive subtype iCl1/C1, the favorable
subtypes of iCl2/C2 and iCl3/C3 had no significant difference of
prognostic outcomes. However, iCl2/C2 and iCl3/C3 subtypes
showed distinct patterns on the levels of overall aberrations of
DNA copy numbers and methylations (Fig. 2c and Fig. 3f, g).
Further studies might be required to delineate underlying
mechanisms for these discernible features of subtypes.

In conclusion, our systematic integration of genomic and
epigenomic regulation of gene expression revealed coordinated
multi-layered genomic aberrations of HCCs, and which could
identify molecular subtypes of HCC providing novel mechanistic
and clinical insights on the precision diagnostics and therapeutics
for HCC patients.

Methods
Patients and tissue specimens. A total of 64 cases HCC patients with HBV
infection from SNU hospital were enrolled in this study. The study was approved
by the Institutional Review Board of SNU Hospital (IRB number, 1211-063-442)
and obtained written informed consents from donors.

Profiling of DNA copy numbers, DNA methylation, and mRNA expression.
The frozen tissues from 64 cases of tumor specimens and 30 cases of the non-
tumoral surrounding tissue specimens were used for genomic profiling. DNA copy-
number variation (CNV), DNA methylation (MET), and mRNA expression (EXP)
profiling in the same patients were performed using Human Omni1 chips, Infi-
nium Human Methylation 27 BeadChip, and Human HT-12 Expression Bead-
Chips as manufacturer’s instruction, respectively (Illumina, San Diego, CA, USA).

Gene expression profile was normalized by log2 transformation, quantile nor-
malization, and aggregated by HUGO official symbols. Each data profile was
normalized by subtracting the average values per probe of the
non-tumoral tissues to represent the fold differences between the tumor and
non-tumoral tissues. Then, for CNV data, gene-level DNA copy numbers in each
sample were mapped with the segmented CNV values by circular binary seg-
mentation algorithm implemented in R package library “DNAcopy.” For DNA
methylation profile, probe level β-values were filtered to remove the probes located
on sex chromosomes. Then, the probes residing in CpG islands-related regions
including CpG islands, Shelf, and Shore regions, differentially methylated regions,
and gene promoter regions including the upstream 2500 bases from TSS, 5′UTR,
and first-exon regions were mapped to their corresponding genes. For each of the
processed profiles, the probes with >30 % of missing values across samples were
removed, and the remained missing values were imputed by R package library
“impute.”

For each data set, genomic coordinates of the probes in each data set were
updated to human reference genome hg38 by using R package library “liftOver,”
then the probes were matched to the corresponding probes of the EXP profiles. The
tumor specific alteration was calculated by subtracting the average probe intensities
of the non-tumoral tissues. After filtering out the probes with missing values >50%
and the probes for sex chromosomes, data were imputed by s k-nearest neighbor
algorithm. Then, pairwise Pearson’s correlation coefficients were calculated for
each gene in the paired profiles of CNV vs. EXP and MET vs. EXP, respectively.
In cases where multiple probes mapped to a gene, the probe with a mean or
a minimum value of the correlation coefficients was used as a representative
pair-matched probe for the CNV and MET profiles, respectively.

Clustering analysis of multi-layered genomic profiles. NMF cluster analysis
with standard “brunet” method and 50 iterations was employed to identify
stable sample clusters using CNVcor and METcor genes, respectively. Number of
clusters k was set to 2 to 5, and the preferred number of cluster was determined
using the observed consensus map and cophenetic correlation between clusters,
and the average silhouette width of the consensus membership matrix was
determined by the R package “NMF.” The minimum number of a cluster member
was set to 10. For integrated cluster analysis for CNV, MET, and EXP profiles,
we applied “iCluster” method implemented in R package with default parameters
and 50 iterations15.

Validation of the molecular subtypes using TCGA data. Validation of the
analysis results was performed using a data set of liver hepatocellular carcinoma
(LIHC) from TCGA. Multi-layered profiles for DNA copy numbers, DNA
methylation, mRNA expression, and mutations of LIHC data were obtained
from official TCGA data portal (https://tcga-data.nci.nih.gov). After matching
sample labels in each platform, we used 364 data sets that have the matched
data sets of DNA copy numbers, methylation, and mRNA expression profiles.
The data were preprocessed by applying same procedures used in our data set
(SNU). For data integration of LIHC and SNU data, batch effects between the
data sets were corrected using empirical Bayes methods implemented in an R
Package “combat.” For mutation data analysis, we used 362 samples matched to
the integrated data set excluding the two samples that did not have mutation
profiles (i.e., TCGA-G3-A25X-01 and TCGA-BC-4072-01).

Gene set enrichment and network analyses. For gene set analysis, the embryonic
stem (ES) cell-related gene sets including ESC (ES cell), Nanog, Oct, Sox2, Myc1,
and Myc2 were obtained from a previous study36. HCC classifiers from nine
different studies were obtained at original publication sites, which included the
gene signatures of Budhu et al.37, Villa et al.38, Hoshida_survival39, Yama-
shita_EpCam40, Kim_65 gene41, Kim_HIR (hepatic injury and regeneration)42,
Boyault et al., Roessler_PT (portal vein thrombosis)43, and Woo_CLHCC
(cholangiocarcinoma-like HCC)30 (Supplementary Table 1). For each sample, the
enrichment of a gene signature was calculated by applying Kolmogorov–Smirnov
test. Briefly, for each individual gene expression profile, two P values for the

Fig. 5 Identification of key molecular features for HCC subtypes. a Differentially mutated genes among the subtypes of LIHC are shown. A total of 37
differentially mutated genes are identified, which have differential mutation rates in C1 tumors compared to C2 or C3 tumors, respectively. The two
samples of TCGA-G3-A25X-01 and TCGA-BC-4072-01 with no mutation data were excluded in the analysis (indicated with a right grey color). b Network
of CNVcor genes is constructed using physical and genetic interactions from GeneMania software, which identifies the highest interconnecting hub gene,
UBC. c Heatmaps show the differentially up- (DEG_UP, n= 121) and down-expressed (DEG_DOWN, n= 366) genes that are commonly found in both SNU
and LIHC data sets, respectively (top). Top-ranked DEGs are indicated. The DEGs for SNU data are defined with fold difference >1.4 in comparison of iCl1
tumors with iCl2 or iCl3 tumors, while the DEG for LIHC data are defined with fold difference >2 and permuted Student’s t test P< 0.001 in comparison of
the C1 tumors compared to C2 or C3 tumors, respectively. Gene set enrichment scores of the embryonic stem cell (ESC)-related gene sets (middle) and
the nine molecular classifiers for HCC (bottom) are shown in SNU and LIHC data sets, respectively. Stemness gene sets of ESC, Nanog, Oct4, Sox2,
Myc1, and Myc2, and the nine different HCC classifiers are obtained from previous studies as described in “Methods.” d Huh7 cells stably expressing
non-targeting (NT) shRNA and BAP1 shRNA (#489 or #1735) were established. Real time qPCR for BAP1 and stemness genes (CA9, KRT19, EPCAM, and
PROM1) was performed. The expression values represent means± S.E.M. of three independent experiments
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estimates D+ and D− were calculated by Kolmogorov–Smirnov test, which
determines the significance of the directional (positive or negative) enrichment of
distributions of the signature. The ES SD+ and SD− for a given signature was
calculated as −log10 (P value) from D+ and D−, respectively. The ES S was
defined as SD+ if SD+> SD− and −SD− if SD+< SD−. In addition, canonical
gene ontology analyses for biological processes were performed using DAVID
software (https://david.ncifcrf.gov). Gene networks for given gene signatures
were constructed using pathway, physical, and genetic interactions that
were obtained from GeneMania plugin implemented in Cytoscape software
(http://www.cytoscape.org).

Cell culture and lentiviral vector transfection. The Huh7 HCC cell line was
obtained from the Korea Cell Line Bank (KCLB; Seoul, Korea). 293TN cells were
obtained from System Biosciences (Mountain View, CA, USA), and were cultured
in DMEM supplemented with 10% FBS, 100 U/ml penicillin, and 100 µg/ml
streptomycin. Lentiviral constructs expressing non-target (NT) and BAP1 shRNAs
were purchased from Sigma-Aldrich (SHCLNG-NM_004656; St. Louis, MO, USA),
and transfected into 293TN cells (System Biosciences) with Lipofectamin 3000
transfection reagent (Invitrogen, Waltham, MA, USA). Two reaction tubes with
500 ul aliquots of opti-MEM (Invitrogen; A and B) were prepared. Tube A was
added with 24 µl P3000 reagent and 8 ug of DNA (3 µg pGag-pol, 1 µg VSV-G, and
4 µg target plasmid). Tube B was added with 15 µl lipofectamin 3000. Then, the
mixture of tube A to tube B was incubated for 5 min and added in small drops
to the cells with 70–90% confluence. The particles were collected 2 days after
transfection. The lentivirus-infected cells were puromycin-selected for 1 week
and stabilized by culturing for 4 weeks.

Real-time PCR. Cells were collected and total RNA was isolated using an RNeasy
kit (Qiagen, Venlo, the Netherlands). The PrimeScript RT kit (Takara, Shiga,
Japan) was used to reverse-transcribe the mRNA into complementary DNA. PCR
was done using a CFX96 Real Time PCR Detection System (Bio-Rad Laboratories,
Hercules, CA, USA) with Ssoadvanced Universal Supermixes (Bio-Rad). The
sequences of primers were described in Supplementary Table 2. Analysis of each
sample was performed at least three times for each experiment, and the relative
expression levels were measured by average values of 2−ΔΔCT± S.D.

Statistical analysis. All the statistical analysis was performed using the R package
(http://www.r-project.org). OS was defined as the time from surgery to death. TTR
was defined as the time from surgery date to the date of any diagnosed relapse. The
follow-up time OS and TTR was truncated to 5 years.

Data availability. The raw data of the genomic profiles are available in GEO
database (http://www.ncbi.nlm.nih.gov/projects/geo) with an accession number
GSE87630.
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