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a b s t r a c t

Use of the final size distribution of minor outbreaks for the estimation of the reproduction numbers of

supercritical epidemic processes has yet to be considered. We used a branching process model to derive

the final size distribution of minor outbreaks, assuming a reproduction number above unity, and

applying the method to final size data for pneumonic plague. Pneumonic plague is a rare disease with

only one documented major epidemic in a spatially limited setting. Because the final size distribution of

a minor outbreak needs to be normalized by the probability of extinction, we assume that the

dispersion parameter (k) of the negative-binomial offspring distribution is known, and examine the

sensitivity of the reproduction number to variation in dispersion. Assuming a geometric offspring

distribution with k¼1, the reproduction number was estimated at 1.16 (95% confidence interval: 0.97–

1.38). When less dispersed with k¼2, the maximum likelihood estimate of the reproduction number

was 1.14. These estimates agreed with those published from transmission network analysis, indicating

that the human-to-human transmission potential of the pneumonic plague is not very high. Given only

minor outbreaks, transmission potential is not sufficiently assessed by directly counting the number of

offspring. Since the absence of a major epidemic does not guarantee a subcritical process, the proposed

method allows us to conservatively regard epidemic data from minor outbreaks as supercritical, and

yield estimates of threshold values above unity.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

The basic reproduction number, R0 is a summary measure of the
transmission potential of infectious diseases, interpreted as the
average number of secondary cases generated by a typical primary
case throughout its entire course of infection in a fully susceptible
population (Diekmann and Heesterbeek, 2000). Because of the
well-known threshold property (Anderson, 1991), given R0o1 we
observe only minor outbreaks in which the infectious agent goes
extinct before affecting a substantial fraction of the population
(Diekmann and Heesterbeek, 2000). Given R041, an introduction
of a single infected individual into a population could potentially
lead to a major epidemic, which does not naturally decline until
the pool of susceptible individuals falls below a critical proportion,
and in which substantial fraction of the population thus experi-
ences infection (though, as we will discuss in the present study,
011 Published by Elsevier Ltd. All
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it must be remembered that R041 can also result in minor out-
breaks). Accordingly, R0 has played a key role in identifying optimal
strategies for infectious disease control (Keeling and Rohani, 2007),
including the determination of vaccination coverage required to
eradicate an infectious disease (Anderson and May, 1991).

Various statistical methods have been employed to estimate R0

based on empirical data from epidemic or endemic diseases. These
include maximum likelihood method and the use of estimators
obtained from biomathematical and theoretical studies (Dietz,
1993; Farrington et al., 2001; Li et al., 2011). Recently, the
estimation of R0 has mainly focused on the analysis of early
exponential (linear) growth rates (Chowell et al., 2007; Vynnycky
et al., 2007). This type of analysis requires the prior observation of
an actual major epidemic. However, it is frequently the case for
rare and exotic diseases that we rarely (or never) observe a major
epidemic prior to an actual large-scale epidemic event (e.g. severe
acute respiratory syndrome (SARS) from 2002 to 2003).

Also, an observed single epidemic curve represents only a single
sample path profile (i.e. a single stochastic realization) of all possible
sample paths (Lindsey, 2001; van den Broek and Nishiura, 2009),
and thus, a model and estimate for R0 explicitly accounting for
rights reserved.
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demographic stochasticity are needed (Becker, 1989; Andersson and
Britton, 2000). Branching process approximation is one stochastic
modeling approach. The discrete-type branching process is referred
to as Galton–Watson process (Harris, 1963), and the process with
infection–age structure is referred to as Crump–Mode–Jagers (CMJ)
process (Jagers, 1975; Mode and Sleeman, 2000). Other than the
branching processes, a martingale model has been employed to
estimate R0 and its uncertainty based on a single sample of the final
size of a major epidemic (i.e. based on a single observation of
cumulative incidence) (Becker, 1989). For theoretical purposes, not
only the analysis of single samples of the final size, but also final size
distributions of major epidemics have been well analyzed through
the so-called Sellke-construction (Andersson and Britton, 2000; Ball
and O’Neill, 1999; Ball and Clancy, 1993; Nishiura et al., 2011a).
While major epidemics have attracted modelers’ interest, little
attention has been paid to the final size distribution of minor
outbreaks. Only a small number of studies have analyzed the final
size distribution of minor outbreaks adopting the key assumption
that a subcritical process (i.e. R0o1) resulted in the observation
(Becker, 1974). Classical mortal branching process models have been
applied to surveillance data for diseases such as measles and avian
influenza (Farrington et al., 2003; Ferguson et al., 2004). However,
the final size distribution of minor outbreak data given a supercritical
process (i.e. R041) have not been explicitly examined to date.

The purpose of the present study is to estimate R0 for a
supercritical process based on the final size distribution of minor
outbreaks. We illustrate the estimation method with application
to primary pneumonic plague. In the next section, we begin with
a description of our practical motivations.
2. Materials and methods

2.1. Pneumonic plague

This study considers the human-to-human transmission of
primary pneumonic plague, a fatal clinical presentation of bacterial
infection with Yersinia pestis. Presently, primary pneumonic plague
is rarely observed; though the form of bubonic plague transmitted
by flea bites (in humans and rodents) is sometimes reported
(Pollitzer, 1954). When infected fleas bite humans, transmission
of the bubonic plague with fever and lymph node swelling is
possible. If Y. pestis gets into the blood stream, septicemic plague
occurs. Systemic circulation of Y. pestis can also progress to the
‘‘secondary pneumonic plague’’, a lung infection spreadable
through respiratory droplet and from which an epidemic of
primary pneumonic plague can occur. However, pneumonic plague
is not transmitted by aerosols (i.e. not by droplet nuclei) but by
droplet infection (Kool, 2005). In the absence of early treatment,
the case fatality ratio of pneumonic plague can reach 100%
(Pollitzer, 1954). Due to the high virulence of Y. pestis, industria-
lized countries across the world have identified its potential for use
in biological warfare (Inglesby et al., 2000). For these reasons,
knowledge of the human-to-human transmission potential of
pneumonic plague is a critical question among experts.

Several studies have analyzed historical outbreak data of
primary pneumonic plague, estimating the reproduction number
Rh of human-to-human transmission (i.e. the average number of
secondary human cases directly caused by a single human primary
case of pneumonic plague). Gani and Leach (2004) fitted a
geometric distribution directly to observed distributions of sec-
ondary cases produced by a single primary case based on eight
minor outbreak data sets showing transmission networks (i.e. a
network showing who acquired infection from whom based on
contact tracing). They found a mean and variance of 1.3 and 3.1,
respectively. However, minor outbreak data are limited to
outbreaks that decline to extinction and include substantial num-
bers of primary cases that did not generate any secondary
transmissions. To avoid potential underestimation of Rh, Nishiura
and Kakehashi (2005) focused on time-dependency in the trans-
missibility and Nishiura et al. (2006) estimated the initial value of
the reproduction number (i.e. theoretical Rh at time 0 of an
epidemic) as ranging from 2.8 to 3.5. Lloyd-Smith et al. (2005)
took into account the effectiveness of public health interventions,
fitting a branching process model with a negative binomially
distributed offspring distribution to a transmission network, esti-
mating Rh as 1.32 (90% confidence interval (CI): 1.01–1.61) and
dispersion parameter as k¼1.37 (90% CI: 0.88–3.53). They identi-
fied that published outbreak data tended to start with a super-
spreading event (implying that an Rh of 2.8–3.5 in Nishiura et al.
(2006) may be overestimated), and that the offspring distribution
of pneumonic plague is not overdispersed. Other published studies
on this subject include an analysis of minor outbreak data by
directly counting the number of offspring (Egan, 2010) and a
reanalysis of major epidemic data from Manchuria, 1911 in which
the absence of bubo among pneumonic plague cases was partly
noted (Nishiura, 2006). Overall, the mean number of human
secondary cases per single human primary case (i.e. Rh) is likely
to be greater than unity (because we observed an actual major
epidemic in Manchuria) with a relatively small variance in the
offspring distribution. Since historical data for pneumonic plague
are scarce, the finding of Rh being slightly greater than unity should
be validated using several other methods.

The present study examined historical minor outbreak data
(see Table 1 for a summary). We include outbreaks known to be
the pneumonic plague (through bacteriological confirmation) and
involving two or more cases (i.e. outbreaks with at least one
secondary transmission event). These limits are necessary as the
frequency of bubonic plague is much higher than that of pneumo-
nic plague in literature, and it was not considered feasible to collect
reports with only one pneumonic plague case. Indeed, the report-
ing of no offspring is usually underestimated (Lloyd-Smith, 2007).
We also ignored transmission events from animals to humans (e.g.
dog-to-human transmission). Since an explicit estimation of the
effectiveness of interventions is too challenging from only small
minor outbreak data, and because previous studies documented
extinction events or a decline in the number of cases before
implementing control measures (Egan, 2010; Nishiura et al.,
2006), we ignore the influence of public health interventions on
the transmission dynamics. It should be noted that a few published
studies explicitly took into account the timing and effectiveness of
interventions (Gani and Leach, 2004; Lloyd-Smith et al., 2005;
Egan, 2010). As bacteriological confirmation was a prerequisite for
inclusion, most of the outbreaks studied occurred in the 20th
century. Included are 18 minor outbreaks and 1 major epidemic.
Among the 18 minor outbreaks, there was mean of 14.7 cases
(standard deviation: 13.3), and a median of 11 cases (quartiles:
3–21). All of these outbreaks started with only one index case.

Not only to validate published findings of transmission poten-
tial, but we used the minor outbreak data to overcome the scarcity
of data on pneumonic plague. The occurrence of a major epidemic
in Manchuria (Fig. 1) possibly suggests that Rh41. Using the
pneumonic plague as an example, we aim to demonstrate a
method that uses minor outbreak data for an assessment of the
reproduction number in a supercritical process. Where possible,
reproduction numbers should be estimated using major epidemic
data. However, bites from infected fleas also cause human plague.
Therefore, major epidemic data that involved many cases without
confirmation of the absence of bubo and are not independent of
flea biting may not be appropriate for the estimation of Rh, because
the time evolution of cases may be influenced by other modes of
transmission (e.g. those arising directly or indirectly from bubonic



Fig. 1. The distribution of final epidemic size. The final size distribution of a

homogeneously mixing population usually exhibits a bimodal shape where the

first peak represents minor outbreaks and the second peak corresponds to the

mode of major epidemics. Arrows indicate the available evidence for the final size

of pneumonic plague (18 minor outbreaks and 1 major epidemic).

Table 1
Reported outbreaks of primary pneumonic plague since the 20th century.

Year Location Total number

of casesa

Original references Secondary use of the data

in modeling analyses

1906/07 Shotley, UK 8 Bulstrode (1927), Van Zwanenberg (1970),

Black and Black (2000)

Egan (2010)

1907 Seattle, USA 5 Anonymous (1955) Gani and Leach (2004)

1910 Freston, UK 4 Bulstrode (1927) Egan (2010)

1910/11 Manchuria, China 5009 Temporary Quarantine Section, Kanto Totokufu (1912) Nishiura (2006)

1918 Erwarton, UK 2 Van Zwanenberg (1970), Black and Black (2000) Egan (2010)

1919 Oakland, USA 13 Kellogg (1920) Gani and Leach (2004), Nishiura and Kakehashi (2005)

1924 Los Angeles, USA 35 Dickie (1926), Viseltear (1974)

1939 Ecuador 18 Murdock (1940) Gani and Leach (2004), Nishiura and Kakehashi (2005)

1946 Mukden, China 39 Tieh et al. (1948) Gani and Leach (2004), Nishiura et al. (2006)

1946 Rangoon 16 Wynne-Griffith (1948) Gani and Leach (2004), Nishiura and Kakehashi (2005)

1957 Madagascar 42 Brygoo and Gonon (1958) Gani and Leach (2004), Nishiura et al. (2006)

1993 Zambia 3 McLean (1995) Gani and Leach (2004)

1997 Madagascar 18 Ratsitorahina et al. (2000) Gani and Leach (2004)

1998 Ecuador 12 Gabastou et al. (2000)

2002 India 30 Joshi et al. (2009)

2002 India 10 Gupta and Sharma (2007)

2004 Uganda (#1)b 2 Begier et al. (2006)

2004 Uganda (#2)b 2 Begier et al. (2006)

2006 Uganda 6 Anonymous (2009)

a The total number of cases includes index case.
b There were two independent clusters of pneumonic plague cases.
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plague cases). Also, dead rodents were observed during the 1911
epidemic in Manchuria, indicating an involvement of bubonic
plague (Temporary Quarantine Section, Kanto Totokufu, 1912).
To limit our interest to human-to-human transmission, we do
not use R0 to refer to the transmission potential of pneumonic
plague and hereafter consistently use Rh.

2.2. Probability generating functions of supercritical branching

process

Assuming Rh41, we considered a statistical model for analyz-
ing the final size distribution of minor outbreaks. We used a
discrete-time Galton–Watson (GW) process. This has been used to
estimate a subcritical threshold parameter based on a mortal
branching process model (Becker, 1974; Farrington et al., 2003).
The model can also be regarded as an embedded age-dependent
CMJ process (Jagers, 1975; Mode and Sleeman, 2000). Let Y be the
integer-valued random variable representing the total size of an
epidemic (including the index case), described by the embedded
GW process with Xn cases in generation n. We have

Y ¼
X1
n ¼ 0

Xn: ð1Þ

Let py represent the probability that the total number of cases
is y, i.e., Pr(Y¼y). Also, let p be the probability of extinction. Since
Rh is assumed as greater than 1, the final size Y is infinite with
probability (1�p). In other words, we have

p¼
X1
k ¼ 1

pk: ð2Þ

Let the probability mass function of the offspring distribution x
be fk. As a well-known property of the GW process (Harris, 1963),
the probability generating function (pgf) h(s) is written as

hðsÞ ¼ E½sx� ¼
X1
n ¼ 0

f nsn ð3Þ

for sA[0,1]. With an assumption Rh41, we assume that
Rh¼h0(1)41. If the offspring distribution follows a negative
binomial distribution with dispersion parameter k, the probability
of extinction is calculated by

p¼ 1

ð1þððRhð1�pÞÞ=kÞÞk
: ð4Þ

With a gamma-distributed infectious period and constant
infectiousness, k in Eq. (4) could be interpreted as being equiva-
lent to an inverse of the coefficient of variation of the infectious
period (Anderson and Watson, 1980; Britton and Lindenstrand,
2009). Poisson and geometric distributions are special cases of the
negative binomial distribution with k-N and k¼1, respectively.
The derivatives of h(s), which are required later, are

h0ðsÞ ¼
Rh

ð1þðRhð1�pÞ=kÞÞkþ1
ð5Þ
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and

h00ðsÞ ¼
ð1þð1=kÞÞR2

h

ð1þðRhð1�pÞ=kÞÞkþ2
: ð6Þ

Similarly, the total outbreak size is also considered, i.e.

gðsÞ ¼ E½sY � ¼
X1
n ¼ 1

pnsn: ð7Þ

Here we consider g(s) as if it were the probability generating
function (though it is not, because g(1)¼pr1 (Yan, 2008)).
Eq. (7) is useful to determine the probability pk. For n¼1, 2, 3,
y, the sequence of partial sums is considered:

Yn ¼
Xn

k ¼ 0

Xk: ð8Þ

For sA[0.1], let

gnðsÞ ¼ E½sYn � ð9Þ

be the pgf of the random variable Yn. Since Y1¼1þX1, we have
(Mode and Sleeman, 2000):

g1ðsÞ ¼ E½s1þX1 � ¼ sE½sX1 � ¼ shðsÞ: ð10Þ

Moreover, let {Ynk; k¼1, 2, y, X1} be a collection of independently
and identically distributed copies of Yn. For every nZ1,

Ynþ1 ¼ 1þ
XX1

k ¼ 1

Ynk ð11Þ

leading us to find that

gnþ1ðsÞ ¼ shðgnðsÞÞ: ð12Þ

By applying the dominated convergence theorem, the pgf of the
random variable Y satisfies

gðsÞ ¼ shðgðsÞÞ ð13Þ

for sA[0,1].

2.3. The final size distribution of minor outbreaks

Since Rh41, we have Eq. (2), and thus, the conditional
distribution of the final size which starts with one primary case
(conditioned on minor outbreak) is

PrðY ¼ y;minor outbreakÞ ¼
1

p
py: ð14Þ

Closed-form solution does not always exist for g(s). For the
negative binomial distribution, Eq. (13) is rewritten as

gðsÞ ¼
s

1þðRhð1�gðsÞÞ=kÞ
� �k

: ð15Þ

For y¼1,

p1 ¼ g0ð0Þ ¼
1

ð1þðRh=kÞÞk
: ð16Þ

For yZ2, the distribution is recursively calculated as (Yan,
2008)

py ¼
1

y!

dy

dsy
gðsÞ

����
s ¼ 0

¼
Py�2

j ¼ 0ððj=kÞþyÞ

y!

k

Rhþk

� �ky Rhk

Rhþk

� �y�1

: ð17Þ

These can be numerically checked using (5) and (6) for y¼2
and 3. When k-N, Eq. (17) agrees with the Borel–Tanner
distribution (Farrington et al., 2003). When k¼1, the distribution
is geometric:

py ¼
Py�2

j ¼ 0ðjþyÞ

y!

1

Rhþ1

� �y Rh

Rhþ1

� �y�1

ð18Þ
as derived by Mode and Sleeman (2000) and confirmed by
Yan (2008).

Given a total of m complete observations, each with informa-
tion of the final size ni, including an index case, and assuming that
k is known, the likelihood function to estimate Rh is

LðRh;n,kÞ ¼
Ym
i ¼ 1

pni

p
ð19Þ

However, we excluded all observations of y¼1 (i.e. index cases
with no secondary case were excluded) and the observed dis-
tribution is thus truncated. The likelihood should now read

LðRh;n,kÞ ¼
Ym
i ¼ 1

pni

p
1

1�ð1=ðpð1þðRh=kÞÞkÞÞ
¼
Ym
i ¼ 1

pni
ð1þðRh=kÞÞk

pð1þðRh=kÞÞk�1
:

ð20Þ

The probability of extinction p depends on both Rh and k, but
assuming that k is known for now, p is written as a function of Rh.
We consider five different values of k being 1/3, 1/2, 1, 2 and 3,
because a previous study analyzing transmission networks of
pneumonic plague estimated k at 1.37 (90% CI: 0.88–3.53) (Lloyd-
Smith et al., 2005). Five possible k correspond to a plausible range
of the dispersion parameter, and also account for the fact that
overdispersed ko1 are more likely to be missed in empirical
observations. Provided that k¼1/2, 1 or 2, we have

p¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Rhþ1

p
4Rh

ð21Þ

for k¼1/2,

p¼ 1

Rh
ð22Þ

as is well known for k¼1 (i.e. the case of geometric distribution),
and

p¼
4þRh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rh

2
þ8Rh

q
2Rh

ð23Þ

for k¼2. To compare likelihood values to assess goodness of fit,
we used Akaike Information Criterion (AIC). In the case of k¼1, it
is a conventional geometric offspring distribution with only one
unknown parameter (Rh). In the other four scenarios (ka1), we
need the parameters Rh and k, and both were regarded as
unknown.
2.4. Estimation of the reproduction number using two other

methods

Focusing on the data in Table 1 we used two other methods to
estimate Rh. The first was to estimate Rh based on the observed
probability of extinction, assuming that the dispersion parameter
of the offspring distribution is known. Among 19 samples in
Table 1, only one major epidemic was reported, and thus, the
probability of extinction was 18/19. Using this, we estimated Rh

from the relationship p¼18/19. It should be emphasized that this
method required us to adopt an unrealistic assumption that the
data in Table 1 fully represented the total occurrences of pneu-
monic plague outbreaks (including immediate extinctions and
thus the final size distribution is not truncated).

Second, we estimated Rh from the major epidemic data. Fig. 2
shows an epidemic curve in Manchuria, 1911. We estimated the



Fig. 2. Epidemiological dynamics of primary pneumonic plague in Manchuria, China from 1910 to 1911: (A) daily number of plague notifications in and around the area

under direct political control of the Japanese empire (n¼5009). (B) Probability density function of the serial interval for primary pneumonic plague. The mean (and

standard deviation) serial interval has been estimated at 5.66 (3.65) days (Nishiura, 2006).

Table 2
Estimates of the threshold parameter of primary pneumonic plague based on

minor outbreak data (n¼18).

Dispersion parameter (k) Reproduction

number (95% CI)a

AICb

1/3 Overdispersed 1.22 (0.95, 1.60) 139.0

1/2 m 1.19 (0.96, 1.49) 138.8

1 Geometric distribution 1.16 (0.97, 1.38) 136.3

2 k 1.14 (0.98, 1.32) 137.7

3 Less dispersed 1.13 (0.98, 1.30) 137.5

a CI, Confidence intervals, derived from profile likelihood.
b AIC, Akaike Information Criterion.
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intrinsic growth rate r, which is also referred to as the Malthusian
growth rate. Assuming that generation time follows a gamma
distribution with mean m¼5.66 days and coefficient of variation
v¼0.644 (where the standard deviation s satisfies s¼mv¼3.65
days), the reproduction number was calculated using the follow-
ing estimator derived from the Euler–Lotka equation (Wallinga
and Lipsitch, 2007):

Rh ¼ ð1þ r̂mv2Þ
1=v2

: ð24Þ

This argument permits us to replace r by the right-hand side of

r¼
Rv2

h �1

mv2
: ð25Þ

We estimated Rh (or r) based on a pure birth process. Given
observations of the cumulative number of cases on day 0, 1, y, t,
C(0), C(1), yC(t), we have

PrðCðtÞ ¼ nþm9Cðt�1Þ ¼ nÞ ¼
nþm�1

n�1

� �
expð�rnÞð1�expð�rÞÞm

ð26Þ

which can be used to construct a likelihood function for r:

LðrÞpexp �r
Xt�1

i ¼ 0

CðiÞ

 !
ð1�expð�rÞÞCðtÞ�Cð0Þ: ð27Þ

Detailed derivation of the likelihood is given elsewhere
(Bailey, 1964; Nishiura et al., 2009). The likelihood function
(27) was used for estimating Rh. Profile likelihood was used to
derive 95% confidence intervals. Since the generation time of
pneumonic plague has yet to be fully quantified (Nishiura,
2010; Klinkenberg and Nishiura, 2011), we investigated the
sensitivity of Rh to different m ranging from 3.66 to 7.66 days,
corresponding to empirically observed quartiles of 3–7 days
(Nishiura, 2006).
3. Results

3.1. Estimate of Rh based on the sample probability of extinction

Assuming that the samples in Table 1 (n¼19) represented the
total presentations of a pneumonic plague case into a fully
susceptible population, the probability of epidemic would be
calculated as 100(1�p)¼5.26%. If the number of secondary cases
per single primary case is geometrically distributed, we get

Rh ¼
1

p ¼
1

1�0:0526
� 1:06: ð28Þ

For other dispersion parameters of the negative-binomially
distributed offspring distribution (k¼1/3, 1/2, 2 and 3), Rh is
calculated using a solution of (4) (e.g. see (21), (22) and (23)) and
estimated as 1.12, 1.08, 1.04 and 1.04, respectively. As the
offspring distribution becomes overdispersed, the estimate of Rh

increases due to the fixed nature of the data used.

3.2. Estimate of Rh based on the final size distribution of minor

outbreaks

Table 2 shows the estimates of Rh based on the final size of
minor outbreaks. As mentioned above, we assumed k as a known



Fig. 3. Transmission dynamics of primary pneumonic plague in Manchuria, China from 1910 to 1911: (A) observed (white) and predicted (gray) daily numbers of primary

pneumonic plague cases. Assuming exponential growth, the daily growth rate (and the 95% confidence intervals) was estimated at 0.16 (0.15, 0.17) per day.

Day 1 corresponds to 1 January 1911. (B) The sensitivity of the reproduction number to different mean lengths of the generation time ranging from 3.65 to 7.65 day. Circles

represent maximum likelihood estimates, while the whiskers extend to the upper and lower 95% confidence intervals based on the profile likelihood.
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quantity and considered possible integer values of k (or an inverse
of integer values) in realistic ranges. When the offspring distribu-
tion is geometric, Rh is 1.16 (95% CI: 0.97, 1.38). When over-
dispersed with k¼1/3 and 1/2, the maximum likelihood estimates
of Rh were 1.22 and 1.19, respectively. When less dispersed with
k¼2 and 3, Rh was estimated at 1.14 and 1.13, respectively. This
qualitative pattern occurs because empirical data are fixed and
only the dispersion parameter is varied. In terms of AIC, the
geometric distribution appeared to yield the best fit, consistent
with Lloyd-Smith et al. (2005). The estimate based on the sample
probability of extinction was not significantly deviated from the
above-mentioned crude estimate.

3.3. Estimate of Rh based on growth data from a major epidemic

Fig. 3A shows the results from conditionally fitting exponential
growth to the major epidemic data. Assuming that the mean
generation time is 5.66 days, the reproduction number is esti-
mated as 2.16 (95% CI: 2.06–2.28) which is significantly greater
than the estimates of Rh based on minor outbreak data. As the
mean generation time varied from 3.66 to 7.66 days, the max-
imum likelihood estimate of Rh also varied from 1.59 to 2.96
(Fig. 3B). The lower 95% CI of Rh with the shortest assumed mean
generation time (3.66 days) was 1.54 and was significantly
greater than estimates based on minor outbreak data, except for
the unrealistically overdispersed offspring distribution (kr1/3).
4. Discussion

The present study proposed a method for the estimation of the
threshold parameter of a supercritical process, based on the final
size distribution of minor outbreaks. The method was applied to
pneumonic plague, which rarely occurs and has limited avail-
ability of major epidemic data. To estimate Rh using the proposed
method, the likelihood function must be conditioned on minor
outbreak and include the probability of extinction in the denomi-
nator. Therefore, the dispersion parameter was assumed as
known to rewrite the probability of extinction as a function of
Rh (and eliminate the probability of extinction from the
likelihood). For this reason, we examined the sensitivity of Rh to
various dispersion parameters k of the negative binomial dis-
tribution. As a result, the geometric offspring distribution yielded
Rh¼1.16 and a less dispersed offspring distribution with k¼2
suggested an Rh of 1.14. These estimates are in concordance with
those reported from an analysis of transmission networks (Lloyd-
Smith et al., 2005) and did not differ substantially from estimates
calculated from directly counting the number of secondary cases
per primary case from a transmission tree (Gani and Leach, 2004).
Overall, the human-to-human transmission potential of plague is
not very high, and is close to a critical level, in good agreement
with field observations (Begier et al., 2006; Kool, 2005).

Given that an observed outbreak represents only a single
sample path profile of all possible sample paths, there are certain
diseases for which the occurrence of a major epidemic is rare,
with most of the available data being from minor outbreaks. The
present study shows that this can happen even when the under-
lying process is supercritical (Rh41), but the probability of major
epidemic is small. The pneumonic plague most likely illustrates
this case. Even though most historical data arise from observed
small outbreaks, what is more important in public health is the
assessment of the transmission potential of a major epidemic,
such as that occurring in Manchuria. However, large-scale out-
breaks of plague cannot avoid contamination by the flea–rodent
cycle, and thus, if our interest is limited to precise estimation of
human-to-human transmission potential, large epidemics may
not be useful. Clearly, pneumonic plague is a disease that required
an estimation of the reproduction number using the proposed
method. Our study indicates that, given only minor outbreaks,
epidemiological assessment of the transmission potential is not
sufficiently achieved by directly counting the number of offspring
in the transmission tree (because the reproduction number to be
estimated is likely to be below 1 given minor outbreaks, even in
the case of supercritical process). As long as our objective is to
assess the transmission potential, minor outbreak data need to be
interpreted with caution adopting assumptions of both subcritical
and supercritical processes.

Assuming the dispersion parameter as a known quantity is not
regarded as a significant weakness of the proposed approach for a
number of reasons. First, data from of transmission network can
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be used to derive a prior estimate and plausible range for the
dispersion parameter k. Second, given a plausible range of k,
we can assess the sensitivity of the reproduction number to
different k, and check the robustness of our findings. Third,
if assuming k as a known quantity is regarded as implausible
(or impractical), one should be able to employ a special case, i.e.
geometric, to the offspring distribution and (perhaps) conserva-
tively estimate the reproduction number.

The reproduction number was estimated to be as high as 1.59–
2.96 based on early growth data from the major epidemic in
Manchuria, 1911. There are several explanations for this potential
overestimation. First, although the majority of cases were
believed as primary pneumonic plague in Manchuria (due to
absence of bubo), Y. pestis was isolated from dead rodents at the
time (Temporary Quarantine Section, Kanto Totokufu, 1912). The
outbreak undoubtedly involved bubonic plague and thus trans-
mission routes other than human-to-human transmission during
the course of the epidemic. Consequently, the growth rate is
greater than that based only on human-to-human transmission,
illustrating the difficulty in estimating Rh from major epidemic
data. Second, validity of Rh based on epidemic growth rates is
vulnerable to various epidemiological characteristics including
heterogeneity and mobility of host population (Mercer et al.,
2011; Nishiura et al., 2010; Nishiura and Kamiya, 2011). Indeed,
as described by Nishiura (2006), the data in Fig. 2A was extracted
from the Japanese area only, probably ignoring dynamics in
surrounding geographical areas in Manchuria. It remains that
the exponential growth rate is useful epidemiological informa-
tion, offering important insights into estimating Rh. However, we
must be mindful of the relevant pitfalls in the interpretation of
the growth rate, and perhaps validate the estimate using other
methods, as outlined in the present study.

As the probability of extinction could be higher in heteroge-
neously mixing populations (Nishiura et al., 2011b), the proposed
method could have underestimated Rh. Our model accounts for
dispersion (Garske and Rhodes, 2008), but the negative binomially
distributed offspring distribution represents only contact hetero-
geneity at individual levels. In reality, contact heterogeneity
depends on the contact network structure in a population
(Trapman, 2007), often elevating the probability of extinction as
compared with models with approximate network structures.
Moreover, we assumed that the index case was in the population
from the beginning of its infectiousness, although the involvement
of imported cases in secondary transmission tends to be delayed
(Nishiura and Inaba, 2011; Nishiura and Roberts, 2010; Roberts
and Nishiura, 2011). Thus, the potential underestimation of Rh

should be considered a limitation of the proposed method.
Because of the need to interpret minor outbreak data carefully,

we believe that the proposed method should always be chosen as
one of estimation methods given minor outbreak data and would
be very useful for estimating the transmission potential, espe-
cially for rare diseases. When we observe only minor outbreaks,
it must be remembered that the absence of a major epidemic does
not always guarantee that the pathogen’s transmission potential
is subcritical (Begier et al., 2006), and in such an instance,
assessment of the transmission potential cannot rely only on
directly counting the number of offspring. Thus, the proposed
method allows us to conservatively regard the epidemic process
leading to minor outbreaks as supercritical and produce the
supercritical threshold parameter estimate. As long as we are
not sure if the reproduction number is below unity, the investiga-
tion of minor outbreak data should always be accompanied by the
proposed analysis. We believe that our estimation method has
high potential for application to other data sets and we plan to
extend the method to the analysis of minor outbreak data in
heterogeneously mixing populations.
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