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ABSTRACT

Insertional mutagenesis using engineered trans-
posons is a potent forward genetic screening tech-
nique used to identify cancer genes in mouse model
systems. In the analysis of these screens, transpo-
son insertion sites are typically identified by targeted
DNA-sequencing and subsequently assigned to pre-
dicted target genes using heuristics. As such, these
approaches provide no direct evidence that inser-
tions actually affect their predicted targets or how
transcripts of these genes are affected. To address
this, we developed IM-Fusion, an approach that iden-
tifies insertion sites from gene-transposon fusions
in standard single- and paired-end RNA-sequencing
data. We demonstrate IM-Fusion on two separate
transposon screens of 123 mammary tumors and 20
B-cell acute lymphoblastic leukemias, respectively.
We show that IM-Fusion accurately identifies trans-
poson insertions and their true target genes. Fur-
thermore, by combining the identified insertion sites
with expression quantification, we show that we can
determine the effect of a transposon insertion on
its target gene(s) and prioritize insertions that have
a significant effect on expression. We expect that
IM-Fusion will significantly enhance the accuracy of
cancer gene discovery in forward genetic screens
and provide initial insight into the biological effects
of insertions on candidate cancer genes.

INTRODUCTION

Transposon-based insertional mutagenesis (TIM) is a high-
throughput method for cancer gene discovery in mice (1).
In TIM, discrete DNA elements called transposons can mi-

grate throughout the genome by a cut-and-paste mecha-
nism, in which they are excised from their original loca-
tion in the genome and randomly reintegrated elsewhere (2).
Depending on the location and orientation of their reinte-
gration, these integrations can activate oncogenes or inac-
tivate tumor suppressors, thereby inducing tumor develop-
ment and progression (3). By identifying genomic loci that
are recurrently affected by transposon insertions in multiple
independent tumors, this approach can be used to identify
candidate cancer genes (1,3,4).

Transposon insertion sites are typically identified using
targeted DNA-sequencing approaches, in which junction
fragments containing transposon and flanking genomic se-
quences are selectively amplified and sequenced (5). The ge-
nomic parts of these sequences are mapped to the reference
genome to identify insertion sites and their genomic loca-
tions (6). These insertions are then assigned to their putative
target gene(s) using heuristics, typically picking genes in the
direct vicinity of the insertion. Examples of such heuristics
are nearest gene (6), fixed window (7) and rule-based map-
ping approaches (8).

A significant drawback of DNA-sequencing approaches
is that they do not provide any direct evidence that an inser-
tion actually affects a gene. In ambiguous cases with multi-
ple genes in the vicinity of an insertion, heuristic approaches
are frequently unable to identify the true target(s) of the in-
sertion. This typically leads to an arbitrary selection of a
single gene (nearest gene), potentially selecting the wrong
gene or missing other targets (false negatives). Alternatively,
heuristics may select many genes in the direct vicinity of the
insertion (fixed window, rule-based mapping), resulting in
the selection of many non-target genes (false positives).

Additionally, DNA-sequencing approaches provide lim-
ited insight into how the expression of a target gene is af-
fected by a transposon insertion and which novel transcripts
may result from the insertion. This has two main drawbacks.
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First, it prevents prioritizing insertions that have a strong
effect on gene expression and are therefore likely of more
importance than insertions without an effect on expression.
This limits effective discrimination between driver and pas-
senger insertions, resulting in long lists of candidate loci
which are likely to include a substantial fraction of false
positives that do not affect expression. Second, it limits our
understanding of how gene expression or the expression of
(novel) gene transcripts is affected by insertions. These in-
sights may be key to ultimately understanding the biological
effect of insertions and how they may contribute to tumori-
genesis.

In previous work, Temiz et al. have demonstrated that
insertions can be identified in paired-end RNA-sequencing
data using their tool Fusion Finder (9). In Fusion Finder,
insertions are detected from discordant mate pair align-
ments, in which one mate aligns to a genomic sequence and
the other to part of the transposon sequence. A drawback
of this approach is that it does not use information from
chimeric reads overlapping the fusion boundary between
the gene and the transposon (split reads), limiting the accu-
racy and sensitivity of insertion detection. Additionally, the
dependency on mate pair information prevents its use for
analyzing datasets based on single-end RNA-sequencing.

In this work, we present an approach called IM-Fusion,
which uses fusion-aware RNA-seq alignment to identify
transposon insertions from splicing events between endoge-
nous genes and the transposon. Key advantages of this ap-
proach are that it identifies exactly which gene(s) are af-
fected by a transposon insertion and how the transposon
is incorporated into the resulting gene transcript. Addition-
ally, by using both split reads and discordant mate pairs to
identify insertions, IM-Fusion is more sensitive than exist-
ing approaches and can be used to analyze single-end RNA-
sequencing datasets. Finally, by combining insertions with
exon-level expression data, we are able to accurately predict
the consequences of integrations on gene transcripts.

MATERIALS AND METHODS

IM-Fusion

Identifying insertion sites. First, we create an augmented
reference genome by adding the transposon as an extra se-
quence in the reference genome. Then, for each sample, we
align sequence reads to the augmented reference genome
using a fusion-aware RNA-seq aligner such as STAR (10)
or Tophat-Fusion (11). By default, STAR is used for align-
ment, with the argument ‘–chimSegmentMin’ to ensure that
chimeric read alignments are produced. Chimeric align-
ments from STAR are filtered to select alignments that
represent fusions between the transposon and genomic se-
quences. Alignments that overlap with the fusion junction
(represented by split-read alignments) are grouped by the
position of their breakpoints, as these reads precisely iden-
tify the location of a fusion. Each such group is considered
to represent a single gene-transposon fusion. For paired-
end sequencing data, alignments that do not overlap with
the fusion boundary are grouped if their mate positions fall
within a pre-defined distance, which depends on the insert
size of the dataset. Where possible, these ‘spanning’ read

groups are assigned as additional support for fusions iden-
tified from split-reads. For cases where no such fusion is
found, approximate locations for the corresponding fusions
are predicted based on the bounds provided by the spanning
reads.

The identified fusions are annotated to identify which
gene(s) and which transposon feature(s) are involved in each
fusion. Fusions that do not involve splice acceptor (SA)
or splice donor (SD) features of the transposon or fusions
that represent biologically implausible situations (such as
fusions between transposon features and gene exons in op-
posite orientations) are considered artifacts and removed
from the list of fusions. Optionally, fusions supported by
less than a pre-defined number of reads can be removed to
avoid fusions with low support. For this filtering, we pro-
vide two distinct measures: a support score and an FFPM
(fusion fragments per million) score. The support score sim-
ply indicates the number of reads/mates that supports the
corresponding fusion. The FFPM score is a scaled version
of the support score, which is normalized for differences in
sequencing depth between samples. This score is analogous
to the FFPM score used by STAR-Fusion (12). The list of
filtered fusions is used to predict approximate locations of
the corresponding insertion sites, based on the breakpoints
of the fusions.

Transcript assembly. To identify cases in which insertions
lead to the expression of non-canonical transcripts, IM-
Fusion provides an optional step which uses StringTie (13)
to perform a reference-guided assembly of novel transcripts
using the read alignment from STAR. The produced tran-
script annotation is used to assign any previously unanno-
tated insertions to any novel transcripts that overlap with
the insertion. If such a novel transcript overlaps with any
known genes, the corresponding insertion is also assigned
to these known genes, as the transcript likely represents an
alternative transcript of these existing genes.

Selecting commonly targeted genes. Commonly targeted
genes (CTGs) are selected by testing if genes are affected
by insertions more frequently than would be expected by
chance according to the Poisson distribution. The Poisson
distribution expresses the probability of a given number of
events occurring in a fixed interval of time or space, as long
as the expected number of events in a fixed window is known
and events occur independently. Specifically,

Pg(K = k; λg) = λk
ge−λg

k!

where k is the number of events and �g is the expected num-
ber of events in a fixed window. Here, each insertion rep-
resents an independent event and the fixed window is the
genomic region of the gene of interest, optionally expanded
to include a window around the gene. The expected number
of insertions is calculated based on the size of the gene win-
dow, the size of the transcriptome (the union of windows
for all genes) and the total number of insertions within the
transcriptome windows.

In detail, we first count the number of insertions that were
identified for a given gene g (by the insertion identification
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step) and were located within a pre-defined window (by de-
fault 20 kb) around the gene. This count is denoted as Ng.
Second, we calculate the expected number of insertions in
gene g (�g) based on its window size and the total number
of insertions within the transcriptome as follows:

λg = Wg

Wt
Nt

in which Wg corresponds to the size of the window around
gene g, Wt the size of the transcriptome windows (the sum
of windows for all genes in the genome, corrected for over-
lap between gene windows) and Nt represents the total num-
ber of insertions within the transcriptome windows. Using
�g, we then calculate the probability of observing Ng or
more insertions in gene g as:

pg = Pg(K ≥ Ng; λg)

After testing all genes of interest (by default all genes with
at least one insertion in the gene), calculated P-values are
corrected for multiple testing using Bonferroni correction.

If the transposon employed in the screen is known to be
biased toward integrating at specific nucleotide sequences,
�g can be calculated differently to take this integration bias
into account. In this case, instead of using the size of the
gene windows, we use the number of occurrences of the nu-
cleotide sequence with the gene window (Sg) and within the
transcriptome windows (St) to calculate �g:

λg = Sg

St
Nt

To account for a potential bias in integrations on the
chromosome on which the transposon concatemer is lo-
cated, insertions and genes on the donor chromosome can
be excluded from the analysis. In this case, genes on the
donor chromosome are also excluded when calculating the
transcriptome size (Wt/St) and the number of insertions
(Nt).

Differential expression analysis. To test for differential ex-
pression, we first generate exon expression counts from the
read alignments using featureCounts (14). For this count
summarization, we use a flattened version of the reference
GTF file, which is similar to the flattened GTF files pro-
duced by DEXSeq (15). This flattened GTF is required to
ensure that overlapping exons from different transcripts of
the same gene are only counted once by featureCounts.

Next, to test a given gene g for differential expression, we
divide the exons of gene g into two groups: those before the
transposon insertions in the gene (EB

g ) and those after the
insertions (EA

g ). We assume that the expression counts of
exons before the insertions (EB

g ) are not directly affected by
the presence of an insertion and therefore reflect differences
in the overall expression of the gene between samples. Based
on this assumption, we normalize the counts of each sam-
ple for differences in overall expression of the gene by di-
viding the counts by a sample-specific normalization factor,
which is calculated from the counts of the exons in EB

g us-
ing DESeq2’s median-of-ratios approach (16). We then sum
the normalized counts of exons in EA

g per sample, to get a
single (normalized) count of expression after the insertion

site for each sample. Finally, to actually test for differential
expression in the presence of an insertion in gene g, we use a
two-tailed Mann–Whitney-U test to compare the distribu-
tion of these counts between samples with an insertion in
gene g and samples without an insertion in the gene.

In some cases, the above test is not possible because some
samples do not have at least one exon before and after their
insertion sites. This mostly occurs when insertions are lo-
cated upstream of the first exon of the gene. To handle these
cases, we first try to remove these problematic samples and
repeat the test using the remaining samples. For cases where
this does not leave us with any samples to test, we provide
an additional gene-level test, which compares the expres-
sion of the overall gene between samples with/without in-
sertions after normalizing for overall differences in sequenc-
ing depth.

By default, we do not use multiple testing correction for
the differential expression test, as we primarily select CTGs
using the Poisson-based test and use the differential expres-
sion test as an extra test to determine whether to keep the
CTG. Additionally, not all CTGs may be subjected to the
same test, as some genes may be tested using the gene-level
test if the exon-level version is not applicable.

Single-sample differential expression. To test for differen-
tial expression in a single sample (as opposed to the group-
wise test described above), we provide an alternative ap-
proach that uses the same normalization procedure, but
uses a negative binomial distribution to compare the expres-
sion of the sample of interest to samples without an inser-
tion. In this approach, a negative binomial is fitted using
the after insertion counts of samples without an insertion
in the gene. The after count of the sample of interest is then
compared to this distribution using a two-tailed test to de-
termine if the gene is differentially expressed.

Implementation

For convenience and reusability, we implemented the dif-
ferent steps of IM-Fusion in a Python package called im-
fusion, which is freely available on GitHub (https://github.
com/nki-ccb/imfusion). Jupyter notebooks containing the
code and results of the various computational analyses
are also available on GitHub (https://github.com/jrderuiter/
imfusion-analyses).

The Python package provides commands for each main
step of IM-Fusion, including the construction of the cus-
tom reference genome, identification of insertions from
RNA-seq reads, selection of CTGs and analysis of differ-
ential expression. The current implementation supports the
use of STAR or Tophat-Fusion to detect fusions, although
support for additional fusion-aware aligners may be added
in the future. For full functionality, working installations of
STAR/Tophat2, StringTie and featureCounts are required;
as STAR or Tophat2 (which implements Tophat-Fusion)
are used to align reads and detect fusions, StringTie is used
to detect novel transcripts and featureCounts is used to gen-
erate the expression counts. Optionally, STAR-Fusion (12)
can also be used to detect endogenous gene fusions as part
of the STAR insertion detection pipeline.

https://github.com/nki-ccb/imfusion
https://github.com/jrderuiter/imfusion-analyses
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Datasets

ILC dataset (RNA-seq). Single-end RNA-sequencing
data from 123 tumors were obtained from a dataset of a
Sleeping Beauty (SB) transposon screen in a mouse model
of invasive lobular breast carcinoma (ILC) (17). The RNA-
seq data were downloaded from ENA in fastq format (ac-
cession number PRJEB14134) and analyzed using IM-
Fusion (version 0.3.1) to detect SB insertion sites in each
sample, as well as subsequently identify CTGs and their
effects. For this analysis, we created an augmented refer-
ence genome using the mm10 version of the mouse genome
and the T2/Onc transposon sequence (18). STAR (version
2.5.2b) was used to perform the alignment, StringTie (ver-
sion 1.3.0) was used for transcript assembly and feature-
Counts (version 1.5.0-post3) was used to generate expres-
sion counts. Reference genome features were downloaded
from Ensembl 76.

ILC dataset (ShearSplink). DNA-sequencing data pre-
pared using the ShearSplink protocol (19) for the same
tumors as the ILC RNA-seq dataset were downloaded
from Figshare (DOI: 10.6084/m9.figshare.4765111) and
analyzed using the ShearSplink pipeline in PyIM (version
0.2.0, https://github.com/jrderuiter/pyim) to identify SB in-
sertion sites. In essence, this pipeline first extracts genomic
DNA from reads by removing the transposon and linker se-
quences. The genomic sequences are then aligned to the ref-
erence genome using Bowtie2 (version 2.2.8) (20), and the
resulting alignments are grouped by sample and position to
identify the location of insertion sites. Finally, identified in-
sertions are assigned to their predicted target genes using
the windows outlined in KC-RBM (8). To reduce the num-
ber of identified target genes for each insertion, we selected
a single target gene for each insertion by picking the clos-
est gene identified by KC-RBM. In cases where this was not
possible, e.g. due to overlapping genes, we retained multiple
target genes.

B-ALL dataset. Insertion data and paired-end RNA-seq
data from 20 B-cell acute lymphoblastic leukemias (B-
ALLs) were obtained from a previously published dataset
of a SB screen performed in a mouse model of B-ALL
(21). The RNA-seq data were downloaded from ENA in
fastq format (study ID: ERP005291, array expression ID:
E-ERAD-264). The insertion data were obtained from the
Supplementary Materials of the publication or through per-
sonal communication. Control samples were omitted from
the performed analyses.

Methods––ILC dataset

Gene-transposon fusion validation in RNA. Tumor RNA
was extracted as previously described (22) and 300 ng
was converted to complementary DNA (cDNA) with a
Moloney murine leukemia virus reverse transcriptase using
random hexamer primers according to manufacturer’s pro-
tocol (Tetro cDNA synthesis kit, Bioline). Gene-transposon
fusions were detected by standard polymerase chain reac-
tion (PCR) with an annealing temperature of 58◦C. The fol-
lowing primer sequences were used:

SA reverse
5′-TTCCCGCGAATCCATCTTTC-3′

En2SA reverse
5′-GTCGACTGCAGAATTCGATGA-3′

SD forward
5′-GCCCATCAAGCTTGCTACTA-3′

Myh9 forward
5′-CTGTGTGGTCATCAACCCTTAT-3′

Trp53bp2 reverse
5′-ATCGCTCTGGTTTCGATAAGG-3′

Ctnnd1 forward 1
5′-GCTACATGCCTTGACAGATGA-3′

Ctnnd1 forward 2
5′-GAGAGGAGAAAGGCAGGAAAG-3′

Hprt forward
5′-CTGGTGAAAAGGACCTCTCG-3′

Hprt reverse
5′-TGAAGTACTCATTATAGTCAAGGGCA-3′

Effects of insertions. To study the effects of individual
SB insertions on expression, we visualized single inser-
tions together with the expression of each of their targets
in the affected sample and tested for differential expres-
sion over the insertion site in the sample. The visualiza-
tion was generated using the Python package geneviz, which
is freely available on GitHub (https://github.com/jrderuiter/
geneviz). Gene annotations for the plot were obtained from
Ensembl 76. Expression profiles were generated from the
RNA-seq alignment of the sample using pysam (23), by
counting the number of reads overlapping each nucleotide
position in the plotted range. Junction strengths were de-
rived from the junction files (SJ.out.tab) generated by STAR
during the alignment. To test for differential expression, we
used the single-sample exon-level test implemented by IM-
Fusion.

Effects on CTGs. To identify biases in SA/SD insertions
for the various CTGs, we counted the number of times each
transposon feature (SD, SA, En2SA) was involved in the
insertions affecting each CTG. The results were visualized
to show the different distributions across CTGs. To test for
differential expression, we applied IM-Fusions group-wise
DE test for each CTG.

Insertion comparison. To compare the overlap in inser-
tions between IM-Fusion and ShearSplink, we matched two
insertions between IM-Fusion and ShearSplink under the
following conditions: both insertions were identified in the
same sample, had the same predicted target gene and their
relative location and orientation was compatible. The latter
restriction was used to ensure that a ShearSplink insertion
was in the correct location to generate the fusion observed
by IM-Fusion in the RNA-seq data. Insertions matched
between the two approaches were marked as ‘Shared’, un-
matched insertions were designated ‘IM-Fusion only’ or
‘ShearSplink only’ depending on the approach that iden-
tified them.

To identify features distinguishing shared insertions from
insertions that were unique to either approach, we com-
pared the set of shared insertions to the IM-Fusion-
and ShearSplink-specific insertions. For both comparisons

https://github.com/jrderuiter/pyim
https://github.com/jrderuiter/geneviz
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(Shared/ShearSplink and Shared/IM-Fusion), we first de-
fined a set of features that could potentially affect insertion
detection by either method. We then trained a logistic re-
gression model on these features to predict whether an inser-
tion was matched or unique to the corresponding approach.
This model was used to determine the significance of each
feature. Finally, we visualized the distributions of significant
features for both the matched/unmatched insertions using
kernel density estimation (KDE) plots for interpretation.

Candidate gene comparison. To compare the candidate
genes identified by ShearSplink and IM-Fusion, we first
identified significant common insertion sites (CISs) and dif-
ferentially expressed CTGs (DE CTGs) separately using
the respective approaches. We then visualized the resulting
gene rankings, linking genes that were identified as candi-
date genes by both approaches. Candidate genes were col-
ored to distinguish whether they were (i) shared between
both approaches (black), (ii) were identified to have inser-
tions but were not selected as a CTG/CIS by the other ap-
proach (blue), (iii) were selected as a CTG/CIS but were
not differential expressed (green), (iv) were not selected as
a CTG/CIS and were not differentially expressed (purple)
and (v) were omitted entirely by the other approach (red).

ShearSplink insertion validation in DNA. Tumor DNA
was isolated using a phenol–chloroform extraction. Trans-
poson insertions were detected in 500 ng DNA by standard
PCR with an annealing temperature of 58◦C. The following
primer sequences were used:

En2SA forward
5′-GCTTGTGGAAGGCTACTCGAA-3′

Nf1 11KOU029-R5.INS 12 reverse
5′-CTCACGTGAAGTGGGAAAGACA-3′

Nf1 12SKA029-R3.INS 15 reverse
5′-GGCGCACACCTTTAATCCTAAC-3′

Nf1 12SKA033-R3.INS 10 reverse
5′-TAGCTCCCTGTGTGTTCCTTTG-3′

Nf1 12SKA068-L3.INS 15 reverse
5′-AAGGGTGAAGCAGGAGGATTAC-3′

Nf1 12SKA092-L2.INS 10 reverse
5′-ACGGAGAAGGAGAGAGGGAAA-3′

Nf1 12SKA104-R3.INS 1 reverse
5′-CCAACATCCCTGTTGTGTGTATG-3′

Hprt forward
5′-CTGGTGAAAAGGACCTCTCG-3′

Hprt reverse
5′-TGAAGTACTCATTATAGTCAAGGGCA-3′

Endogenous fusion identification. Endogenous gene fu-
sions were identified by applying STAR-Fusion (version
0.5.4) (12) to the raw RNA-seq data (fastq files) using rec-
ommended settings. The resulting list of fusions were com-
bined across samples and filtered for fusions with break-
points at known splice junctions, as these are most likely to
reflect proper gene fusions. The filtered fusions were priori-
tized by grouping fusions on the involved genes and ranking
by the recurrence of these gene pairs across samples. The
fusions involving Fgfr2 were validated using the same ap-
proach as for the gene-transposon fusions, with the follow-
ing additional primers:

Fgfr2 forward 5′-TGGCCAGGGATATCAACAAC-3′
Kif16b reverse 5′-CTTTCCTGAGGGCTAGAGTTTG-3′
Myh9 reverse 5′-GATAGCGCCTTTGTCTCCTT-3′
Tbc1d1 reverse 5′-CCAGGCTGTGAGAAGGATTT-3′

Methods––B-ALL dataset

Candidate gene comparison. To compare IM-Fusion with
the DNA-seq results from the original publication, we ap-
plied IM-Fusion to the paired-end RNA-seq data and com-
pared the identified DE CTGs with the published candidate
genes (DE CISs). To avoid selecting CTGs with very low
support in this relatively deeply sequenced dataset (as these
are more likely to represent false positives), we filtered in-
sertions with fewer than 10 supporting reads or mates from
the CTG analysis.

Effect of sequencing depth. The B-ALL samples were
downsampled to depths of 15, 30, 50 and 70 million reads
using Seqtk (https://github.com/lh3/seqtk). IM-Fusion was
applied to each of these downsampled datasets to identify
DE CTGs, using the same settings as were used for the full
dataset. The number of insertions and DE CTGs were com-
pared between the different depths, as well as the overlap in
DE CTGs between depths.

Single- versus paired-end comparison. A single-end version
of the dataset was simulated by supplying only the first pair
as input to IM-Fusion. The results from the paired-end
and single-end analyses were compared by juxtaposing DE
CTGs and insertions in these genes between the two analy-
ses.

Fusion Finder comparison. We created an augmented ver-
sion of the mm10 reference genome containing the T2/Onc
transposon sequence in the same manner as described by
Temiz et al. (9). This reference was modified to mask the
En2 and Foxf2 gene loci, which contain sequences homolo-
gous to parts of the transposon sequence. Tophat2 (version
2.1.0) (24) was used to align reads to this augmented refer-
ence, after which the Fusion Finder script (version 3.1) was
used to identify insertions in each sample. The results were
compared with IM-Fusions DE CTGs and published candi-
date genes by analyzing the overlap between the identified
insertions and the CTGs/CISs. To determine why certain
CTGs/candidates were not identified by Fusion Finder, we
visualized the distribution of the used transposon features
and compared the alignments of reads supporting inser-
tions unique to IM-Fusion between the Tophat2 and STAR
alignments using pysam (23).

Endogenous fusion identification. Endogenous gene fu-
sions were identified in the same manner as for the ILC
dataset.

RESULTS

Identifying insertion sites from gene-transposon fusions

Transposon insertions can affect the expression of nearby
genes, potentially leading to the activation of oncogenes or

https://github.com/lh3/seqtk
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Figure 1. Overview of the T2/Onc transposon and its effects on gene expression. (A) The transposon sequence contains two splice acceptor sequences (SA
and En2SA) with corresponding polyA sequences (pA), and a single promoter sequence (MSCV) combined with a splice donor (SD) sequence. (B) Sense
insertions of the transposon either within or upstream of a gene may drive overexpression of the downstream gene sequence by initiating expression from
the transposons promoter and SD sequence. (C) Insertions within genes (in either orientation) may truncate gene transcripts by splicing to either of the
SA sites (SA or En2SA). The resulting truncations may inactive tumor suppressor genes, but can also activate oncogenes by removing inhibitory domains
from the resulting protein.

the inactivation of tumor suppressors. For example, con-
sider the T2/Onc transposon (Figure 1A) that is used in this
work. When integrated in the vicinity of a gene, this trans-
poson can induce (over)expression of nearby genes by ini-
tiating transcription from its promoter sequence (MSCV)
and then splicing into the gene using the SD sequence (Fig-
ure 1B). Alternatively, the transposon can truncate tran-
scripts using either of its SA sites (SA/En2SA) and their
corresponding polyA (pA) sites (Figure 1C). Depending on
the gene and the location of the transposon, these trunca-
tions can inactivate the gene by resulting in an unstable tran-
script or inactive protein, or activate the gene by removing
inhibitory protein domains.

In both of these cases, part of the transposon sequence
is incorporated into the resulting mRNA transcript(s) via
splicing between the affected gene and the transposon. As
such, these transcripts effectively represent fusions between
the transposon sequence and the affected gene. We there-
fore hypothesized that it should be possible to detect trans-
poson insertion sites from RNA-sequencing by identifying
gene-transposon fusions using existing gene fusion detec-
tion tools. By further analyzing the breakpoints of each fu-
sion, we could determine exactly which gene and which fea-
ture of the transposon are involved in the fusion, and use
this information to predict the location of the correspond-
ing insertion site.

IM-Fusion

In this work, we developed a tool called IM-Fusion, that
uses a three-step approach to (i) identify insertions from
gene-transposon fusions in RNA-sequencing data, (ii) se-
lect genes that are more frequently affected by insertions
than would be expected by chance and (iii) test if the ex-
pression of these genes is significantly changed by their in-
sertions (Figure 2A). A brief description of each of the steps
is provided below, more details are available in the ‘Materi-
als and Methods’ section.

Identifying insertion sites. IM-Fusion identifies transpo-
son insertion sites from gene-transposon fusions in the
RNA-seq data. To identify these fusions, IM-Fusion first
creates an augmented version of the host reference genome
by adding the sequence of the transposon as an extra se-
quence to the original reference sequence. Then, for each
sample, IM-Fusion uses a fusion-aware RNA-seq aligner to
align RNA-seq reads to the augmented reference and iden-
tify gene fusions. By default, STAR (10) is used for this pur-
pose, although Tophat-Fusion (11) is also supported. The
identified fusions are filtered to only select fusions between
genes and the transposon sequence. These gene-transposon
fusions are then analyzed to identify the involved genes
and transposon features, and to infer the approximate lo-
cations of the insertions (Figure 2B). Optionally, the RNA-
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Figure 2. Overview of IM-Fusion. (A) The IM-Fusion pipeline. Samples are initially processed individually to identify insertions and generate gene and
exon expression counts for each sample separately. The per-sample results are then combined to identify genes that are recurrently affected across samples.
For these genes, we then combine the expression and insertion data to test for differential expression over the insertion site. The results of this analysis
are used to determine if insertions have a significant effect on the expression of their target genes and exactly how the insertions affect the resulting gene
transcript. (B) Transposons that affect gene expression are included in gene transcripts and are therefore detectable as fusion transcripts between genes and
the transposon. These fusions are detected by reads or mate-pairs that bridge the fusion site. The breakpoints of the identified gene-transposon fusions
are analyzed to identify the involved gene(s) and predict an approximate location for the corresponding insertion(s). (C) Insertion and expression data
are combined to test if an insertion significantly affects the expression of exons downstream of the insertion site. Expression counts are calculated both
before/after the insertion site for a sample with an insertion and a set of background samples without an insertion. The ‘before’ count is then used to
normalize the sample counts, after which the normalized ‘after’ counts are compared to the ‘before’ counts to test for differential expression. Samples with
a truncating insertion are expected to show a lower level of expression after the insertion relative to the background, whilst samples with an activating
insertion are expected to show increased expression after the insertion.

seq alignment can be used to perform a reference-guided
transcript assembly, which allows IM-Fusion to detect in-
sertions that result in the expression of novel (unannotated)
transcripts.

An important advantage of IM-Fusion over DNA-
sequencing based approaches is that, instead of focusing
on deriving the exact location of insertion sites, it focuses
on determining which genes are affected by insertions. This
gene-centric approach allows us to select only those inser-
tions that affect expressed genes and are therefore most
likely to have an actual biological effect. By doing so,
IM-Fusion provides an important filter that strongly en-
riches for biologically relevant insertions and avoids select-
ing many extraneous insertions that are unlikely to affect
gene expression. This greatly increases the specificity of our
results, providing more confidence in the identified hits.

Selecting commonly targeted genes. To identify genes that
are commonly targeted by insertions, we use the Poisson dis-
tribution to test whether a given gene has more insertions
than may be expected by chance (see ‘Materials and Meth-
ods’ section). To correct for cases in which a single inser-
tion is detected multiple times in the same gene, either due
to its involvement in multiple gene isoforms or due to local
hopping within the gene, insertions are by default collapsed
into a single insertion per gene per sample (taking the aver-
age location of the insertions) before testing for enrichment.
This ensures that selected CTGs indeed represent recurrent
insertions across multiple samples, and not just multiple in-
sertions within a single or few samples.

Testing for significant effects on expression. To establish
whether the expression of a CTG is significantly altered by
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its insertions, we test for differential expression over the in-
sertion sites in the gene. The main goal of this analysis is
to determine if we see a significant increase in expression
after the insertion site, indicating that (partial) gene tran-
scripts are (over)expressed by the insertions, or observe a
significant decrease in expression, indicating that gene tran-
script(s) are truncated by the insertions.

To perform the test, we first normalize for differences in
overall expression of the gene across all samples based on
the expression of exons before the insertion site, which we
assume are not directly affected by the presence of an in-
sertion. After this normalization, we compare the normal-
ized expression levels after the insertion site between sam-
ples with and without an insertion in the gene to test for
differential expression (Figure 2C). By default the test per-
forms a group-wise comparison using the Mann–Whitney
U test, in which the expression of samples with an insertion
is compared to samples without insertions in the gene. Al-
ternatively, we also provide a single-sample test based on the
negative binomial distribution, which determines whether
the gene is differentially expressed in a specific sample.

For cases without exons before the insertion site(s), which
can occur if insertions are located upstream of the gene,
an additional gene-level test is provided. This test com-
pares the expression of the overall gene between samples
with/without insertions, after normalizing for overall dif-
ferences in sequencing depth.

Applying IM-Fusion to a mouse model of breast cancer

We tested our approach by using IM-Fusion to identify SB
transposon insertions in 123 tumors from a mouse model of
invasive lobular breast cancer (ILC) (17). On average, 0.1%
of the reads in each sample were chimeric reads supporting
a potential fusion, of which 0.42% represented a putative
gene-transposon fusion (Supplementary Table S1). From
these fusions, IM-Fusion identified a total of 2057 trans-
poson insertion sites across all tumors, with a median of
12 insertions per tumor (Supplementary Table S2). A to-
tal of 1043 genes were affected by at least one insertion,
14 of which were selected as differentially expressed (DE)
CTGs (Supplementary Table S3). To confirm the existence
of the identified insertions, a subset of insertions was vali-
dated using PCRs targeting the predicted gene-transposon
fusion transcripts (Supplementary Figure S1).

Effects of individual insertions. To evaluate the effect of in-
dividual insertions, we visualized single insertions together
with the expression of their target genes in the correspond-
ing sample. An example is shown in Figure 3A, which shows
an antisense insertion in the Trps1 gene. This insertion was
identified from a fusion between the transposons En2SA
site and the fourth exon of the gene, indicating that the in-
sertion truncated the gene after this exon. This hypothesis
was supported by the expression profile of the gene in this
sample, which showed a marked reduction in expression af-
ter the insertion site. Using the single sample DE test, we
confirmed that this reduction in expression was indeed sig-
nificant compared to background samples without an inser-
tion in the gene (Figure 3B).

A second example (Figure 3C) shows a sense insertion in
the Trp53bp2 gene, which was identified from two distinct
gene-transposon fusions. The first fusion, between the SA
site of the transposon and exon 12 of the gene, indicated that
the insertion truncated gene transcription after this exon.
However, the second fusion, between the SD site and exon
13, indicated that the insertion also drove overexpression of
a partial gene transcript downstream of the insertion. Taken
together, this showed that the insertion simultaneously re-
sulted in both the truncation of the original gene transcript
and overexpression of a C-terminal transcript containing
exons 11–18. This overexpression was clearly reflected in
the expression levels of the gene, which were significantly
increased after the insertion site (Figure 3D). Finally, from
the shown splice junctions we saw that the full-length tran-
script of Trp53bp2 (and/or the truncated N-terminal tran-
script) was still expressed in this sample, though at lower
levels than the partial transcript.

General effects of insertions on CTGs. To determine how
each identified CTG was affected by its insertions, we first
analyzed the insertions in each CTG to identify if the gene
was biased to SD or SA insertions. In this analysis, a bias
to SD insertions would indicate the gene is mainly overex-
pressed by insertions in the gene (Figure 1B). Conversely, a
bias toward the SA/En2SA sites would indicate the gene is
mainly truncated by its insertions (Figure 1C). Second, we
used IM-Fusion to test for differential expression across the
insertion site to determine if the insertions affect the expres-
sion of the gene and whether the observed effect points to
truncation or overexpression of the gene. For clarity we lim-
ited our analysis here to the top six candidate genes; similar
results for the other candidates are available in Supplemen-
tary Figure S2.

This analysis showed that most top CTGs (Ppp1r12a,
Trps1, Myh9, Tgfbr2 and Runx1) were clearly biased to-
ward SA/En2SA insertions (Figure 3E), indicating that
transcripts of these genes were being truncated by the trans-
poson insertions. This hypothesis was further supported by
the DE tests (Figure 3F), which confirmed that each of these
genes showed a significant decrease in expression after the
insertion site, indicating that genes are indeed truncated.
Conversely, for one top CTG, Trp53bp2, we saw a clear bias
toward SD insertions, indicating that this gene is overex-
pressed by its insertions. This was again supported by the
DE analysis, which determined that Trp53bp2 showed a sig-
nificant increase in expression after its insertion sites.

Comparison with targeted DNA-sequencing

To assess if IM-Fusion identifies similar insertions to tar-
geted DNA-sequencing approaches, we compared our re-
sults to those obtained by targeted DNA-sequencing of in-
sertions using the ShearSplink protocol (19). For this com-
parison, we matched insertions between the two approaches
(IM-Fusion and ShearSplink) if they identified the same
target gene and had compatible genomic locations and ori-
entations. Note that, using this approach, an insertion is
counted multiple times if it is assigned to multiple genes,
thereby increasing the apparent total number of insertions.



7072 Nucleic Acids Research, 2017, Vol. 45, No. 12

A B

C D

FE

pApASA En2SAMSCV 5’ LTR SD

Figure 3. Examples of identified insertions, CTGs and their effect on gene expression. (A) An example of an antisense insertion in Trps1 that results in
truncation of the gene transcript. The insertion (red arrow) is shown above the main transcript of the gene, together with expression levels of the gene. The
expression of the exons is shown along the top in blue, which reflects the number of reads covering the various exons. Similarly, the black arches below
indicate the strength of the splicing junctions between the different exons, with the height of the arch indicating the number of reads supporting the splice
junction. Taken together, these expression profiles show a strong decrease in expression after the insertion site, supporting the hypothesized truncation.
(B) Quantified expression levels before/after the insertion site for the Trps1 insertion shown in (A). Compared to the samples without an insertion (gray),
the sample with this insertion (blue) shows a significant decrease in expression after the insertion. (C and D) An example of a sense insertion in Trp53bp2
(blue arrow). This insertion results in both truncation of the gene and overexpression of a partial transcript. This overexpression is clearly reflected by the
increase in expression after the insertion site. (E) Frequencies of the transposon features involved in the insertions of the top six identified CTGs. A bias
toward SA/En2SA favors truncation of the gene, whereas a bias toward SD favors overexpression. (F) Differential expression across the insertion sites for
each of the CTGs. An increase in the presence of an insertion indicates overexpression, a decrease indicates truncation.

Matched insertions were considered to be shared by both
approaches, whereas unmatched insertions were catego-
rized as ‘ShearSplink-specific’ or ‘IM-Fusion-specific’ de-
pending on their source. This analysis showed that the ma-
jority of the insertions identified by IM-Fusion (578/818)
were shared with ShearSplink (Figure 4A). However, a sub-
stantial number of insertions were unique to either IM-
Fusion (240) or ShearSplink (2838), indicating a consider-
able disparity between the two approaches.

ShearSplink-specific insertions. To investigate why certain
insertions were not identified by IM-Fusion, we compared

the ShearSplink-specific insertions to the insertions identi-
fied by both approaches. The goal of this comparison was
to identify features that distinguished the two sets of in-
sertions (see ‘Materials and Methods’ section) and might
therefore provide insight into the underlying reasons for the
observed differences. Of the considered features, the follow-
ing were determined to be significantly predictive: the ex-
pression level of the predicted target gene, the relative lo-
cation of the insertion within its target, the distance of an
insertion to its target and the support of the ShearSplink
insertion.
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Figure 4. Comparison of insertions identified by IM-Fusion and ShearSplink. (A) Venn diagram of the insertions identified by ShearSplink (red) and IM-
Fusion (blue). Many IM-Fusion insertions are shared with ShearSplink (green), but a considerable number of insertions are unique to either approach. (B
and C) Distribution of features reflecting biases of RNA-sequencing that affect the detection of insertions by IM-Fusion. ShearSplink-specific insertions
(red) typically have low expression compared to shared insertions (green) and are therefore more difficult to detect by RNA-seq. Similarly, insertions
toward the start of the gene are more frequently missed by IM-Fusion due to the 3′ bias of the polyA tail selection used in the RNA-sequencing. (D and
E) Distributions of support of DNA-seq insertions and support of RNA-seq insertions. Insertions with low DNA-seq support are more often missed by
IM-Fusion, whilst insertions with low IM-Fusion support are often not detected by ShearSplink. These differences likely reflect heterogeneity of subclonal
insertions present in the tumor tissue samples used for DNA-seq and RNA-seq, respectively. (F) Comparison of the frequency-based ranking of candidate
genes identified by IM-Fusion and ShearSplink. Gray lines indicate the relative rankings of genes that were identified by both approaches. Genes missed by
the other approach are marked red. Genes that were identified to have insertions but not selected as CISs/CTGs by the other approach are colored blue or
purple, depending on their differential expression status. Genes that were identified as CISs/CTGs but were not differentially expressed are marked green.

The first two of these features point toward biases in the
sequencing coverage of the RNA-seq data that affect the de-
tection of insertions. The first feature, the expression level of
the target gene, indicates that IM-Fusion had trouble iden-
tifying insertions in genes with no or low expression (Figure
4B). The lack of insertions in non-expressed genes was ex-
pected, as these insertions are not represented in the RNA-
seq data. As these insertions are unlikely to have any biolog-
ical effect, their omission is expected to increase the speci-
ficity of IM-Fusion with regard to biologically relevant in-
sertions. The lack of insertions in genes with low expres-
sion reflects an inherent bias of RNA-seq toward highly ex-
pressed genes, which results in less sequencing coverage for
genes with low expression.

Similarly, the second feature, the relative position of an
insertion within the gene, showed that IM-Fusion misses
more insertions at the 5′ end of genes (Figure 4C). This is
due to a well documented 3′ bias of the polyA-tail selection
used to enrich for mRNAs in RNA-sequencing, which re-
sults in decreasing coverage toward the 5′ end of gene tran-
scripts. Together, these two biases limit the ability of RNA-
seq-based approaches such as IM-Fusion to detect inser-
tions in lowly expressed genes, particularly at their 5′ end.
This effect can be mitigated by deeper sequencing and by us-
ing a different approach to enrich for mRNAs in the prepa-
ration for RNA-sequencing (such as rRNA depletion).

Another significant feature, the support of an insertion
(Figure 4D), showed that IM-Fusion mainly missed Shear-

Splink insertions with a low support score. This bias may
be due to one or more of the following reasons. First, our
RNA-seq data may not be deep enough to detect very sub-
clonal insertions that are only present in a very small frac-
tion of the tumor cells. Second, the observed differences
may reflect intratumoral heterogeneity, as we did not use
the same tumor fragments for RNA and DNA extraction
and sequencing, but instead used two separate pieces of the
same tumor. For clonal insertions this is not an issue, but
subclonal insertions might be present in only one of the tu-
mor pieces, therefore leading to some of the observed dif-
ferences between IM-Fusion and ShearSplink.

Finally, we found that the heuristic assignment of tar-
get genes by ShearSplink also introduced biases. Even af-
ter restricting the assignment of target genes to the clos-
est gene, ShearSplink was unable to identify a unique tar-
get gene for some insertions. For example, insertions within
the Arfip1/Fbxw7 locus were frequently assigned by Shear-
Splink to both Fbxw7 and Arfip1. Closer inspection of these
insertions indicated that these insertions are in fact closely
clustered in Fbxw7 and are therefore unlikely to affect the
Arfip1 transcript that overlaps with Fbxw7. This hypothesis
was supported by the IM-Fusion results, which only identi-
fied insertions in Fbxw7, indicating that Arfip1 is a false pos-
itive of the heuristic assignment by ShearSplink. Similarly,
the distance to target gene feature indicated that insertions
further away from their target genes are rarely matched by
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IM-Fusion. These hits are also likely to be artifacts of the
heuristic assignment of target genes by Shearsplink.

IM-Fusion-specific insertions. To determine why some in-
sertions were only identified by IM-Fusion, we also com-
pared the set of insertions unique to IM-Fusion to the
shared insertions. This comparison identified the support
score of an insertion as the most predictive feature of IM-
Fusion-specific insertions (Figure 4E). This feature, which
reflects the number of reads supporting the corresponding
gene-transposon fusion, showed that ShearSplink mainly
misses insertions with a low IM-Fusion support score. As
these insertions are only supported by a few reads in the
RNA-seq data, they are likely either false positives of IM-
Fusion or subclonal insertions that are present in a small
fraction of tumor cells or in specific parts of the tumor.
In the latter case, the missed insertions are again likely at-
tributable to heterogeneity between the DNA- and RNA-
seq samples, as previously explained for the ShearSplink
support feature.

Comparison of identified candidate genes

To assess if IM-Fusion identified different candidate genes
than ShearSplink, we compared the DE CTGs from IM-
Fusion to the genes associated with CISs from the Shear-
Splink analysis. This comparison showed that IM-Fusion
and ShearSplink identified 14 and 32 candidate genes re-
spectively, of which 12 were shared between both ap-
proaches. From a comparison of the rankings of the can-
didate genes (Figure 4F), we saw the strongest concordance
between the most frequently recurring candidate genes, with
more discrepancy among the less frequent candidates.

To determine why some ShearSplink candidate genes
were not identified by IM-Fusion, we examined them
in more detail. Five genes (Arfip1, Gm26836, Gm14798,
Ppp2r2a and Bach2) were not identified at all by IM-Fusion,
suggesting that these are either false positives of the Shear-
Splink analysis, as we have already argued for Arfip1, or
are weak/subclonal insertions that were not picked up by
IM-Fusion. For Nf1, IM-Fusion did detect several weak
insertions, which were only supported by single reads and
were therefore filtered from the CTG analysis. These inser-
tions, together with additional validation of several Shear-
Splink insertions (Supplementary Figure S3), demonstrated
that Nf1 was not a false positive of the ShearSplink analysis.
However, closer inspection showed that Nf1 insertions were
generally supported by few reads in the ShearSplink data,
thereby explaining their omission by IM-Fusion.

Several other genes (Setd5, Gab1, Ppp1r12b, e.g.) were
identified to have insertions by IM-Fusion, but were not de-
tected in enough samples to be selected as a CTG. Further
analysis showed that insertions in missing samples were sup-
ported by few ShearSplink reads, indicating that these inser-
tions are missed due to their low clonality. This also explains
why several of these genes (Ppp1r12b, Nfix, Rmb47, etc.) are
not differentially expressed in the presence of an insertion,
as we are less likely to pick up expression differences if the
signal is weak due to subclonality.

A few candidate genes, including Fgfr2––the top hit from
the ShearSplink analysis, were not selected as DE CTGs due

to a lack of differential expression. Closer analysis showed
that Fgfr2 is affected by a mix of sense and antisense in-
sertions. Whilst the antisense insertions merely truncate the
gene, the sense insertions both truncate the gene and induce
the overexpression of a partial C-terminal transcript (Sup-
plementary Figure S4). Together, this results in a mix of
samples with increased and decreased expression, thereby
representing a more complex pattern of expression changes
than the overall changes that the DE test was designed to
detect. This indicates that, although the DE test is useful
for prioritizing candidate genes, frequently recurring CTGs
that are not differentially expressed should be investigated
in more detail to avoid filtering out more complex cases of
differential expression. This can, for example, be done by
grouping samples based on the orientation of their inser-
tions (as done here) or on the involved SD/SA sites if these
are expected to have different effects on expression.

Finally, besides the known candidates, IM-Fusion identi-
fied two novel candidates that were not identified by Shear-
Splink. Interestingly, both of these genes were identified in
similar numbers of samples (two-three samples) by both
ShearSplink and IM-Fusion, indicating that IM-Fusion
may have more power to identify rare CTGs.

Application of IM-Fusion to paired-end RNA-sequencing
data from B-ALL tumors

To test IM-Fusion on paired-end RNA-sequencing data,
we used an additional dataset of SB-induced B-cell acute
lymphoblastic leukemias (B-ALL) for which both targeted
DNA-sequencing and relatively deeply sequenced paired-
end RNA-sequencing (70–90 million reads) was available
(21). In the original analysis of this dataset, Van der Weyden
et al. first identified CISs from targeted DNA-sequencing
data, and then selected predicted target genes that showed
significant differential expression in the presence of an inser-
tion (DE CISs). For our comparison, we applied IM-Fusion
using only the RNA-sequencing data and compared the
identified insertions and CTGs to the results of the DNA-
seq analysis. In light of the higher sequencing depth of the
B-ALL dataset (relative to the ILC dataset), we removed in-
sertions with fewer than 10 supporting reads in the CTG
analysis to avoid selecting genes that are recurrently de-
tected but have low support, as these are likely to represent
false positives (Supplementary Figure S5).

CTG comparison. On average, 0.72% of the mate pairs in
each sample reflected chimeric alignments, of which 0.45%
supported potential gene-transposon fusions (Supplemen-
tary Table S4). From these fusions (Supplementary Table
S5), IM-Fusion identified six CTGs (Jak1, Stat5b, Cblb,
Zfp423, Dlx3 and Bmi1), of which all except Bmi1 and Dlx3
coincided with the six DE CISs identified by the DNA-seq
analysis (Figure 5A and B). Two genes were only identified
by the DNA-seq analysis (Foxp1 and Il2rb). Closer inspec-
tion of the original DNA-seq data showed that insertions
in these genes were generally supported by <10 reads (Sup-
plementary Table S6), suggesting that these insertions are
subclonal and are therefore not represented in the RNA-
seq sample due to the afore-mentioned issues with sample
heterogeneity. Interestingly, both of the novel CTGs (Bmi1,
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Figure 5. Comparison of candidate genes identified by IM-Fusion and the original DNA-sequencing analysis in the B-ALL dataset. (A) Comparison of
candidate gene rankings between IM-Fusion (left) and the original DNA-seq-based analysis (right). Colors are coded as in Figure 4F. (B) Overlap of
IM-Fusions DE CTGs and the published DE CISs. (C) Comparison of DE CTG rankings by IM-Fusion on the single- and paired-end versions of the
B-ALL dataset.

Dlx3) have been reported to play a role in the development
of B-ALL (25,26), suggesting that these are true hits that
were missed by the DNA-based analysis.

Effect of sequencing depth. To determine how sequencing
depth affects the detection of insertions and CTGs, we made
use of the high sequencing depth of the B-ALL dataset to
repeat the analysis at reduced depth by downsampling the
original dataset to 15, 30, 50 and 70 million reads per sam-
ple. These analyses showed that the number of detected in-
sertions increases linearly with the sequencing depth (Sup-
plementary Figure S6a), indicating that additional sequenc-
ing depth provides more power to detect insertions. In con-
trast, only one extra DE CTG (Dlx3) was detected at higher
sequencing depths (Supplementary Figure S6b and c), sug-
gesting that deep sequencing may provide limited returns
when screening for candidate genes. However, less insertions
were detected in some of these CTGs at the lower depths
(Supplementary Table S7), demonstrating that a higher se-
quencing depth will provide more accuracy in the detection
of weak insertions.

Single- versus paired-end sequencing. To study the added
value of paired-end sequencing, we simulated a single-end
version of the dataset by applying IM-Fusion to only one
of the paired-ends. Although the analysis of the single-end
dataset identified the same DE CTGs as the paired-end
analysis (Figure 5C), the paired-end data yielded on aver-
age two times higher support scores for insertions due to
the higher effective depth of paired-end sequencing, and
identified a number of insertions that were not detected in

the single-end sequencing data (Supplementary Table S8).
Overall, this suggests that paired-end sequencing data is not
strictly necessary for detecting insertions, but is beneficial
for the detection of weak insertions.

Comparison with Fusion Finder. Finally, to compare IM-
Fusion with existing approaches, we analyzed the B-ALL
dataset using Fusion Finder (9), which uses Tophat2 (24) to
identify transposon insertions from discordant mate pairs
in paired-end RNA-sequencing data. Comparison of the
identified insertions showed that Fusion Finder identified
recurrent insertions in Cblb and Dlx3, but was only able to
identify insertions in a single sample for Jak1 and Bmi1, and
was unable to detect insertions in any of the other DE CTGs
identified by IM-Fusion (Supplementary Table S9).

More detailed analyses of the results showed that the in-
sertions in CTGs missed by Fusion Finder are (i) biased to-
ward SD insertions and (ii) mainly supported by chimeric
reads overlapping the fusion boundary, rather than mate
pairs that span the fusion (with one mate on either side of
the fusion). The latter explains why the majority of these
insertions were not detected by Fusion Finder, as Fusion
Finder does not incorporate split read information into its
insertion detection. This highlights an important advantage
of using fusion-aware aligners such as STAR and Tophat-
Fusion, as these aligners explicitly account for chimeric fu-
sion reads in their alignment, resulting in increased sensitiv-
ity for the detection of these insertions.

Although Fusion Finder failed to detect insertions in-
volving the SD site of the transposon in this dataset, it did
identify SD insertions in the original study by Temiz et al.



7076 Nucleic Acids Research, 2017, Vol. 45, No. 12

(9). We expect that the differences between our result and
theirs are due to differences in read lengths, as the B-ALL
dataset uses 100 bp reads compared to the 50 bp read length
used in their dataset. The longer read length makes it more
likely that reads overlap the fusion boundary, making an ap-
proach that uses chimeric reads preferable with longer read
lengths.

DISCUSSION

We have presented IM-Fusion, a novel approach for iden-
tifying transposon insertion sites from gene-transposon fu-
sions in RNA-sequencing data. A key advantage of this ap-
proach is that it focuses on identifying insertions that affect
gene expression. As such, IM-Fusion provides a significant
filter that strongly enriches for insertions that actually affect
the expression of their target genes and are therefore most
likely to be biologically relevant. This greatly increases the
specificity of the approach, providing more confidence in
detected insertions and genes and increasing our power to
identify rare candidate genes. Furthermore, by combining
the insertions with a differential expression analysis, IM-
Fusion provides valuable insight into the effect of insertions
on the affected target genes.

An important advantage of using RNA-sequencing
rather than targeted DNA-sequencing for identification of
transposon insertions, is that RNA-sequencing provides
much more information than just the location of insertion
sites. For example, IM-Fusion uses RNA-expression infor-
mation to determine how a gene is affected by the presence
of an insertion. The same expression data may also be used
to identify more global changes in gene expression associ-
ated with tumor subtypes or with specific insertions (17),
or be used to detect single nucleotide variants and somatic
gene fusions that contribute to tumorigenesis. As an exam-
ple of the latter, we have identified several endogenous fu-
sions in the ILC and B-ALL datasets (Supplementary Fig-
ure S7 and Table S10), including several Fgfr2 fusions that
reflect known oncogenic fusions previously identified in hu-
man cancers (27). Most importantly, these extra analyses
can be performed on the same RNA-seq sample, thereby
inherently avoiding potential discrepancies resulting from
the use of different tumor material for DNA- and RNA-
sequencing, an issue that we encountered in the analyses of
both the ILC and the B-ALL datasets.

A potential limitation of IM-Fusion is that it requires
splicing between the transposon and the affected genes to
identify the corresponding insertions. As a result, it will not
detect transposon insertions that affect expression via en-
hancer sequences, as the effects of these insertions are not
mediated via splicing. In our analyses, this does not seem to
be an issue, as DNA-sequencing approaches did not iden-
tify any candidate genes that were perturbed via enhancer
effects. This suggests that the MSCV enhancer sequence
present in the T2/Onc transposon is not particularly ac-
tive and that the transposon therefore mainly affects ex-
pression via splicing. This notion is in agreement with pre-
vious studies reporting preferential intragenic insertion of
the T2/Onc transposon (8), making it less likely to act as an
enhancer. Enhancer effects may however play a more im-
portant role in case other transposons are employed. Sim-

ilarly, IM-Fusion may be unable to detect insertions that
result in transcript instability or degradation, as these will
be under-represented in the RNA-seq data. Although we do
not observe evidence pointing to transcript degradation in
the presence of (clonal) SB insertions (Supplementary Fig-
ure S8), other transposons might have different effects on
transcript stability.

A strategy to identify both insertions whose effects are
mediated by transcriptional enhancement and insertions
that affect expression via splicing, would be to combine
DNA- and RNA-sequencing methods, ideally using RNA
and DNA isolated from the same sample. In such a com-
bined approach, RNA-sequencing could be used to iden-
tify and characterize insertions that are mediated via splic-
ing. For insertions that are uniquely identified by DNA-
sequencing, the RNA-seq data could be used to analyze
their effects on expression of the predicted target genes.
Such a strategy would effectively unite the advantages of
both approaches, by combining the unbiased identification
of insertion sites by DNA-sequencing with the additional
biological information provided by RNA-sequencing in a
single analysis.

Although Temiz et al. (9) have provided a proof-of-
concept showing that transposon insertions can be iden-
tified via paired-end RNA-sequencing, our analysis was
performed on a much larger dataset (123 versus 20 sam-
ples), allowing us to determine biases that affect insertion
detection in DNA- and RNA-sequencing data and iden-
tify potential limitations of either approach. Furthermore,
IM-Fusion improves on Fusion Finder by using a fusion-
aware RNA-seq aligner to identify transposon insertions,
which enables the use of single-end RNA-sequencing data
and increases the sensitivity and the accuracy of insertion
detection by also using chimeric reads to identify gene-
transposon fusions. Finally, IM-Fusion is provided as com-
prehensive software package that enables users to perform
the entire analysis from start to finish, including the gen-
eration of augmented reference genomes, identification of
CTGs and testing for differential expression.

In summary, IM-Fusion provides a convenient approach
for the identification of insertion sites and their effects on
target gene expression from standard single- and paired-end
RNA-sequencing data. By combining the identification of
insertion sites with expression data, our approach provides
valuable insight into the effect of an insertion on its target
gene(s) and helps prioritize insertions that are biologically
relevant. We expect that this approach will significantly en-
hance the accuracy of cancer gene discovery in forward ge-
netic screens and prioritization of the identified candidate
cancer genes for functional validation studies.
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