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Cancer vaccines finally gain FDA approval
Despite encouraging anecdotal reports and 
promising Phase 1 and 2 clinical trials, skepti-
cism of the clinical value of T cell–targeted im-
munotherapies escalated among oncologists 
over the last decade. This was largely caused by 
a string of randomized phase 3 clinical trials in 
which the vaccinated group failed to demon-
strate statistically significant survival benefit 
(Eggermont, 2009). Immunologists pointed to 
the frequent induction of tumor-specific T cell 
responses as evidence of vaccine activity. How-
ever, for oncologists, the patient survival data 
defined these trials as the ultimate negative re-
sult. This string of negative results was broken 
in 2010 by a Phase 3 trial of sipuleucel-T (also 
called Provenge, produced by the Dendreon 
Corp.), which was originally touted as a DC 
vaccine for prostate cancer (Kantoff et al., 2010). 
Whether sipuleucel-T is actually a DC vaccine 
is uncertain, as the product is produced by 
incubating the patient’s unfractionated periph-
eral blood mononuclear cells with a fusion 
protein linking granulocyte-macrophage colony-
stimulating factor to a prostate cancer anti-
gen termed prostatic acid phosphatase (PAP). 
Whatever grows during this incubation period 
is intravenously injected back into the patient. 
No published data clearly demonstrate that the 

final infused product contains significant num-
bers of PAP-loaded DCs, or that sipuleucel-T 
administration activates PAP-specific T cells 
in patients. Despite these myriad mechanistic 
uncertainties, the randomized phase 3 trial 
demonstrated a statistically significant survival 
benefit of nearly 4 mo for vaccinated versus 
unvaccinated groups, which is equivalent to 
the benefit derived from other drugs approved 
for advanced prostate cancer. Sipuleucel-T re-
ceived FDA approval for marketing, and as 
such is generally considered to be the first ther-
apeutic cancer vaccine to reach this critical 
milestone. Although this success was a major 
step forward for cancer immunotherapy, the 
reaction to it has been tempered, in part be-
cause the response rate to sipuleucel-T (defined 
as a ≥50% decrease in serum prostate-specific 
antigen level, a rough marker for disease bur-
den) is virtually zero. In addition, there is no 
statistical effect on time-to-progression, de-
fined as the time between initiation of therapy 
and clear progression of the disease relative to 
untreated patients. Thus, although the FDA 
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Francisco et al., 2009). Thus, these checkpoint receptors play 
multiple roles on distinct cell types to qualitatively and quan-
titatively regulate immunity (Fig. 1).

Recent clinical results demonstrated significant therapeu-
tic efficacy of antibody-mediated blockade of these pathways 
in patients with advanced cancer, and herald the potential re-
alization of cancer immunology’s greatest aspiration: to create 
sustained immune responses that successfully battle the dis-
ease long after completion of the therapeutic intervention. 
Importantly, the evidence for clinical efficacy of anti–PD-1 
in melanoma and renal cancer, which arrived shortly after 
anti–CTLA-4 demonstrated clinical efficacy in melanoma, 
indicates that the anti–CTLA-4 results are not a one-off for 
immunotherapy. Furthermore, CTLA-4 and PD-1 signal 
through completely different mechanisms (Parry et al., 2005) 
and play very distinct roles in regulating T cell responses. 
This suggests that blockade of these pathways will not be 
simply redundant. It may be possible to define patients who 
would selectively respond to blockade of one or the other 
pathway or possibly to combination blockade. Indeed, given 
the number of defined immune modulatory receptors under 
active study, it is likely that many more opportunities to en-
hance and refine cancer immunotherapy exist and are ready 
to be exploited.

Clinical success of CTLA-4 blockade
Despite persistent uncertainty as to the exact mechanisms by 
which CTLA-4 down-modulates T cell responses (Schneider 
et al., 2002, 2006; Riley et al., 2002; Qureshi et al., 2011), 
there is consensus on its central role in limiting the amplitude 
of T cell activation. CTLA-4 primarily counteracts the co-
stimulatory activity of CD28 (Rudd et al., 2009). CD28 and 

CTLA-4 share identical ligands (CD80 and 
CD86; Linsley et al., 1991; Azuma et al., 
1993; Freeman et al., 1993; Hathcock et al., 
1993). Because CTLA-4 has a much higher 
overall affinity for both ligands (Linsley et al., 
1994), its expression on the surface of T cells 
dampens activation of T cells by both out-
competing CD28 for binding to CD80 and 
CD86 and by actively delivering inhibitory 
signals to the T cell. Physiologically, the 
major role of CTLA-4 is in the initial activa-
tion stages of both naive and memory T cells. 
The stronger the stimulation through the  

approval for sipuleucel-T certainly caught the attention of 
the oncology community, it failed to convince them that 
“active” immunotherapy had arrived as a major modality of 
cancer therapy.

Checkpoint blockade: the game changer
The game changer for cancer immunotherapy has now ar-
rived, and it is in the form of antibodies that block inhibitory 
receptors on immune effector cells, often referred to as im-
mune checkpoints. Indeed, this is an emerging story of the 
triumph of basic science over a terrible disease, a victory for 
which the collective immunology field can take great pride. 
The immune system contains hundreds of feedback inhibi-
tory loops that regulate the amplitude of induced responses, 
minimize collateral tissue damage during infections, and gen-
erate and maintain self-tolerance. The most therapeutically 
accessible checkpoints are inhibitory receptors on lympho-
cytes and their ligands (either membrane or secreted), as these 
molecules can be blocked specifically with antibodies. The 
two checkpoint receptors that have been most actively stud-
ied in the context of clinical cancer immunotherapy are 
CTLA-4 and PD-1. CTLA-4 is expressed exclusively on 
T cells. Although PD-1 is also expressed on B cells and natu-
ral killer (NK) cells, its major inhibitory functions have been 
elucidated in the context of T cell responses (Linsley et al., 
1990, 1991; Ishida et al., 1992; Greenwald et al., 2005; Okazaki 
and Honjo, 2007). In addition to their function in dampening 
effector T cell responses, both CTLA-4 and PD-1 (as well as 
other checkpoint receptors, such as LAG-3) are highly expressed 
on regulatory T (T reg) cells, and in fact directly promote  
T reg cell–mediated suppression of effector immune responses 
(Huang et al., 2004; Wing et al., 2008; Peggs et al., 2009;  

Figure 1.  Various immune checkpoint recep-
tors inhibit effector T cell function and boost  
T reg cell function. Checkpoint receptors such as 
CTLA-4, PD-1, and LAG-3 are expressed on activated 
effector T cells, but are constitutively expressed on  
T reg cells. In the presence of cognate ligands for 
these receptors, effector T cell function is dimin-
ished, whereas T reg cell function and/or prolifera-
tion are enhanced. In this figure, the strength  
of T cell function and/or proliferation is proportional 
to the size of the cell.
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These carefully implemented elements of clinical drug devel-
opment resulted in a major triumph announced in 2010. In a 
randomized clinical trial of patients with advanced melanoma 
assigned to receive a melanoma-specific gp100 peptide vaccine 
alone, gp100 vaccine plus anti–CTLA-4, or anti–CTLA-4 
alone, there was a 3.5 mo survival benefit for patients in both 
groups receiving anti–CTLA-4 (with or without the gp100 
peptide vaccine) compared with the group receiving peptide 
vaccine alone (Hodi et al., 2010). Ipilimumab thus became 
the first therapy in history to demonstrate a statistically signifi
cant survival benefit for patients with metastatic melanoma in 
a randomized clinical trial. More impressive than the mean 
survival benefit was the difference in the “tail” of the survival 
curves. Whereas the peptide vaccine alone group had only 
5% of patients surviving after 2 yr from entry into the study, 
nearly 20% of the anti–CTLA-4–treated groups showed 
long-term (>2 yr) survival. Interestingly, the proportion of 
long-term survivors is higher than the proportion of formal 
objective clinical responders. Furthermore, the increased 
proportion of long-term survivors occurred despite the very 
limited administration of ipilimumab (only 4 doses) in this 
trial. This finding lends credence to the concept that immune-
based therapies might be able to prolong patient survival even 
in the absence of significant levels of tumor shrinkage on ra-
diological scans, and to keep tumors in check long after com-
pletion of the therapy. This notion was in fact put forward to 
explain the survival benefit in sipuleucel-T–treated prostate 
cancer patients in the absence of objective tumor regressions 
or changes in time-to-progression (see above).

Another important feature of the anti–CTLA-4 clinical 
responses is their kinetics. Responses in a number of patients 
were quite delayed (up to 6 mo after treatment initiation) 
and, in some cases, lesions actually appeared to get larger on 
CT or MRI scans before ultimately regressing. In some cases, 
retreatment of clinical responders that subsequently relapsed 
re-induced clinical responses. There is evidence that, even 
before radiological responses, amplification of T cell responses 
to tumor antigens such as Ny-ESO-1 or induction of ICOS 
expression on T cells after anti–CTLA-4 treatment may pre-
dict a positive therapeutic effect (Liakou et al., 2008; Yuan  
et al., 2011). Taken together, these findings demonstrate that 
the rules for evaluating responses to immunotherapy might 
be quite different than those for evaluating conventional che-
motherapy or oncogenic pathway-targeted molecules, which 
tend to induce faster but more short-lived responses (Hoos  
et al., 2010).

Blockade of the PD-1 pathway
On the heels of the ipilimumab success came impressive early 
clinical data from blockade of the inhibitory receptor PD-1. 
In contrast to CTLA-4, the major role of PD-1 is to limit the 
activity of T cells (and likely NK cells) in the peripheral tis-
sues during inflammatory responses to infection and to limit 
autoimmunity (Okazaki and Honjo, 2007; Keir et al., 2008;  
Nishimura et al., 1999, 2001). Overexpression of PD-1 in 
the context of chronic infection contributes to failure to clear 

T cell receptor, the greater the amount of CTLA-4 that is 
expressed on the T cell surface (Egen and Allison, 2002). 
CTLA-4 therefore acts as a signal rectifier to maintain a con-
sistent level of T cell activation in the face of widely varying 
concentrations and affinities of ligand for the T cell receptor. 
The dramatic immunological phenotype of CTLA-4 knock-
out mice—death in 3 wk from destructive lymphoid infiltra-
tion into multiple organs (Tivol et al., 1995; Waterhouse et al., 
1995)—attests to its critical role as a regulator of T cell–
dependent immune responses.

CTLA-4 was the first immune regulatory receptor to be 
targeted for clinical immunotherapy. Blockade of CTLA-4 as 
a general strategy was initially questioned because there is no 
tumor specificity of expression of CTLA-4 ligands, and be-
cause the dramatic autoimmune/hyperimmune phenotype of 
CTLA-4 knockout mice predicted a high degree of immune 
toxicity associated with blockade of this receptor. Nonetheless, 
pioneering preclinical studies with anti–CTLA-4 antibodies 
demonstrated that CTLA-4 could be partially blocked, lead-
ing to significant antitumor responses without the immune 
toxicities observed in CTLA-4 knockout mice (Leach et al., 
1996). Two fully human anti–CTLA-4 antibodies, ipilim-
umab (developed by Medarex/Bristol-Myers Squibb) and 
tremilimumab (developed by Pfizer, recently sublicensed by 
MedImmune), began clinical testing in 2000. As doses of 
each antibody were escalated, a consistent pattern was ob-
served in patients with advanced melanoma. Both antibodies 
produced true objective clinical responses (defined formally 
by shrinkage in cross-sectional area of radiologically measur-
able tumors by ≥30% with no new metastases or growth of 
defined metastases relative to clinical trial entry) in 10–12%  
of patients, but also produced immune-related toxicities in-
volving various tissue sites in 25–30% of patients (Hodi et al., 
2003; Phan et al., 2003; Ribas et al., 2005; Beck et al., 2006). 
From an immunologist’s perspective, this result was quite sig-
nificant because it demonstrated that mouse models, if inte-
grated with an understanding of the biology of this pathway, 
were indeed somewhat predictive of clinical outcomes. How-
ever, the anti–CTLA-4 therapeutic index (ratio of clinical ben-
efit to toxicity) was limited, and the ultimate fate of CTLA-4 
blockade hung in the balance for a decade as clinical trials pro-
ceeded. The first randomized phase 3 clinical trial, performed  
by Pfizer using the anti–CTLA-4 antibody tremilimumab in 
patients with advanced melanoma, was a negative result. No 
survival benefit was seen in the antibody-treated group, and 
the program was abruptly terminated (Ribas 2010).

However, Medarex, in collaboration with Bristol-Myers 
Squibb, persisted in development of their anti–CTLA-4 anti-
body, ipilimumab (now called Yervoy). They evaluated dif-
ferent doses and schedules, and defined algorithms for improved 
clinical management of the immune toxicities (using steroids 
and TNF blockers). Interestingly, although there is evidence 
that clinical responses might be associated with immune-
related adverse events (Downey et al., 2007), this correlation 
is highly imperfect, suggesting that antitumor responses could 
potentially be dissociated from collateral tissue destruction. 
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generated tumor antigens—a process we term adaptive resis-
tance. In adaptive resistance, the tumor utilizes the natural 
physiology of the PD-1 pathway to protect itself from an anti
tumor immune response. Expression of PD-L1 as an adaptive 
response to antitumor immunity likely occurs because this 
ligand is induced on most epithelial cancers in response to 
both type 1 interferons and -interferon, similar to epithelial 
and stromal cells in normal tissues (Kim et al., 2005; Lee et al., 
2005). In lymphoid malignancies, PD-L2 is more commonly 
up-regulated (Rosenwald et al., 2003), likely in response to a 
different set of proinflammatory cytokine signals. This mecha-
nism represents an alternative to the conventional drug resis-
tance mechanisms or tumor escape mechanisms that involve 
mutation of drug targets or strong epitopes at the genome 
level. Instead, adaptive resistance suggests that immune sur-
veillance does exist even in advanced tumors but the tumor 
ultimately resists immune elimination by up-regulating li-
gands for inhibitory receptors on tumor-specific lymphocytes 
within the tumor microenvironment. In support of this notion, 
a recent study in melanoma demonstrated a very high corre-
lation between cell surface PD-L1 expression on tumor cells and 
both lymphocytic infiltration and intratumoral -interferon 
expression (Taube et al., 2012). Ultimately, acquisition of 
immune resistance by developing tumors involves cross-talk 
between tumor and immune microenvironment resulting in 
both genetic and epigenetic alterations within the cancer cell, 
commonly termed immune editing (Schreiber et al., 2011).

Antibodies against PD-1 entered the clinic in 2006 and anti
bodies against PD-L1 entered the clinic in 2009. Although  
the clinical experience with anti–PD-1 antibodies is less exten-
sive than that with anti-CTLA antibodies, the initial results 
look extremely promising (Brahmer et al., 2010). In the first 
phase 1 clinical trial with a fully human IgG4 anti–PD-1 anti-
body produced by Medarex (Fc engineered to eliminate any 
FcR binding), patients were treated with doses beginning at  
0.1 mg per kilogram and escalating in half-log increments to  
10 mg per kilogram. This initial phase 1 trial exclusively involved 
very late stage patients whose tumors had progressed despite 
multiple rounds of both conventional and experimental che-
motherapy; nevertheless there were a number of cases of tumor 
regression, including mixed responses, partial responses, and a 
complete response. Tumor regressions were observed in four of 
the five malignancies examined (colon cancer, melanoma, renal 
cancer, and lung cancer), and were associated with significant 
increases in lymphocyte infiltration into metastatic tumor de-
posits. Because 20–40% of peripheral blood T cells express  
PD-1, it was possible to design a receptor occupancy assay on 
peripheral blood. This analysis demonstrated that between 70 
and 90% of the PD-1 molecules expressed on peripheral blood 
lymphocytes were occupied by anti–PD-1. Surprisingly, pla-
teau levels of receptor occupancy were achieved at doses as low 
as 0.3 mg per kilogram, attesting to the high affinity/avidity of 
the clinical antibody. In addition, high levels of receptor occu-
pancy were maintained for as long as 90 d after cessation of  
antibody administration. This finding appears to be based  
on the high equilibrium binding of the anti–PD-1antibody at 

the infectious organism (Barber et al., 2006). The basis for 
this physiology is that the ligands for PD-1, PD-L1 (also 
called B7-H1; Dong et al., 1999; Freeman et al., 2000), and 
PD-L2 (also called B7-DC; Latchman et al., 2001; Tseng  
et al., 2001), are not constitutively expressed but rather are 
up-regulated after encounter with inflammatory stimuli. PD-L1 
is up-regulated on many cell types in response to proinflam-
matory cytokines (particularly interferons), whereas PD-L2 is 
up-regulated on DCs and macrophages in response to differ-
ent proinflammatory cytokines (Shin et al., 2005; Wilke et al., 
2011). PD-1 is expressed in varying amounts on activated  
T cells and NK cells; thus, the co-expression of ligand and 
receptor in inflamed tissue mitigates the collateral tissue-
destructive potential of T and NK cells at these sites.

PD-L1 is frequently up-regulated on different types of 
tumor cells, where it inhibits local antitumor T cell responses 
(Dong et al., 2002; Zou and Chen, 2008). In addition, PD-1 
is expressed on the majority of tumor infiltrating lympho-
cytes (Sfanos et al., 2009; Ahmadzadeh et al., 2009). To-
gether, these observations suggest that antibody-mediated 
blockade of this pathway may enhance intratumoral immune 
responses. This notion was indeed validated through many 
mouse studies demonstrating enhanced antitumor immunity 
after antibody-mediated blockade of PD-1 or its ligands 
(Dong et al., 2002; Iwai et al., 2002; Blank et al., 2004; 
Thompson et al., 2004). Furthermore, the relatively mild 
phenotypes of mice lacking PD-1, PD-L1, or PD-L2 suggest 
that blockade of this pathway may result in less collateral 
immune toxicity than CTLA-4 blockade; this hypothesis 
appears to have been supported by clinical trial data (see first 
paragraph, following page). PD-L1 and PD-L2 knockout 
mice display virtually no phenotype unless challenged with 
an infection or crossed onto an autoimmune prone back-
ground (Dong et al., 2004; Shin et al., 2005; Keir et al., 
2006). PD-1 knockout mice generally begin to develop tissue-
specific and strain-specific autoimmune syndromes after 9 mo 
of age (Nishimura et al., 1999, 2001). However, the increased 
amplitude and rapidity of onset of tissue inflammation and 
destruction in autoimmune prone strains crossed to PD-1 or 
PD-1 ligand knockout mice predicts that patients with under-
lying autoimmune or inflammatory processes might be sus-
ceptible to immune toxicities upon PD-1 pathway blockade.

Optimal application of PD-1 pathway blockers requires  
an understanding of the signals that induce expression of PD-1 
ligands on tumor cells and myeloid cells within the tumor 
microenvironment. It has been suggested that in some tumor 
cells, PD-L1 expression is driven by constitutively active onco-
genic signaling pathways. Indeed, the PI3kinase–AKT path-
way, commonly activated in many different tumor types, can 
induce PD-L1 expression in glioblastomas (Parsa et al., 2007). 
Similarly, constitutive ALK signaling, which is observed in 
certain lymphomas and occasionally in lung cancer, can drive 
PD-L1 expression via STAT3 signaling (Marzec et al., 2008).

A potentially more common mechanism facilitating PD-L1 
up-regulation on tumors reflects their adaptation to endogenous 
immune responses directed at genetically or epigenetically  
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preexisting underlying autoimmune or inflammatory processes 
in the patient. Evaluation of this prediction awaits more patient 
experience, but right now patients with overt autoimmune 
syndromes are excluded from receiving the antibody.

A very interesting and potentially clinically relevant pre-
liminary finding in the initial phase 1 trial of anti–PD-1 anti-
bodies correlated expression of PD-L1 on the tumor with 
clinical responses to the antibody. Given the notion that the 
PD-1 pathway physiologically regulates the magnitude of 
immune responses in tissues, it is logical to imagine that the 
enhancement of antitumor immune responses upon blockade 
of this pathway would depend in large part on expression of 
a PD-1 ligand on the tumor. In nine patients for whom pre-
treatment biopsies were available, immunohistochemistry 
demonstrated three patterns of PD-L1 expression: negative, 
cytoplasmic only, and membrane. Indeed, it would be pre-
dicted that expression of PD-L1 exclusively in the cytoplasm 
would fail to activate the PD-1 pathway. Indeed, of five pa-
tients whose tumors were negative for membrane PD-L1 
expression, there were no clinical responders to anti–PD-1 
therapy. In contrast, 3 of 4 patients whose pretreatment tumor 
biopsies demonstrated membrane PD-L1 expression on ≥5% 
of tumor cells exhibited clinical responses to treatment with 
the antibody. Given the geographic heterogeneity of PD-L1 
expression within a given tumor, it is somewhat surprising 
that even a minority of positively expressing tumor cells none-
theless predicts clinical response to PD-1 pathway blockade. 
If expression is indeed linked to lymphocyte activity in the 
tumor microenvironment (adaptive resistance), then it is 

extremely low serum concentrations, below that which are de-
tectable by IgG4 ELISA assays. In initial results from a second 
clinical trial sponsored by BMS, which extended the treatment 
with anti–PD-1 to 2 yr, objective responses were observed in 
16 of 39 patients with advanced melanoma, and an additional 
14 patients achieved either mixed responses or stabilization of 
disease (Sznol, M., J.D. Powderly, D.C. Smith, J.R. Brahmer, 
C.G. Drake, D.F. McDermott, D.P. Lawrence, J.D. Wolchok,  
S.L. Topalian, and I. Lowy. 2010 ASCO Annual Meeting. Abstr. 
2506). Similar response rates were observed in renal cancer 
(McDermott, D.F., C.G. Drake, M. Sznol, J.A. Sosman, D.C. 
Smith, J.D. Powderly, D.M. Feltquate, A.K. Kolia, Gupta, and  
J. Wigginton. 2011 Genitourinary Cancers Symposium. Abstr. 
331), and other cancer types are currently under active clinical 
evaluation with both anti–PD-1 and anti–PD-L1 antibodies. 
Enthusiasm for blockade of the PD-1 pathway as a cancer ther-
apy is reflected in the proliferation of companies (greater than 
five) that are developing clinical agents that either block or  
inhibit the PD-1 pathway.

As predicted by the distinct phenotypes of the PD-1 
knockout and CTLA-4 knockout mice, the frequency of im-
mune related toxicities from anti–PD-1 treatment is less than 
anti–CTLA-4. For example, only 1 of 39 patients in the initial 
phase 1 trial had a severe immune-related adverse event. The 
immune related toxicities of anti–PD-1, when they do occur, 
appear grossly similar to those occurring during treatment with 
anti–CTLA-4 and can affect different organs in different patients. 
Another prediction of the mouse models is that autoimmune 
toxicities observed during PD-1 blockade might reflect 

Table 1.  Antagonist antibodies and drugs for immune inhibitory pathways and agonist antibodies for co-stimulatory receptors 
in clinical testing for cancer

Target Agent Company Indication Stage of Development

Inhibitory pathway antagonists
CTLA-4 Ipilimumab (CTLA-4 Mab) Bristol-Myers Squibb Melanoma FDA approved

Multiple cancers Phase 1–3

 Tremilimumab (CTLA-4 
Mab)

MedImmune TBDb

PD-1/PD-L1  MDX1106 (PD-1 Mab) Bristol-Myers Squibb Melanoma, lung, kidney, 
etc.

Phase 1–3

MK3475 (PD-1 Mab) Merck Multiple cancers Phase 1

Amp224 (B7-DC-Ig) Amplimmune/GlaxoSmithKline Multiple cancers Phase 1

CT-011a (PD-1) CureTech Multiple cancers Phase 1/2

MDX1105 (PD-L1 Mab) Bristol-Myers Squibb Multiple cancers Phase 1

B7-H3 MGA271 (B7-H3 Mab) Macrogenics Multiple cancers  Phase 1

IDO D-1-methyl tryptophan NewLink Multiple cancers Phase 1/2
Co-stimulatory pathway agonists
CD137 BMS663513 (CD137 Mab) Bristol-Myers Squibb TBDb

CD40 CP-870893 (CD40 Mab) Pfizer Pancreas cancer  Phase 1

OX40 Anti-OX40 Mab AgonOX Multiple cancers Phase 1/2
CD127 CDX-1127 (CD27 Mab) Celldex Multiple cancers Phase 1

aAntibody not yet validated for target specificity.
bAntibody previously tested in melanoma patients; plans to re-initiate clinical testing after a hiatus.
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essential for anabolic metabolism of T cells. These enzymes 
can be inhibited by small molecule drugs, some of which are 
in clinical trials (Table 1). Similar findings on the cooperative 
inhibitory function of these checkpoint pathways have been 
reported in the context of T cell exhaustion during chronic 
viral infection (Blackburn et al., 2009). Indeed, blocking an-
tibodies or drugs specific for most of the immune inhibitory 
pathways up-regulated in the tumor microenvironment al-
ready exist (Fig. 2). Some of these pathways likely represent 
important mechanisms of immune resistance, which may 
function codominantly or independently of the PD-1 path-
way. Rigorous molecular profiling of the immune microen-
vironment of human cancers will be critical in defining the 
most promising “next generation” of immune targets for cancer 
immunotherapy. The ultimate goal is to tailor therapeutic com-
binations guided by analysis of regulatory pathways that domi-
nate a given tumor’s microenvironment.

On the flip side, agonist antibodies specific for co-
stimulatory receptors will also likely bear fruit. Some of the 
co-stimulatory TNFR-family members including CD137, 
CD27, and OX-40 appear particularly interesting based on 
preclinical studies (Melero et al., 1997; Evans et al., 2001; 
Blackburn et al., 2009), although clinical toxicities of pro-
longed anti-CD137 treatment suggest that it must be applied 
in more judicious fashion. Likewise, DCs and other myeloid 
cells become activated by engagement of the TNFR family 
member CD40, for which there are a number of agonist 
antibodies in development or in the clinic. The most im-
portant advance for 
clinical application 
of cancer vaccines 
may well take the 

likely that a single biopsy offers a mere snapshot in time of 
a dynamic process within the tumor and therefore under-
represents the total PD-L1/B7-H1 expression in a tumor in-
tegrated over time. If these preliminary results hold true upon 
expanded analysis, it is quite possible that tumor expression 
of PD-L1 could be used as a biomarker to predict which 
patients should be treated with anti–PD-1. PD-L1 is also ex-
pressed on nontransformed cells, particularly myeloid cells, in 
the tumor microenvironment. Current efforts are focused on 
evaluating cellular patterns of PD-L1 expression within tumors 
to further refine the predictive value of this biomarker.

A multitude of opportunities
To date, blockers of two immune inhibitory receptors have 
been tested in patients with advanced cancer. Both have 
shown promise, indicating that this is indeed a fruitful general 
approach to be transferred to the clinic. The CTLA-4 and 
PD-1 pathways are only the beginning. A number of addi-
tional B7 family inhibitory ligands, including B7-H3 and B7-
H4 (Yi and Chen 2009; He et al., 2011) are expressed on 
certain tumors, and their expression does not overlap with 
each other or with that of PD-L1. Various inhibitory receptors, 
including Tim3 and LAG-3, can be up-regulated on tumor-
infiltrating lymphocytes, and both Tim3 and LAG-3 appear 
to act coordinately with PD-1. Dual blockade may enhance 
the activity of PD-1 pathway blocking antibodies (Sakuishi  
et al., 2010; Goldberg and Drake, 2011; Woo et al., 2012). In 
addition to secreted or membrane-bound inhibitory ligands, 
metabolic enzymes such as indoleamine 2,3 dioxygenase (IDO) 
and arginase, which are expressed by inhibitory myeloid-
derived suppressor cells that commonly infiltrate tumors, can 
locally inhibit immune responses by depleting amino acids 

Figure 2.  Multiple immune inhibitory 
and co-stimulatory pathways in the tumor 
microenvironment are targets of thera-
peutic manipulation by antibodies or 
drugs. Cells in the tumor microenvironment 
express multiple inhibitory cytokines, ligands, and  
cognate receptors (red) that down-modulate  
the antitumor activity of immune effector  
cells including cytotoxic T lymphocytes (CTL). 
Some of these inhibitory proteins are ex-
pressed by tumor cells themselves and others 
are expressed by tumor-infiltrating suppres-
sive cells including T reg cells and myeloid 
derived suppressor cells (MDSCs). T reg cells 
inhibit antitumor CTL activity by producing 
soluble factors such as IL-10 and TGF-, 
whereas MDSCs inhibit immunity through 
metabolic enzymes such as IDO and arginase. 
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(Table 1). DC/Mf, DCs/macrophages.
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co-stimulatory agonists. As mentioned above, many clinical 
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tumors created by molecules such as the PD-1 ligands. Many 
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