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A B S T R A C T

The present study emphasizes the biosurfactant mediated anthracene degradation by a marine
alkaliphile Bacillus licheniformis (MTCC 5514). The isolate, MTCC 5514 degraded >95% of 300ppm
anthracene in an aqueous mediumwithin 22 days and the degradation percentage reduced significantly
when the concentration of anthracene increased to above 500ppm. Naphthalene, naphthalene 2-methyl,
phthalic acid and benzene acetic acid are the products of degradation identified based on thin layer
chromatography, high performance liquid chromatography, gas chromatography and mass analyses. It
has been observed that the degradation is initiated by the biosurfactant of the isolate for solubilization
through micellation and then the alkali pH and intra/extra cellular degradative enzymes accomplish the
degradation process. Encoding of genes responsible for biosurfactant production (licA3) as well as
catabolic reactions (C23O) made with suitable primers designed. The study concludes in situ production
of biosurfactant mediates the degradation of anthracene by B. licheniformis.
ã 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous
pollutants generated from various anthropogenic activities
[20]. These compounds are grouped under hazardous aromatic
compounds, having two or more fused benzene rings arranged in
such a way [25] and insoluble in water [13] and persistence
nature. These compounds have been identified as toxic,
carcinogenic and some compounds demonstrated teratogenic
effects [23].

The insoluble and persistence nature of PAHs are the major
limitations on the removal or remediation from the soil or aqueous
media. The old as well as newer treatment technologies employed
in the removal of contaminants are ineffective in the case of PAHs
[32]. Though chemical oxidants able to cleave the fused rings and
the formation of hydroxylated or oxygenated metabolites needs
immediate attention. The only option available is the use of
microorganisms. Among the microorganisms, some of the
microbial species have the capacity to tolerate PAHs and some
species even try to metabolize. But the time taken to catabolism

and the transformations of catabolized products were the major
drawbacks realized. It has been understood that less than
25 numbers of bacterial species exhibited the degradation of
PAHs [31] and the screening and identification of potential species
need intensive research.

The degradative capacity of the demonstrated bacterial species
was through the dissolution and the genes responsible for the
catabolism. The surface-active agent produced by these organisms
mediates the dissolution. These surface-active agents interact with
the insoluble compounds by reducing the interfacial tension and
make them available to the microbes [11]. The role of surface-
active agents for the degradation of PAHs is in reports [16].
Furthermore, it has been realized that compared to the terrestrial
species, microorganisms of marine origin displayed the higher
percentage of production of surface-active agents [18]. Since, the
marine source is the ultimate contaminated site, the micro flora of
marine source may have the inbuilt capacity to remediate the
contaminants at the fastest rate and have robustness in solubilizing
as well as degrading the PAHs [22]. It is challenging to have
terrestrial microbes with complete robustness, and most of the
organisms require an external addition of surface active agents as
reported [18]. The present study reveals the potency of marine
bacterial isolate in the degradation of the selected PAHs, namely
anthracene.
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Anthracene, together with other polycyclic aromatic hydro-
carbons (PAHs), is a persistent and toxic soil contaminant [14].
Anthracene is sparingly soluble in water, highly resistant to
nucleophilic attack and hence, recalcitrant to biodegradation [12]
and accumulate easily in the ecosystem. In powdered form it
causes irritation to the eyes, nose or lungs and is a probable inducer
of tumors [8]. Once anthracene enters the body, it appears to target
the skin, stomach, intestines and the lymphatic system. Itmayeven
cause burning, itching and edema. Due to its low solubility, most of
the researchers attempt to remove anthracene in soil/sediment.
Only very few studies are there on the biological removal of
anthracene from aqueous media. Microbial degradation of
anthracene is an inexpensive way of removing/remediating
anthracene from soil and water. Microbial remediation removes
or immobilizes the pollutants and reducing the toxicity with a very
low environmental impact. A variety of bacterial species have been
isolated to utilize anthracene as the sole source of carbon and
energy [24]. Considerable attention has been paid on themetabolic
pathways and genetics of degradation of lowmolecularmass PAHs,
such as naphthalene, phenanthrene and anthracene, by Gram �ve
bacteria, particularly, the genus, Pseudomonas and Sphingomonas
[5]. However, less attention has been intended on the degradation
of PAHs by Gram +ve bacteria, Bacillus species.

Bacillus species are the versatile microbial species studied
extensively for the production of secondary metabolites and
surface active agents, such as surfactin, fengycin, lichenysin,
iturin, pumilacidin and bacillomycin [30]. Since the available
literatures suggested that the ring opening followed by further
cleavage of PAHs takes place at pH above neutral, Bacillus species
with the said robustness (biosurfactant production as well as
growth at alkali pH) have been the choice to study the
degradation of PAHs.

Thus, the present study exemplifies the biosurfactant mediated
anthracene degradation efficacy of marine bacterial species in an
aqueous medium. In brief, the study explores degradation of
anthracene and finger printing of the degradative products using
TLC, HPLC and GC–MS analyses. Further, the study extended to
identify the genes responsible for the biosurfactant production and
said degradation, elucidation of degradation pathway and the
schematic representation on the degradation process.

2. Materials and methods

2.1. Chemicals

Anthracene (99% purity) was purchased from HiMedia.
Bacteriological media, chemicals, silica gel coated TLC plates and
solvents were purchased from Hi-Media and Sisco Research
Laboratory (SRL), Mumbai, India.

2.2. Isolate MTCC 5514

Isolate MTCC 5514 was initially screened frommarine samples,
characterized and identified according to the standard protocol
and procedures and deposited inMicrobial Type Culture Collection
(MTCC), Chandigarh, India and used for the study. The 16S rRNA
gene sequence was submitted to NCBI with the accession number
HM145910.

2.3. Biodegradation studies: experimental setup

To the pre-sterilized medium (Zobell Marine Broth, (HiMedia)),
anthracene at 100–1000ppm concentrations were supplemented
aseptically and inoculated with the 1�105 cells/mL of MTCC 5514,
incubated at 37 �C under shaking condition (200 rpm) for the
period of 10, 16 and 22 days.

2.4. Growth and pH analysis

Growth of the marine isolate MTCC 5514 in the presence of
anthracene at varying concentrations, viz., 0,100, 300, 500, 750 and
1000ppm was observed by measuring the optical density of the
culture broth at 600nm at 24h intervals using UV–visible
spectrophotometer (UV-2450, Shimadzu, Japan). The pH of the
growth mediummeasured at 24h intervals till 22 days using Elico
pH meter, model CL 54.

2.5. Surfactant activity measurements

The surfactant property of the extracellular medium during the
growth of the isolate was qualitatively measured by drop collapse
test and quantitatively by plate method using GBX-3S tensiometer
(DM) at room temperature [3]. Both synthetic (SDS, Tween 20,
Triton X 100 (at 1% concentration)) and commercially available
surfactant (Lecithin (at 10% concentration)) were used for
comparison.

2.6. Instrumental analysis for the identification of the degraded
products

2.6.1. Thin layer chromatography (TLC) analysis
Thin layer chromatography was used as a primary tool to

identify the degraded products. Followed by removal of the
samples, the cell free supernatant was mixed with ethyl acetate
and the ethyl acetate fraction was separated and subjected to TLC
analysis using chloroform:ethyl acetate:acetic acid (5:5:0.1) (v/v)
as a solvent system and exposed to 2% Gibbs reagent after
drying.

2.6.2. High performance liquid chromatography (HPLC) analysis
Followed by the extractionwith ethyl acetate, the samples were

filtered through 0.2mm syringe filter and analyzed in a high
performance liquid chromatography. HPLC (SHIMADZU, SPD-10 A
VP) with the silicon C18 column was used to separate and analyze
PAHs under isocratic condition (solvent – acetonitrile:water
(80:20) (v/v) detection wavelength – 254nm). The flow rate of
the mobile phase (acetonitrile) was maintained at 0.5mL/min. The
samples (20mL) were injected to HPLC analyzer for the analysis of
PAHs. Based on the retention time, the fractionswere collected and
further subjected to analysis.

2.6.3. Gas chromatography–mass spectrometry (GC–MS) analysis
A Hewlett-Packard 689 gas chromatography equipped with

5973 mass spectrometer with HP-5MS (30m�0.25mm I D�0.25
mm) fused silica capillary column was used for the analysis. The
column temperature program was set at 100 �C hold for 1min,
15 �C/min to 160 �C and 5 �C/min to 300 �C hold for 7min. The GC
injector was held isothermally at 280 �C with a splitless period of
3min. Helium was used as the carrier gas, at a flow rate of 1mL/
min by using electronic pressure control. The GC–MS interface
temperature was maintained at 280 �C. The MS was operated in
electron impact (EI) ionization modewith electron energy of 70eV
and the scan to determine appropriate masses for selected ion
monitoring ranged from 50 to 500amu (atom to mass unit).
Standards from Sigma Aldrich were used for the PAH (anthracene)
and their metabolites. GC–MS library search was used to confirm
the metabolites without standards.

2.7. PCR amplification and sequencing of 16S rRNA

Genomic DNA (gDNA) of MTCC 5514 was extracted from using
DNeasy Blood & Tissue Kit (Qiagen GmbH, Hilden, Germany)
following the manufacturer’s protocol for Gram +ve bacteria. The
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16S rRNA was PCR amplified using the universal primers 8F: 50-
AGAGTTTGATCCTGGCTCAG-30 and 1492R: 50-GGCTACCTTGTTAC-
GACTT-30 as described by Turner et al. [29]. Homology of the 16S
rRNA sequence was compared with sequences available in
databases using Blast from the National Center for Biotechnology
Information [2] and the Ribosomal Database Project [7]. Alignment
of obtained 16S rRNA sequence and sequences from the databases,
were all trimmed to the same length using CLUSTAL Omega
algorithm [26]. The sequence details were already submitted to
NCBI with the wide accession no. HM145910.

2.8. Encoding of genes responsible for surface-active agent production
and degradative enzyme

The genes encoding the biosurfactant (licA3) and catechol
2,3 dioxygenase (C23O) of the chosen organism was studied and
the details were summarized in the following paragraph.

2.8.1. PCR primer design
The primers for both, surfactant (licA3) and catechol 2,3 dioxy-

genase (C23O) genes were designed from earlier reports [6,27] and
were synthesized at Eurofins Genomics India Pvt. Ltd. A portion of
surfactant gene 0.26 kb (licA3) gene was pulled out from the
genomic DNAusing F: 50- CAAAAGCGCATCATACCACGT TGAG - 30

and R: 50-AGC GGC ACA TAT TGA TGC GGT TC - 30 primers, with
2.5 U of Taq DNA polymerase in a 25mL reaction mixture,
consisting of 100ng of genomic DNA, 20pmol of each primer,
200mM dNTPs and 1X Taq buffer with 2mM MgCl2. PCR was
conducted using the following temperature profile: initial
denaturation at 93 �C for 2min, then 38 cycles of 35 s at 93 �C,
35 s at 48 �C, and 45 s at 72 �C; and finally an extension reaction of
5min at 72 �C.

Likewise a portion of catechol gene 1.27 kb (C23O) was pulled
out using F: 50- ATG AGC AAC AAA TAC GAA TT- 30 and R: 50- TCA
AAC GGT CAA TCT GAT AT- 30 primers, with 1.5 U of Taq DNA
polymerase in a 25mL reaction mixture, consisting of 100ng of

[(Fig._1)TD$FIG]

Fig.1. (a) Platemorphology of marine isolateMTCC 5514 grown in Zobell marine agar. (b) Scanning electronmicrograph analysis of marine isolateMTCC 5514. (c) Phylogenic
analysis of marine isolate MTCC 5514 constructed by neighbor-joining method, bar 3.0 substitutions per nucleotide position.
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genomic DNA, 20pmol of each primer, 200mM dNTPs and 1X Taq
buffer with 1.5mMMgCl2. PCR was conducted using the following
temperature profile: initial denaturation at 93 �C for 2min, then
30 cycles of 1min at 93 �C, 35 s at 45 �C, and 1.5min at 72 �C; and
finally an extension reaction of 5min at 72 �C.

PCR products were analyzed by electrophoresis on 1% agarose
TAE gels. The expected DNA bands of 0.26/1.27 kb were excised
from gel and purified using the Gel Extraction Kit (Sigma–Aldrich,
USA) as per the manufacturer’s protocol. Sequencing reactions
were carried out with a Big Dye Terminator cycle sequencing kit by
using ABI Prism 3100 genetic analyzer (Applied Biosystems, Foster
City, CA, USA).

3. Results

3.1. Characterization and identification of the isolate MTCC 5514

Fig. 1(a–c) illustrates the morphology, SEM image and
phylogenic profile of the isolate MTCC 5514 employed in the
present study. The bacterial colony has irregular margin, rough
surface with pink pigmentation. The staining studies revealed the
Gram +ve nature of the isolate and the SEM analysis suggested the
short rod nature of the isolate. The phylogenic profile infers the
isolate MTCC 5514 belongs to Bacillus licheniformis. The distance
matrix showed the genetic distance value between MTCC 5514
with B. licheniformis ATCC 14580 was 0.004.

3.2. Degradation studies

Anthracene biodegradation study carried out at 37 �C under
shaking conditions using MTCC 5514 displayed an interesting
observation. The physical observations made during the growth
suggested that from day 1 to till day 7 most of the anthracene
molecules (irrespective of the concentrations studied)were settled
at the bottom of the flask, despite, much turbidity in the external
mediumdue to the growth of the organisms. However, after day 15,
deposition of only fewer anthracene molecules at lower concen-
tration than higher concentrations was observed. Further, after
22 days, no depositswere found at lower concentration, however, a
fewer deposits were at higher concentration.

Samples withdrawn at scheduled time intervals (10, 16 and
22 days) were subjected to various analyses after extracting with
ethyl acetate. However, before extraction, analysis such as pH,
biomass and surface activity were made for all the concentrations.
The percentage of degradation of anthracene was calculated based
on the absorption displayed in UV–visible spectral analysis at
254nm and using standard graph.

3.3. Growth profile

Fig. 2a displays the growth profile of the isolate MTCC 5514 in
the presence of anthracene at 100–1000ppm concentration. The
chosen isolateMTCC 5514 showed a bi-phasic growth profile in the
presence of anthracene at 100 and 300ppm concentration. At
500ppmconcentration, the organism showed tolerance till 15 days
with no bi-phasic growth. This kind of tolerance could be reasoned
to the presence of inbuilt stress proteins of Gram +ve bacteria.
However, with 750 and 1000ppm concentration, no growth was
observed. On comparing the growth of MTCC 5514 in the presence
of 100 and 300ppm concentration, growth was more pronounced
with 300ppm than with 100ppm, suggested the effective
metabolism of anthracene molecule. Till 7 days, the growth OD
was less than 0.5 (at 600nm), whereas, after 15 days, the growth
OD increases tomore than 1.0 andmaintained till 18 days, and after
that the growth OD slowly increases to 2.2 and again maintained

till 22 days. And between day 18 and day 22 a stationary phase has
been reached.

The pH of the external medium, an important variable in the
degradation studies was determined and Fig. 2b displays the pH
profile with reference to incubation days. The pH of the external
medium showed a slow increase from the initial pH of 7.2�0.2 to
8.2�0.4 for the control sample, and rose to >9.0� 0.2 after 15 days
of incubation for both 100 and 300ppm concentration. On further
increasing the incubation period, pH of the medium also increased
in the experimental samples compared to control and the final pH
of >12.0� 0.4 was observed after 22 days of incubation at 300ppm
concentration, whereas, it was only less than 10� 0.2 at 100ppm
concentration. For other concentrations, the pH was around
7.0� 0.2 and it even decreased to 6.5�0.2.

Surface activity measurements of the external medium
displayed the maximum activity of 28�4mN/m throughout the
experimental period of 22 days for the control samples as well as
the samples of 100 and 300ppm concentration of anthracene
indented. Though characterization of surface active agents (results
not shown) reveal more than 75% similarity with the commercially
available surfactin, however, the non-hemolytic and non-ionic
behavior of surfactant of MTCC 5514 demonstrated the difference.
Thus, the identified biosurfactant was named as ‘Microsurf’.

3.4. Fingerprinting of degraded products

The preliminary TLC analysis of the ethyl acetate extraction
(after 15 days of incubation) of the extracellular medium displayed

[(Fig._2)TD$FIG]

Fig. 2. (a) Growth profile of marine isolate MTCC 5514 grown in the presence of
increasing concentration of anthracene (0–1000ppm). (b) pH profile of the cell free
broth measured at different time intervals during the incubation of MTCC 5514 in
the presence of different concentration of antheracene (0–1000ppm).
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more than 7 spots with different Rf values. And fromHPLC analysis
five fractions were received and GC–MS analysis of the fractions
reveals the nature of the degraded products.

Fig. 3a (A–C) illustrates the GC – chromatogram followed by
Fig. 3b (i–v) on MS analyses. Mass spectral analyses and the library
details suggested that (i) naphthalene (m/z-128), (ii) naphthalene-
2-methyl (m/z-142), (iii) benzaldehyde-4-propyl (m/z-148), (iv)
1,2, benzene di-carboxylic acid (m/z-167) and (v) benzene acetic
acid (m/z-137) were the major degraded products detected. All the
spectral analyses displayedmore than 95% similaritywith themass
databases. The percentage degradation analysis suggested that
more than 95% of anthracene molecule degraded when the
concentration of anthracene was at 300ppm.

3.5. Encoding of genes

Followed by the identification of the metabolites, the study
has been reversed back to examine the isolate for the specific
genes responsible for the anthracene catabolism. As described
in Section 1, the presence of dissolution agents is the primary
requirement of the microorganisms to attack or encounter the
lipophilic molecule. Though, the isolate displayed surface-active
agents during the growth, the gene responsible for the
production of surface-active agent was examined using
molecular techniques. Fig. 4a illustrates the PCR amplified
product of licA3 gene determined with 0.26 kb and Fig. 4b
depicts the PCR amplified product of catechol 2,3 dioxygenase

[(Fig._3)TD$FIG]

Fig. 3. (a) GC analysis of metabolites obtained during the incubation of marine isolate in the presence of anthracene [(i) naphthalene; (ii) naphthalene-2-methyl; (iii)
benzaldehyde-4-propyl; (iv) 1,2, benzene dicarboxylic acid; (v) benzeneacetic acid]. (b) MS analysis of metabolites obtained during the incubation of marine isolate in the
presence of anthracene. [(i) naphthalene; (ii) naphthalene-2-methyl; (iii) benzaldehyde-4-propyl; (iv) 1,2, benzene dicarboxylic acid; (v) benzeneacetic acid].
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(C23O) gene obtained using primers designed specific for
hydrocarbon degradation yielded an amplified product of the
expected size of 1.27 kb respectively. Conserved regions of MTCC
5514 were selected to design oligonucleotide primers for
detection of the genes. Thus, it has been confirmed that the
chosen isolates catabolize anthracene through dioxygenase
pathway.

The sequences of the PCR products obtainedwere verified in the
NCBI databases for the gene/species confirmation and thus
validating the presence of the genes in the selected strains of
Bacillus. Fig. 4c depicts the aligned sequence of PCR products
respective to licA3 and C23O genes encoded for surface active agent
and degradative enzyme of MTCC 5514.

3.6. Elucidation of anthracene degradation pathway

Fig. 5 depicts the proposed degradation pathway elucidated
based on the metabolites identified. The indented anthracene
molecule may be degraded in two different ways. The left hand
side pathway suggested that the primary attack of anthracene after
day 15 (because synthesize of catabolizing enzymes triggers only
after nutrient depletion) was through a dioxygenase enzyme
system, which leads to the formation of di-hydroxy anthracene,
which, further and immediate attack by the same enzyme system
transformed to anthraquinone.

However, the right side reactions demonstrated that, the
generation of phthalic acid via naphthalene (as evidenced from

[(Fig._4)TD$FIG]

Fig. 4. (a) PCR – amplification of licA3 genes of MTCC5514. (b) PCR – amplification of C23O genes of MTCC5514. (c) Aligned sequences details of the PCR amplified product
respective to licA3 and C23O.
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GC–MS analysis) and may further degraded as shown and enter in
to TCA cycle.

3.7. Cell surface morphology analysis after degradation of anthracene

Fig. 6 depicts the SEM micrograph of biomass obtained at
scheduled time intervals of 10, 16 and 22 days showed interesting
observations. The filamentous growth was extensive with in-
creased cell volume with reference to the incubation period and in
the presence of the test compound anthracene. The maximum
increase in cell volume was observed on day 16 samples, and
further on day 22, high filamentous growth leads to aggregation of
cells in the form of biofilm and showed a clumsy mass.

4. Discussion

In the present study, a potential marine isolate MTCC 5514 was
tested for its anthracene degradation efficacy and the results of the
study further confirmed the degradation of anthracene. The isolate
MTCC 5514 displayed the production of surface-active agents and it
showed tolerance up to pH 12.0 during the degradation process. In
general, Gram +ve bacteria, especially the Bacillus species are
tolerant to toxic chemicals and solvents, were the added
advantages to these genera [34].

Results on bi-phasic growth pattern suggests, the chosen isolate
metabolize anthracene at very slow and steady state and the
stationary phase like observation made after day 7 to day 18 and
after 18 to 22 days, could be due to the time taken for the
solubilization of the degraded products for further availability to
the organisms.

Further, an increase in pH of the external medium for the
control sample reasoned to the alkaliphilic nature of the isolate
MTCC 5514. However, meager reports were on the increase in
pH of the medium in the presence of PAHs like anthracene,
whereas, Zaidi et al. [35] observed an increase in pH in the
presence of PAHs like naphthalene, pyrene, phenanthrene and
further interpreted that even a small shift in pH play a dramatic
change in the degradation of PAHs in oligotrophic environment.
With regard to the surface activity measurements, high surface
activity and the alkaline pH increase the solubility of the
intended anthracene molecules and also enhance the selective
permeability of the molecules. Mahanty et al. [17] reported that
the emulsification activity of surface-active agents was high at
alkaline pH. Since, the adherence of a bacterial cell to
hydrocarbon–water interface was more important, in the
present study, it was affected through the surface-active agents.
In the present study, the surface-active agent ‘Microsurf’,
displayed an extensive applications including the removal of
chromium VI [11]. Moreover, because of the transport of various
molecules, the change in membrane fluidity accelerates the
biosynthesis of phospholipids and could be the reason for the
sustainability in the concentration and activity of surface-active
agent of MTCC 5514 throughout the experimental period.

The presence of both, licA3 and C23O gene in MTCC
5514 correlates well with the literatures reported. Though
biosurfactant helps to solubilize or mediate the interaction
between the organism and the compound, the catabolic reactions
observed in the present study has been executed by the
dioxygenase genes as observed from the amplified product of
1.27 kb. This gene was identified as an important gene responsible

[(Fig._5)TD$FIG]

Fig. 5. Proposed anthracene degradation pathway exhibited by MTCC 5514 elucidated based on the finger printing of the degraded products identified.
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for catabolizing low molecular weight as well as high molecular
weight PAHs [15].

According to Nievas et al. [21], both, dioxygenase and
monooxygenase enzymes were considered as major degrading
enzymes in the degradation of PAHs. Ahmed et al. [1] observed the
formation of anthrone by alkaliphilic bacteria at C9 and
C10 position and further leads to the formation of quinone product
of PAHs. According to Cerniglia [5] and Ye et al. [33], anthraquinone
is the common oxidation products of PAH degradation. Ring
opening of anthraquinone molecule by the presence of extracellu-
lar and intracellular enzyme systems generates phthalic acid,
which, further undergo ring fission reaction by the enzymatic
system release benzoic acid and then transformed to benzalde-
hyde, which, then converted to catechol by the same enzyme
system. According to Evans et al. [10] and Cerniglia and Yang [4],
similar to naphthalene degradation pathway, catechol also
degraded to simple aliphatic compounds. Though naphthalene
has been identified as one of the degraded products in the present
study, the presence of di-hydroxy anthracene and anthraquinone
reveals that the catabolism has been realized through dioxygenase
system of the isolate. The initial enzymatic attack at C-1 and C-
2 position observed in the present study showed similarity with
the naphthalene dioxygenase system. Though complete degrada-
tion of anthracene by Pseudomonas, Sphingomonas, Nocardia,
Beijerinckia, Rhodococcus and Mycobacterium [9,10,19] in the

presence of external surface-active agent, nevertheless, in the
present study, in situ production of surface-active agent mediates
the degradation as observed.

Further, the presence of anthracene and the process of
degradation tremendously altered the cell volume. The modifica-
tion of cell surface morphology with reference to external stress
was observed in both Gram�ve bacteria and Gram+ve bacteria. An
extensive filamentous growth of B. licheniformis was observed
when grown in the presence of organic solvents and a toxic
compound [28] and suggested that this kind of filamentation of a
bacterial cell reduces the environmental stress and also helps in
communicating and exchange the information. However, the
observations made in the present study suggested that the
continuous flow of the molecules by selective permeability of cell
membrane of MTCC 5514 and the micelle and reverse micellar
aggregations occurs in the lipid bilayer as shown schematically
(Scheme 1), reflected as increase in cell volume, however, the said
hypothesis, further needs explorations. In addition, the increase in
cell volumemayalso be reasoned to the chemotaxis behavior of the
isolate MTCC 5514.

4.1. Hypothesis derived from the present study

Though, the degradation was ascertained based on the release
of degradation of products, the actual degradation mechanism can

[(Fig._6)TD$FIG]

Fig. 6. Scanning electron microscopic analysis of potent marine isolate MTCC 5514 in the presence of anthracene at different incubation periods.
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be explained schematically. Since, it has been observed that,
biosurfactant, pH, intra/extra cellular and degradative enzymes,
temperature, shaking condition and concentration of the test
compound played the significant role in the degradation observed,
Scheme 1 convey the actual steps followed during the degradation
studies. In brief, once the target molecule intended to the external
medium, the presence of surface-active agents result with the
formation of micelles and by selective permeability, micelles

containing the anthracene molecule make an entry into the lipid
bi-layer. Formation of reversemicelle in the lipid bi-layer enhances
the flow of molecule and finally enters to the cytosol or in the
membrane itself, where, degradation by the actual dioxygenase
enzyme system starts with the release of degraded products
namely, naphthalene/hydroxylated anthracene, which, further
oxidized to anthraquinone. The degraded products of first step
may then expel out from the membrane/cytosol through the

[(Scheme_1)TD$FIG]

Scheme 1. Hypothetical representation of various possibilities of degradation of anthracene in the presence of in situ production of biosurfactants and enzymes, which
provides tolerance and nutrients to the marine isolate MTCC 5514.
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internal surface-active agents. Once, these products came out, the
alkali pH, the available enzyme system and the surface-active
agents facilitate the flow of the molecule inside the membrane.
This kind of transport of molecules from inside to outside and vice
versa occurs till the realization of complete degradation. The time
taken for the entry and exit of each molecule result with the
biphasic growth profile as observed in the present study. Further,
an increase in the average volume of the cell may also be reasoned
to the continuous opening and closing of the bi-layer as shown
schematically.

5. Conclusion

In the present study,marine alkaliphileMTCC 5514, degrade the
anthracene molecule up to 300ppm concentration in an aqueous
media through its in-built genes responsible for the surface active
agent (licA3) production and catabolic degradative enzyme (C23O)
system. Further, this organism displayed tolerance up to 500ppm
of anthracene concentration. The adoption period of less than
7 days suggested that the isolate might have pre-exposure to the
target molecule and the triggering of de nova synthesis of the
enzyme leads to the degradation of anthracene.
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