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SUMMARY

We introduce a general framework for monitoring, modeling, and predicting the recruitment to multi-
center clinical trials. The work is motivated by overly optimistic and narrow prediction intervals produced
by existing time-homogeneous recruitment models for multi-center recruitment. We first present two tests
for detection of decay in recruitment rates, together with a power study. We then introduce a model based
on the inhomogeneous Poisson process with monotonically decaying intensity, motivated by recruitment
trends observed in oncology trials. The general form of the model permits adaptation to any parametric
curve-shape. A general method for constructing sensible parameter priors is provided and Bayesian model
averaging is used for making predictions which account for the uncertainty in both the parameters and the
model. The validity of the method and its robustness to misspecification are tested using simulated datasets.
The new methodology is then applied to oncology trial data, where we make interim accrual predictions,
comparing them to those obtained by existing methods, and indicate where unexpected changes in the
accrual pattern occur.

Keywords: Bayesian prediction modeling; clinical trial recruitment; inhomogeneous Poisson process; model
averaging; Poisson-gamma model

1. INTRODUCTION

Efficiently recruiting patients to clinical trials is a critical factor in running clinical trials and hence
delivering new medicines to patients as quickly as possible. Late-stage clinical trials are commonly run
across many sites, and successfully managing and running trials and subsequent processes require accurate
forecasts of trial recruitment.

Early recruitment rates can be high, for example, because patients with the required condition are already
available, and rates can then drop once these patients have been recruited. Deterministic approaches and ad
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hoc techniques may yield simplified and, often, overly optimistic recruitment timelines, a phenomenon thus
dubbed Lasagna’s Law (Lasagna, 1979). For example, 48% of centers studied by Getz and Lamberti (2013)
failed to enroll the required number of patients in the time originally allocated, leading to extensions of
the recruitment timelines and the need to bring more centers into the study, which itself is a costly process.
The timelines are usually pushed to nearly twice the originally proposed plan. The most frequent reason
for trial discontinuation appears to be poor recruitment; out of 253 discontinued trials studied in Kasenda
and others (2014), 101 were terminated due to under-recruitment.

This motivates the need for robust statistical methods for modeling and predicting the recruitment to
clinical trials at site level. Early detections of possible center underperformance may allow practitioners
to swiftly intervene in the operations. It can also provide realistic timelines for the completion of different
stages of the trials.

In this work, we introduce a novel flexible framework for effectively modeling and predicting patient
recruitment. We will focus on the oncology therapeutic area as it is known for sparse enrollments whose
patterns are not sufficiently captured by the state-of-the-art methods (Anisimov and Fedorov, 2007; Lan
and others, 2018). Our framework utilizes time-varying recruitment rates whilst also permitting variation
between recruitment centers. Inference is based on the set of known center initiation times to date, whilst
the prediction is conditional on a set of future initiation times. Past initiation times are known, but typically,
whilst there is a plan for future initiation times along with potential contingencies, the actual times are
not known precisely in advance. The proposed methodology can be used with user-specified initiation
schedules to facilitate the choice between different initiation-time scenarios, or it can be combined with
a center-initiation model. Predictions of future recruitment incorporate parameter and model uncertainty,
which is essential when data are limited.

Existing methods for predicting recruitment to clinical trials are overviewed in Section 2. Section 3
outlines methods for detecting recruitment rate decay in the multi-center recruitment setting along with
result of a Monte Carlo power study. Section 4 introduces the flexible modeling framework, and Section
5 presents a general method for choosing sensible Bayesian parameter priors, along with an appropriate
posterior sampling method and diagnostics. A simulation study is presented in Section 6, illustrating the
fitting of the model, model validation, and forecasting recruitment using Bayesian model-averaging. In
Section 7, the model is fitted to an oncology dataset, and this is followed by a discussion in Section 8.

2. EXISTING METHODS

The first statistical modeling framework for clinical trial recruitment was introduced in Lee (1983), where
the recruitment was assumed to be a constant-rate Poisson process, leading to tractable inference based on
interim data. Williford and others (1987) built on the model by considering Bayesian inference with con-
jugate priors. Gajewski and others (2008) and Jiang and others (2015) further explored the effects various
prior densities can have on predictions. Time-inhomogeneous accrual was first considered in Piantadosi
and Patterson (1987), where the aggregated accrual across all sites was modeled as an inhomogeneous
Poisson process with intensity λ(t) = ζ(1 − exp{−κt}), ζ , κ > 0. Zhang and Long (2010) took a non-
parametric approach, using B-splines to model the trends in accrual and using the intensity value at the
census time for predictions. Tang and others (2012) proposed a Poisson model with a piece-wise linear
intensity which captured aspects of recruitment such as slow initial recruitment and a spike in recruitment
close to the end of the trial. For a more thorough review of these as well as other methods, see Heitjan
and others (2015). Accrual-only modeling methods do not consider the effect that initiating new centers
can have on recruitment trends. For that reason, we shall focus on methods which can take advantage of
center-specific recruitment data.

Anisimov and Fedorov (2007) introduced the Poisson-gamma (PG) model of recruitment in a multi-
center setting, with the main appeal being the use of random effects for the recruitment rates of centers,
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Fig. 1. Accrual (black, solid) with the predictive mean (red, solid) and 95% prediction bands (red,dashed), based on
the PG model (2.1) with the census time marked by the vertical, dashed line.

providing a tractable, data-driven prior predictive distribution for recruitment in yet-unopened centers.
The model consists of C centers, each recruiting Nc patients over τc days, c = 1, . . . , C. The framework
makes the following distributional assumptions,

λc ∼ Gamma (α, α/φ),

Nc|λc ∼ Pois (λcτc),
c = 1, . . . , C. (2.1)

The random effect λc is the recruitment rate for center c. The rates, and thus the center recruitments,
are assumed to be independent conditional on α and φ. There are, however, several caveats with the
approach taken. The article advocates using the Empirical Bayes approach, that is, maximum likelihood
estimation for the hierarchical parameters (α, φ) followed by re-estimation of the distribution of random
effect λc given α, φ, and nc, for each center. A method for obtaining the uncertainty in the hierarchical
(α, φ) parameters is provided, but this uncertainty is not accounted for when making predictions, leading
to overly confident prediction intervals. However, the main issue which could result from employing the
model arises from the strong assumption of time-homogeneity of center recruitments, which can lead to
underestimations of the time to completion.

Figure 1 shows the accrual in a simulated trial where the rates gradually decay with time as well as
the predictive distribution of the PG model fitted at a census time of three-fifths of the total length of the
study; the initiation day for each center is marked. The accrual appears to follow a straight line which could
initially suggest using a time-homogeneous model. However, new centers are constantly being initiated
so that a constant recruitment rate for each center leads to an upward arching trend in accrual. This is
encapsulated by the fitted predictive. Here, the accrual is initially badly underestimated and then grossly
overestimated after the census time. The apparent “matching” at the census time is due to predictions
using re-estimated random-effect distributions.
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Lan and others (2018) describe the first multi-center recruitment model in which the rates decrease
over time. The model assumes inhomogeneous Poisson for arrivals center c with an intensity of the form

λc(t) =
{

λo
c , t < to

λo
c exp{−θ(t − to)}, t ≥ to

,

where λo
c is a gamma random effect, as in (2.1), and to a user-specified parameter and is not estimated

as part of the inference. By enforcing the specific intensity-form, the possibilities of time-homogeneous
recruitments or even intensity decays with heavier tails are excluded. A more systematic alternative is to
start by testing the time-homogeneity assumption.

3. DETECTING TIME-INHOMOGENEITY

Given series of daily center recruitment counts over the recruitment period of τc days, {Nc(t)}τc
t=1, c =

1, . . . , C, we can test the hypothesis of time-homogeneity. To detect a decay in the rate, we only need
to use the sums X (c)

1 = ∑τc/2
t=1 Nc(t) and X (c)

2 = ∑τc
t=τc/2+1 Nc(t) (c = 1, . . . , C), whose expectations we

denote by μ
(c)
1 and μ

(c)
2 , respectively. Detecting time-inhomogeneity in a single center can be difficult as the

infrequent counts will lead to low powers of tests (Krishnamoorthy and Thomson, 2004) (see also Tables 1
and 2). Thus, we combine the recruitments across all centers leading to two counts: X1 = ∑C

c=1 X (c)
1 and

X2 = ∑C
c=1 X (c)

2 , and we choose our hypotheses to be H0 :
∑C

c=1 μ
(c)
1 = ∑C

c=1 μ
(c)
2 vs H1 :

∑C
c=1 μ

(c)
1 >∑C

c=1 μ
(c)
2 .

The tests are one-sided as we are only interested in recruitment which decays over time. We consider
tests with respect to the following assumptions:

Table 1. Power for likelihood-ratio test

E[X1] R = 1 R = 0.9 R = 0.8 R = 0.7 R = 0.6 R = 0.5

5 0.06 0.08 0.11 0.15 0.20 0.27
10 0.05 0.08 0.12 0.18 0.26 0.37
20 0.05 0.09 0.17 0.27 0.41 0.58
50 0.05 0.13 0.28 0.50 0.73 0.90
100 0.05 0.18 0.44 0.75 0.94 0.99
200 0.05 0.27 0.68 0.95 1.00 1.00

Table 2. Power for non-parametric bootstrap test

E[X1] R = 1 R = 0.9 R = 0.8 R = 0.7 R = 0.6 R = 0.5

5 0.04 0.06 0.08 0.11 0.14 0.18
10 0.05 0.08 0.12 0.16 0.24 0.33
20 0.05 0.10 0.16 0.25 0.39 0.57
50 0.05 0.14 0.28 0.48 0.70 0.88
100 0.05 0.18 0.42 0.74 0.93 0.99
200 0.05 0.28 0.67 0.94 1.00 1.00
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Fig. 2. Site-level count series are all centered and the sum of all the first halves is compared to the sum of second
halves.

Assumption 1: For each center c = 1, . . . , C, the counts in the first and second halves of that center’s

recruitment period are independent and have the same distribution, X (c)
1

d= X (c)
2 , with expectation μ

(c)
1 .

Furthermore, the recruitments at each center are independent of each other.

Assumption 2: The patients arrive according to a Poisson process such that X (c)
1 , X (c)

2 ∼ Pois
(
μ

(c)
1

)
,

for some μ
(c)
1 , c = 1, . . . , C.

Assumption 1 implies that X1 and X2 must have the same distributions, with respective expectations
μ1 = ∑C

c=1 μ
(c)
1 and μ2 = ∑C

c=1 μ
(c)
2 being equal. Assumption 2 further implies that the distributions

must be Poisson. Figure 2 shows the construction of the quantities X1 and X2 by aligning the centers of
the recruiting periods. The splitting of the series halfway is arbitrary, though splitting it in half (or at
least close to this) would theoretically yield the highest power. It assumes that the τc are even. However,
centers recruiting over odd numbers of days can still be used by removing the middle day observation.
This reduces the power of the tests, though the reduction is negligible.

Gu and others (2008) offer a detailed Monte Carlo study of the different methods used for testing for a
difference in means of two Poisson variables. Here, we focus on the ones most applicable to the clinical-
trial recruitment setting, bearing in mind statistical power and robustness. We identified two methods: the
non-parametric bootstrapped test (BST), which is powerful yet robust, and the Poisson likelihood-ratio
test (LRT), which makes stronger distribution assumptions to achieve an even higher power. The BST
only assumes that the counts in each day are independent and identically distributed (Assumption 1).
With this assumption, resampling within each center with replacement, from the original data would still
produce a valid sample from the assumed distribution under H0. A large number of bootstrap samples is
used to simulate the distribution of the difference in two means, which is then used to test the hypothesis.
Appendix A of the Supplementary material available at Biostatistics online details the sampling procedure
for obtaining the distribution and the p-value.

For the LRT, we require Assumption 2, which is already an underlying assumption for the model
in Anisimov and Fedorov (2007). Upon aggregation, the two sums follow Poisson distributions, that is,
X1 ∼ Pois(μ1) and X2 ∼ Pois(μ2). The likelihood under the null model (μ1 = μ2) is compared to the
likelihood under the alternative two-mean model (μ1 > μ2). Here, the likelihood function is

L(μ1, μ2|x1, x2) = μ
x1
1 exp{−μ1}

x1!
μ

x2
2 exp{−μ2}

x2! , μ1, μ2 > 0.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
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We let

TL(x1, x2) =
{

2[log L(μ̂1, μ̂2|x1, x2) − log L(μ̂, μ̂|x1, x2)], μ̂1 > μ̂2

0, μ̂1 ≤ μ̂2
,

where μ̂ is the MLE under the null, and μ̂1 and μ̂1 are the MLEs under the alternative hypothesis. Under
the null, we would expect the test statistic TL(X1, X2) to asymptotically be zero half the time with the
other half following a χ 2

1 distribution (Robertson and others, 1988), When using the LRT, the simulated
significance levels can differ from the pre-specified level when μ values are low. This is due to using the
asymptotic χ 2 distribution when calculating the p-value (Gu and others, 2008).

The performance of the two tests was assessed by carrying out a Monte Carlo study. Test powers were
estimated using Poisson data with different expectations and ratios, R = μ2/μ1. For the LRT power
estimates, 5×106 samples were used as the test itself is very computationally cheap. For the BST, 5×104

samples were used, with each test using a bootstrapped distribution of size 103. Tables 1 and 2 show
the results of the study. The biggest difference in powers occurs for lower expectations, with the LRT
outperforming BST. It must be noted, however, that the BST only requires the data to be i.i.d. within each
center and thus is robust to violations of the Poisson assumption; if the counts within each center are
overdispersed, for example, it does not affect the Type I error.

To exemplify the usefulness of this test, we can consider an interim likelihood ratio test where the
expected number of enrollments is 170. This corresponds to E[X1] = 100 and R = 0.7, for example, and
results in a statistical power of approximately 0.75. Considering many trials require an upward of 500
enrollments, informed decisions can be made relatively early on in the trial.

4. PROPOSED MODEL

We consider a scenario of C centers recruiting patients, with each center c being initiated for τc days.
The number recruited by center c on day t shall be denoted by N (t)

c . We propose the following modeling
framework for the multi-center clinical-trial recruitment, based on the inhomogeneous Poisson process,

λo
c ∼ Gamma

(
α,

α

φ

)
, c = 1, . . . , C,

N (t)
c ∼ Pois

(
λo

c

∫ t

t−1
g(s; θ) ds

)
, t = 1, . . . , τc,

where g is a non-negative function which dictates the curve-shape of the intensity and θ is a parameter
(or parameter vector) associated with the functional form. We use the (α, φ) parametrization for the
hierarchical gamma distribution as it leads to orthogonality of α and φ in the Poisson-gamma model
(Huzurbazar, 1950).A priori, E[λc] = φ and V [λc] = φ2/α. For notational simplicity, we define G(t; θ) =∫ t

0 g(s; θ) ds. The likelihood contribution from center c is

Pr(Nc = nc|λo
c , θ , τc) =

τc∏
t=1

Pr(N (t)
c = n(t)

c |λo
c , θ)

= exp{−λo
cG(τc; θ)}(λo

c)
n(·)

c

τc∏
t=1

[G(t; θ) − G(t − 1; θ)]n(t)
c

n(t)
c ! ,



Interim recruitment prediction for multi-center clinical trials 491

where n(·)
c = ∑τc

t=1 n(t)
c . Marginalizing over the random-effect component gives

Pr(Nc = nc|α, φ, θ , τc) = (α/φ)α

(
α + n(·)

c

)

(α)[G(τc; θ) + α/φ]

(
α+n(·)

c

)
τc∏

t=1

[G(t; θ) − G(t − 1; θ)]n(t)
c

n(t)
c ! ,

whence the full likelihood of the model given the recruitment data is:

L(α, φ, θ |n, τ ) =
C∏

c=1

Pr(Nc = nc|α, φ, τ )

= (α/φ)Cα


(α)C

C∏
c=1



(
α + n(·)

c

)
[G(τc; θ) + α/φ]

(
α+n(·)

c

)
τc∏

t=1

[G(t; θ) − G(t − 1; θ)]n(t)
c

n(t)
c ! . (4.2)

If all the centers had been recruiting for the same amount of time, that is, τc ≡ τ ∀c, then by fixing the
integral of g(t; θ) over τ days we could introduce orthogonality between (α, φ) and θ by imposing the
normalization:

∫ τ

0 g(t; θ) dt = τ . This generalizes the homogeneous model with g(t; θ) = 1 and leads to
the following factorizable likelihood,

L(α, φ, θ |n, τ ) = (α/φ)Cα


(α)C(τ + α/φ)(Cα+n�)

C∏
c=1



(
α + n(·)

c

) τc∏
t=1

[G(t; θ) − G(t − 1; θ)]n(t)
c

n(t)
c !

= L(α, φ|n, τ)L(θ |n, τ ), (4.3)

where n� = ∑C
c=1 n(·)

c .
The factorization means that now the θ parameter describes the shape of the intensity only, and α and

φ describe the distribution of the magnitude of the integrated intensity, leading to a more interpretable
model. Even when centers are not all recruiting for the same length of time, we choose to impose a similar
normalization using some representative τ , here 1

C

∑C
c=1 τc. As demonstrated empirically in Section 6, the

condition leads to approximate orthogonality even when the centers are initiated uniformly throughout
the study.

4.1. Intensity curve-shape

In this work, we will restrict our choice of curve-shape g to parametric forms. The functional form of g is
arbitrary and the best choices may depend on the context of the problem. When working with oncology
datasets, for each center we observe low-frequency counts which seem to become even less frequent over
time but with varying tail behaviors. For this reason, we chose the following curve-shape

gκ(t; θ) ∝
(

1 + θ t

κ

)−κ

, t ≥ 0, θ , κ > 0. (4.4)

The proportionality is used as multiplying gκ by some positive constant and dividing φ by the same
constant leads to the same model. The limit as κ → 0 recovers the standard PG model (2.1); and letting
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κ → ∞, we obtain an exponential tail. The full (normalized) forms are then

g0(t) ≡ 1, (4.5)

g1(t; θ) = θ(1 + θ t)−1

log(1 + θτ)
τ , (4.6)

gκ(t; θ) = θ(1 − κ)(1 + θ t/κ)−κ

κ(1 + θτ/κ)1−κ − κ
τ , κ /∈ {0, 1, ∞}, (4.7)

g∞(t; θ) = θ exp{−θ t}
1 − exp{−θτ }τ . (4.8)

The associated integrated forms, Gκ(t; θ) are provided in Appendix B of the Supplementary material
available at Biostatistics online.

The flexibility of the model, however, can result in potential identifiability issues. Inference methods,
such as maximum likelihood, can run into numerical instabilities when κ >> 1 > θ or κ < 1 << θ (see
Appendix B of the Supplementary material available at Biostatistics online for details). For this reason,
we recommend restricting the choice of κ to a discrete set of values; in this work, we use {0, 0.5, 1, 2, ∞}.
This will be elaborated on in Section 5.3.

5. INFERENCE, DIAGNOSTICS, AND PREDICTIONS

We aim to construct a framework which can provide reliable predictions whilst capturing uncertainty in
the estimated parameters and in the underlying model itself. We employ the Bayesian paradigm since it
naturally incorporates the distribution of the random effects, λc, with the uncertainty in the model and
the parameter values. However, we note that in some scenarios frequentist methods may be preferred and
give a brief outline of how one may employ them in Appendix C of the Supplementary material available
at Biostatistics online.

Given a parametric statistical model, the Bayesian paradigm starts from a prior distribution for the
parameters, here denoted π0(α, φ, θ) and updates this according to some data, y, to provide a posterior
distribution, here denoted by π(α, φ, θ |y). When multiple parametric models, Mk , k = 1, . . . , K , are being
considered, the posterior probability for model k , here denoted by πp(Mk |y), may also be calculated.
Section E of the supplementary material available at Biostatistics online provides more details on these
quantities; see also Robert and Casella (2013) or Gelman and others (2013), for example.

For the models under consideration for trial-recruitment data, neither the posterior model probabilities
nor the posteriors for the parameters for any particular model are tractable, and so we employ importance
sampling to obtain Monte Carlo samples (αm, φm, θm), m = 1, . . . , M from the posterior distribution for
any given model, as well as an estimate of π(Mk), k = 1, . . . , K . Appendix D of the Supplementary
material available at Biostatistics online provides further details of this method, as well as of effective
sample size (ESS), a diagnostic which indicates the reliability of the Monte Carlo estimates; see also
Robert and Casella (2013) or Doucet and others (2001).

In Sections 6 and 7, we carry out inference on α̃ = log α, φ̃ = log φ, and θ̃ = log θ since analyses of
trial data showed the likelihood in the log-parameters to be more symmetric about the mode, which can
make sampling more efficient. For the importance sampling proposal distribution, we use a multivariate
t-distribution on four degrees of freedom, with the same mode as the posterior and the shape matrix equal
to the inverse Hessian at the posterior mode.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
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5.1. Prior choices

We base our prior specification on a maximum likelihood meta-analysis of 20 oncology clinical trial
recruitment datasets. The trials studied were for seven different types of cancers: ovarian, prostate, breast,
small and non-small lung, bladder, and pancreatic. The number of centers ranged from 58 to 244 with a
median of 140 and total enrollments ranged from 245 to 4391 with a median of 1035. In all cases, the
parameter estimators were close to orthogonal justifying the use of independent priors: π0(α̃, φ̃, θ̃ ) =
π0(α̃)π0(φ̃)π0(θ̃).

We found that the α parameter does not change much from one study to another. The weakly informative
prior α̃ ∼ N (0.2, 22) sufficiently reflects the distribution of the estimated values.

The φ parameter estimates varied by orders of magnitude between studies. The parameter reflects the
mean center recruitment and is well identified by the data; it depends upon the catchment region, type
of indication and protocol, for example. For this reason, we advocate using a vague prior unless reliable
expert knowledge is available. In our analyses, we used the uninformative, proper prior φ̃ ∼ U (−8, 8).

The difference between the homogeneous (4.5) and the inhomogeneous (4.6, 4.7, 4.8) models is the
curve-shape parameter θ . Lindley’s paradox (Lindley, 1957) warns that assigning θ a vague prior can
lower the posterior probabilities of the models that use θ , compared to the model with κ = 0 which
does not use θ . To avoid the paradox, we set an informative but sensible prior by considering the drop
off in intensity after some time, t0. We let Rκ = gκ(t0; θ)/gκ(0; θ) and set Rκ ∼ Beta(a, b) a priori, with
a = b = 1.1 to indicate a lack of information, excepting that this is not a constant intensity model, since
this is covered by κ = 0, and that we do not expect a 100% drop off after a time of t0 (expert opinion);
here we take t0 = 4 months. As Rκ is a monotonic function of θ , we can use a density transform to derive
the corresponding prior for θ . If prior information is abundant, be it in the form of historical data or expert
knowledge, the beta distribution parameters can be adjusted to reflect this. Given (4.4), the resulting prior
density for θ̃ is given in Appendix E of the Supplementary material available at Biostatistics online.

5.2. Predictive distribution

There are two complementary properties for which predictions might be required: the distribution of future
recruitments within a set time interval, and the distribution of time until the target number of recruitments
is reached. In this section, we focus on the former; details of the latter appear in Appendix F of the
Supplementary material available at Biostatistics online.

Suppose we are interested in sampling the recruitment, denoted N +
c , at some day t+ by center c. Given

samples from the parameter posteriors, we can sample exactly from the posterior predictive for N +
c by

exploiting the Poisson-gamma conjugacy of the random-effect distribution. The posterior distribution for
the λo

c random effect for center c is

λo
c |α, φ, θ , nc, τc ∼ Gamma

(
α + n(·)

c , α/φ + G(τc; θ)
) = Gamma

(
α∗

c ,
α∗

c

φ∗
c

)
, (5.9)

where α∗
c = α + n(·) and φ∗

c = φ ×
(

α+n(·)
c

α+φG(τc ;θ)

)
. The predictive distribution for N +

c conditional on the

random effect is:

N +
c |λo

c , θ ∼ Pois

(
λo

c

∫ t+

t+−1
g(s; θ) ds

)
= Pois

(
λo

cG+
θ

)
, (5.10)

where G+
θ = ∫ t+

t+−1 g(s; θ) ds.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
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https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
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Marginalizing over the random effect posterior, we arrive at the negative binomial distribution:

Pr(N +
c = n|α∗

c , φ∗
c ) = 
(α∗

c + n)


(α∗
c )n!

(
α∗

c

α∗
c + φ∗

c G+
θ

)α∗
c
(

φ∗
c G+

θ

α∗
c + φ∗

c G+
θ

)n

, n = 0, 1, 2.... (5.11)

The length of interval to t+ does not need to be a day and could instead be a week or a month, depending on
the context of the application. To obtain the full marginal predictive, we sample the recruitments conditional
on parameters sampled from the posterior. For as yet unopened centers, we set n(·)

c = τc = 0. For each
triplet (or couplet, if κ = 0) of parameters sampled from the posterior, we sample N +

c , c = 1, . . . , C, and
sum them to obtain a sample from N +|α, φ, θ . The collection of these sums is a sample from the posterior
predictive distribution for the model.

If simulations for multiple distinct time periods are required for a given center, c, as needed for the
accrual curve for example, then we first sample λo

c from its posterior (5.9). We then simulate the Poisson
counts for the individual time periods, which are conditionally independent given λo

c , from (5.10).

5.3. Model averaging

When predicting the enrollments using a fitted model, we implicitly assume that a single model best reflects
reality; however, prediction methods should consider the uncertainty in the models used for inference. We
shall, therefore, use model averaging for making predictions, that is, take a weighted average of predictions
made by each model. Working in the Bayesian paradigm provides us with an intuitive choice for weights
in the form of marginal likelihoods of the models.

Pr(N + = n+|n, τ ) =
K∑

k=1

Pr(N + = n+|n, τ , Mk)πp(Mk |n, τ ),

where πp(Mk |n, τ ) ∝ π(n|τ , Mk)π0(Mk), k = 1, . . . , K , with π0(Mk) being prior model probabilities.
The averaging framework fits in with the restriction of the shape parameter κ to a discrete space. Each κ

value generates an inhomogeneous Poisson-gamma model with the tail behavior of the associated intensity
shape. This includes the null (κ = 0) model as in Anisimov and Fedorov (2007). In this work, we set all
prior model probabilities equal.

5.4. Model validation

Before making any statements in regards to the future recruitments, we should validate that the fitted model
does indeed capture the true data-generating process sufficiently well. Since the true process is unknown,
we compare the observed data to the modal model (the model with the highest posterior probability) fixed
at posterior parameter means (α̂, φ̂, θ̂ ).

Firstly, we wish to assess that the chosen hierarchical structure is reflected in the data. The distribu-
tion of posterior means of the individual random effects should approximately follow the hierarchical
Gamma(α̂, α̂/φ̂) distribution. A QQ-plot can be used to visually compare the distributions. If deemed suf-
ficiently similar, using the distribution for generating predictions for yet-unopened centers is appropriate.
If the distributions are noticeably different, particularly if the true distribution is multimodal, any interim
predictions for yet-unopened centers could (but need not; see robustness study in Section 6) be inaccurate.

According to the model, the counts in any initial period [0, t′] (such as the first month) of each center’s
recruitment period, follow a negative binomial distribution with shape parameter α and success probability
φG(t′; θ)/(α + φG(t′; θ)), similar to that given in (5.11) but using α and φ in place of α∗

c and φ∗
c . As

the true parameters are unknown, we compare it to the distribution fixed at point-estimates (α̂, φ̂, θ̂ ). The



Interim recruitment prediction for multi-center clinical trials 495

diagnostic indicates if the combination of the gamma random effects and the modal decay model captures
the behavior over the initial period after center initiation. Again, a QQ-plot can be used for comparing the
theoretical distribution to the observation, giving an indication if the fitted model under- or overestimates
initial recruitment. The initial period, [0, t′], should be long enough that the true recruitment decay should
be apparent. However, since only centers that have been recruiting for a period of at least t′ can be used
for the diagnostic, to ensure a reasonable power, t′ should be short enough that a large number of sites
have been recruiting for this duration. In this work, we set t′ = 60 (2 months).

6. SIMULATION RESULTS

We demonstrate our flexible framework through a simulation study, using simulated data sets to illustrate
model fit and prediction and to highlight the effect model misspecification can have on predictions. In
practice, patterns in center initiation times can vary greatly between trials. For presenting the methodology,
we consider an initiation schedule similar to that observed in a typical trial. We test the robustness of the
method using a uniform initiation schedule, with another type of schedule examined in Appendix G of
the Supplementary material available at Biostatistics online.

Our historical data set do not include the initiation times of the centers, so instead, to accurately reflect
the historical data used in the meta-analysis and what is often available to researchers, we take the first
recruitment time of a center as its initiation time and adjust the models to include a single deterministic
recruitment at the initiation time of each center followed by stochastic recruitment as described in Section 4.

We simulate a study over a course of 600 days, with 200 centers. The parameters used for simulations
were α = 1.4, φ = 0.01, κ = 2.7, and θ = 0.02. The inference is carried out on data observed in
the first 360 days. As motivated in Section 1, we condition the inference on a set of known initiation
times, chosen by the practitioner; these could subsequently be varied to investigate the impact of different
schedules or initiation models. We consider a set of models with flexible tails (Section 4.1) allowing
κ ∈ {0, 0.5, 1, 2, ∞}, thus including the null model (Anisimov and Fedorov, 2007). The “normalization”
of the curve-shapes was imposed at τ̄ = 1

C

∑C
c=1 τc. We purposely simulated using a κ value outside of

those considered in our models to illustrate the flexibility of the framework. For Bayesian inference, we
used parameter and model priors outlined in Sections 5.1 and 5.3, respectively. Based on the model fitted
to the data at the census day 360, we wish to predict the daily accrual until day 600.

Performing the LRT and BST from Section 3, we find the p-values of both tests to be < 0.001. Table 3
provides the fits for the five models. The effective samples sizes are high, which means that each of the
model posteriors is represented well by its respective sample and that the marginal likelihood estimates
are accurate. If the ESS values had been low, we would have retried using more samples in the importance
sampler. We see that model corresponding to κ = ∞ has the highest posterior probability. A trellis plot of
the posteriors for (α̃, φ̃, θ̃ ) from the modal model (seeAppendix G of the Supplementary material available
at Biostatistics online) confirms at least approximate pairwise orthogonality between the parameters, as

Table 3. Posterior means and 95% credible intervals, posterior model probabilities and effective
sample sizes, obtained using 104 importance samples for each model.

κ α φ θ π(Mk |n) ESS

0 1.423 (0.931, 2.239) 0.013 (0.011, 0.016) — 6.90 × 10−37 9000
0.5 1.632 (1.003, 2.750) 0.013 (0.011, 0.016) 0.152 (0.057, 0.495) 2.27 × 10−8 8519
1 1.674 (1.059, 2.799) 0.013 (0.011, 0.016) 0.039 (0.025, 0.061) 3.21 × 10−3 8471
2 1.677 (1.072, 2.693) 0.013 (0.011, 0.016) 0.021 (0.016, 0.027) 2.72 × 10−1 8607
∞ 1.690 (1.089, 2.801) 0.013 (0.011, 0.016) 0.011 (0.010, 0.013) 7.25 × 10−1 8651

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
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Fig. 3. Simulated accrual data from Section 6 with Bayesian model-averaged forecast predictive mean of the accrual
(solid, red) and 95% prediction bands (red, dashed). Prediction bands are based on the 2.5% and 97.5% quantiles.
The forecast begins from a point marked by the red dot and the “+” symbols on the abscissa indicate center initiation
times.

anticipated from Sections 4 and 5.1. QQ-plots for the modal model comparing the hierarchical gamma
distribution to the posterior means of the random effects and comparing the observed recruitments over the
first two months of each center’s recruiting period to the model’s negative binomial distribution both show
approximate straight lines with unit gradient and are provided in the Supplementary material available at
Biostatistics online.

Figure 3 shows the accrual forecast from the census time τ = 360 up to the horizon τH = 600,
superimposed onto the true accrual plot. The forecast is based on the Bayesian model-averaged posterior
predictive distribution. The true accrual is contained within the 95% predictive intervals.

Figures 4 and 5 use an earlier census time (τ = 240) to illustrate the issues that can arise when making
predictions using maximum likelihood estimation and model selection. The inference was carried out
with the same set of candidate models, and predictions were obtained by simulating from the best model
(κ = ∞, chosen using AIC) with parameters fixed at the MLEs. As shown in the plots, not accounting
for parameter and model uncertainty may lead to overly confident and biased predictions. Simulations
with τ = 360 (see Supplementary material available at Biostatistics online) still showed bias due to the
choice of a single model, although the contrast with Figure 3 in terms of prediction interval width was
less marked.

We repeated the analysis with a different distribution of initiation times, making the center initiations
“clump” roughly every 2 months. The resulting forecast predictive distribution can be seen in Figure 6;
performance appears to be robust to the type of initiation schedule.

To further test the robustness of the framework, we first consider the random effects λo
c now being

generated from a mixture of two gamma distributions

λo
c |α, φ1, φ2 ∼ 1

2
Gamma

(
α,

α

φ1

)
+ 1

2
Gamma

(
α,

α

φ2

)
.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
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Fig. 4. Simulated accrual data from Section 6 with predictions using Bayesian model averaging.
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Fig. 5. Simulated accrual data from Section 6 with predictions using maximum likelihood and model selection.

We considered data generated using the same α value and curve-shape as before, but now with center
initiation times uniformly sampled on the interval. The ratio of gamma expectations was fixed such that
φ2 = 10φ1, and the random effect expectation, E[λo

c] = (φ1 + φ2)/2, was set to 0.01 and then 0.03.
Figures 7 and 8 show example forecasts for accruals with the two different expectations. The more
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Fig. 6. Simulated accrual data from Section 6 using clumped initiations with forecast predictive accrual mean (solid,
red) and 95% prediction bands (red, dashed). Prediction bands are based on the 2.5% and 97.5% quantiles. The
forecast begins from a point marked by the red dot and the “+” symbols on the abscissa indicate center initiation
times.

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Time

A
cc

ru
al

Fig. 7. Uniform initiations, E[λo
c] = 0.01 (mixture RE distribution)
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Fig. 8. Uniform initiations, E[λo
c] = 0.03 (mixture RE distribution)

data, that is, the larger E[λo
c], the more apparent the discrepancy in the random-effect distribution, and

the concomitant predictions, becomes. This is visible in the clearly non-linear diagnostic QQ-plots, and
the plotted forecasts (see Supplementary material available at Biostatistics online). The robustness of
predictions comes from the fact that the random effects for initiated centers use re-estimated data-driven
distributions, reducing the importance of the random-effect prior; thus the main source of forecasting error
comes from the incorrect random-effect prior for new centers. Similar plots for the “clumped" initiation
schedule, provided in the Supplementary material available at Biostatistics online, show the same pattern.
This mixture distribution of random effects represents the (extreme) scenario where roughly half of the
centers recruit the vast majority of patients, with the remaining sites recruiting little to none each. When
the ratio of the two means is closer to 1, the model still produces reliable predictions.

We also consider the effect of curve-shape misspecification on predictions, generating data using an
intensity proportional to the Weibull density function

gW (t; θ , k) =
k
θ

(
t
θ

)k−1
exp{−(t/θ)k}

1 − exp{−(τ/θ)k} τ , so GW (t; θ , k) = 1 − exp{−(t/θ)k}
1 − exp{−(τ/θ)k}τ ,

where θ , k > 0. We simulated accrual datasets using the Weibull shape with θ = 30 and k = 1.5, resulting
in the highest recruitment rates occurring two weeks after center initiation. The random-effect distribution
used α = 1.4 and two different values φ were used: 0.01 and 0.03; Figures 9 and 10 show example forecasts.
For lower overall recruitment levels, the model still predicts future accrual well. Forecast inaccuracies due
to model misspecifiation become more apparent when larger recruitment rates are used. The same pattern
is observed when center initiation times are clumped (see Appendix G of the Supplementary material
available at Biostatistics online).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa036#supplementary-data
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Fig. 9. Uniform initiations, E[λo
c] = 0.01 (Weibull-shape intensity)
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Fig. 10. Uniform initiations, E[λo
c] = 0.03 (Weibull-shape intensity)

7. DATA RESULTS

We fitted the same set of models to a recruitment dataset of a prostate-cancer clinical trial. The recruitment
was carried out across 244 sites. The accrual is presented as the proportion of the total number enrolled.
Similarly, time is given as the proportion of the total recruiting period. Figures 11 and 12 show the
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Fig. 12. Observed recruitments compared to the theoretical negative binomial distribution.

diagnostic QQ-plots for the model fitted to data available at time 0.4. They indicate that there is sufficient
concordance between the assumed model and observed enrollment giving validity to potential predictions.
Figure 13 shows the accrual along with forecasts from four different census times. The predictive bands
become narrower and parameter uncertainty decreases at each census as more data become available for
inference. After the third census, there is an unexpected jump in accrual followed by a drop around the
fourth census time, suggesting a global external factor, such as a change in the protocol. Table 4 shows
p-values of the LRT and BST. Initially, when the accrual is still only a small proportion of the total, it is
hard to detect the time-inhomogeneity. At later census points, the test outcomes indicate that the rates are
not constant.

We compare the proposed framework to the standard homogeneous PG model (2.1) as well as a
homogeneous Poisson process (HPP) model fitted only to the accrual. We used the same priors as outlined
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Fig. 13. Data example in Section 7 with the accrual (black, solid) for an oncology study; colored solid lines are mean
predictions from census times, dashed lines are the 95% prediction bands, and the “+” symbols indicate initiation
times of centers.
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Fig. 14. Predictive distributions for time needed to make the final recruitment in the data example in Section 7, as
forecast by three different modeling frameworks: Bayesian model averaging (BMA), time-homogeneous Poisson-
gamma (PG), and homogeneous Poisson process fit to accrual only (HPP). The horizontal line represents the true
completion time and the prediction positions of the x-axis were off-set by 0.01 for clarity.
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Table 4. Decay in rate test p-values and the
forecasting p-values at four census times.

Census time BST p-value LRT p-value

1 0.196 0.226
2 0.012 0.021
3 <0.001 <0.001
4 <0.001 <0.001

in Section 5.1 for fitting the PG model, and the HPP rate estimate was obtained using maximum likelihood.
The methods were compared in terms of the predicted completion time of the recruitment for the study
with the sampling details outlined in Appendix F of the Supplementary material available at Biostatistics
online. Forecast completion time from 6 different census points and can be seen in Figure 14; the first HPP
predictions were centered at 3.67 and 1.84 which were outside the plot’s range. The proposed framework
produces better point predictions, especially at earlier interim analyses, and more closely represents the
true uncertainty. The HPP predictions near the end of the trial are very accurate. At this point, the majority
of the centers having already been initiated and have been recruiting for a long period of time. As a
result, the total recruitment rates are not changing by much, with the slight decreasing trend offset by the
occasional initiation of a new center. This is a coincidence; if the decay rate had been sharper or shallower,
or if fewer or more centers had been initiated then the naive overall Poisson process model would not
have fitted as well. The underprediction of the completion time by the proposed model at the census time
of t = 0.71 is likely a result of the unexpected surge in recruitment at around that time. The surge is
examined in more detail in Appendix G of the Supplementary material available at Biostatistics online.

8. DISCUSSION

We have introduced a general, flexible framework for modeling and predicting recruitment to clinical
trials. We suggest two tests for detecting decay in recruitment rates; comparing them both with respect
to power and robustness. The particular form of the test statistic allows for a single, simple trial-level
test. Alternative forms, such as splitting according to a global time, would either require a test for each
center, massively reducing the power, or estimates of all of the individual center intensities which would
introduces several layers of additional complexity because of the hierarchical connection between the
center intensities. If it were believed a priori that a particular global period would be unrepresentative
then this time span, and the concomitant recruitment, could simply be removed, albeit at the cost of lower
power.

The parametric curve-shape forms chosen for the intensity were based on the features encountered
in oncology trials. We found that the model was still robust to moderate model misspecifications in
the distribution of the random effect and intensity shape. Other therapeutic areas such as pulmonary
or cardiovascular diseases experience more frequent recruitments and different curve-shapes may be
appropriate.As shown in Section 6, model misspecification becomes more of a problem at larger enrollment
rates. However, with increased frequency, pattern changes in the early months of a center are easier to
identify. Using more complex parametric forms, such as Weibull or generalized gamma shape, could
lead to more accurate predictions. Alternatively, if covariate information is available, say xc for each
center, the following intensity form motivated by hazard models from survival analysis could be used:
λc(t) = λo

c exp{βxc}g
(
t; exp{ηxc}

)
, where λo

c are now random effects coming from a Gamma(α, α)

distribution and β and η are vectors of unknown parameters.
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As seen in the data example in Section 7, there can be external factors modulating the overall accrual.
This could potentially be modeled via a short-term, constant global intensity modifier, which would
maintain tractability. The framework is not constrained to parametric forms; non-parametric intensity
models, such as those using B-splines (e.g., Morgan and others, 2019) or Gaussian processes (e.g., Adams
and others, 2009), could be used instead. This, however, would make the intensity extrapolation problem
more difficult.

For curve-shape parameter prior construction, our choice of the quantity of interest Rκ was motivated by
simplicity of the form; one could just as well have used Gκ (t0/2;θ)

Gκ (t0;θ)
, albeit with more algebraic manipulations.

The general method was aimed at models with monotonically decreasing intensities. If curve-shapes such
as Weibull are considered then constructing sensible priors will be more complicated.

In presenting the method, we condition the inference and prediction on known initiation schedules for
the centers. Incorporating stochastic center initiation models, such as those in Anisimov (2009) and Lan
and others (2018), into the Monte Carlo prediction framework is straight-forward, but would complicate
the presentation of our methodology without adding novelty. InAppendix H of the Supplementary material
available at Biostatistics online, we demonstrate how recruitment can be predicted using our methodology
when there is uncertainty in the initiation schedule. For illustration, we imagine a Weibull-distributed
delay to each center’s initiation, but any other initiation model could be incorporated in a similar manner.
We stress that full prediction intervals should take this uncertainty into account.

In this work, we focus on patient recruitment regardless of the numbers of dropouts observed. In prac-
tice, screening failure and patient withdrawal are both prevalent in clinical trials. Assuming the dropouts
are independent of the recruitment process, existing survival analysis techniques such as Cox’s propor-
tional hazard model (Cox, 1972) or accelerated failure time frailty model (Wei, 1992) could be used in
combination with the recruitment model to produce distributions of the numbers of patients in the system
at a given time. Such knowledge would be useful to the practitioners and operational researchers in charge
of drug-supply chains for the centers.

Anisimov and Fedorov (2007) introduced a method for determining the number of additional centers
needed to be initiated for the study to finish on time. With minimal adaptation, the same method can also
be used with our model. However, since it assumes that all new centers are initiated immediately, it may
not apply in all scenarios. We would advocate a simulation-based approach, where forecasts based on
different center initiation schedules are compared. As different operational costs can be associated with
different schedules, this would become a resource-constrained optimization problem.

9. SOFTWARE

Software in the form of R code is available at https://github.com/SzymonUrbas/ct-recuitment-prediction.

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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