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Abstract

In the 2013-2016 west Africa outbreak of Ebola Virus Disease (EVD), most of the planned

clinical trials failed to reach a conclusion within the time frame of the epidemic. The perfor-

mance of clinical trial designs for the evaluation of one or more experimental treatments in

the specific context of an ongoing epidemic with changing case fatality rates (CFR) and

unpredictable case numbers is unclear. We conduct a comprehensive evaluation of com-

monly used two- and multi-arm clinical trial designs based on real data, which was recorded

during the 2013-16 EVD epidemic in west Africa. The primary endpoint is death within 14

days of hospitalization. The impact of the recruitment start times relative to the time course

of the epidemic on the operating characteristics of the clinical trials is analysed. Designs

with frequent interim analyses with the possibility of early stopping are shown to outperform

designs with only a single analysis not only in terms of average time to conclusion and aver-

age sample size, but also in terms of the probability of reaching any conclusion at all. His-

toric control designs almost always result in substantially inflated false positive rates, when

the case fatality rate changes over time. Response-adaptive randomization may be a com-

promise between the goal of scientific validity and the ethical goal of minimizing the number

of patients allocated to ineffective treatments.

Introduction

In response to the 2013-16 Ebola Virus Disease (EVD) epidemic in west Africa, the interna-

tional community has called for a strengthening of the research and development response to

outbreaks of emerging infectious diseases [1–3]. This enhanced research response is intended

to provide an evidence base for the clinical care of patients, including the development of treat-

ments that can improve survival and help contain case numbers [4].

However, how best to evaluate promising treatments during an epidemic is unclear. Phase

II, and III clinical trials are required to evaluate drug safety and efficacy (and therefore for

licencing), but can only be undertaken when infected patients are available to be enrolled. In

previous outbreaks, very few of the planned clinical treatment trials have successfully com-

pleted within the time frame of the epidemic. Clinical trials have been either mounted too late

to enrol sufficient case numbers, or were unable to reach ambitious recruitment targets [5].
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Innovations in the design and conduct of clinical trials may increase the chances of generat-

ing reliable evidence. In particular, there is a need to adapt approaches to better meet the prac-

tical realities of outbreak epidemiology; that there may only be a short time-course in which to

conduct research, that outbreaks may occur over expansive geographical regions, and that case

numbers can be unpredictable. Whether the frequently used trial designs, including random-

ized controlled trials, are the most appropriate choice under these circumstances has been

debated [6–10] and further quantitative investigation of the most appropriate trial designs to

maximise the likelihood that a planned trial will reach a valid statistical outcome is required.

In this paper we evaluate the performance of commonly used trial designs when applied to

an epidemic scenario, as encountered during the 2013-16 EVD epidemic in West Africa. In

order to determine their validity and feasibility, the trial designs are compared on the basis of

their expected sample size, time to conclusion, false negative probability (risk an effective treat-

ment is declared ineffective), false positive probability (risk an ineffective treatment is declared

effective), probability that the best treatment is identified, and the average number of patients

assigned to the standard of care arm.

Data

To inform the simulation model, we analysed a publicly available World Health Organization

(WHO) database [11] of individual patient data that included the age, gender, case classifica-

tion, hopitalisation status, and dates of symptom onset, hospital admission, and outcome

(dead or alive) of all cases reported officically to the WHO during the EVD outbreak in

Guinea, Liberia and Sierra Leone (last updated on 28 September 2015). The cleaned dataset

includes a total of 33338 suspected cases of EVD of which 13506 case were confirmed and

hospitalized.

A total of 9114 out of 13506 records had missing hospitalization times (6394), missing out-

come date (7867) or missing outcome (6781). The problem of missing data is less critical here,

since we do not draw any conclusions directly from the observed data, but instead only use

this data to inform our simulation model. The objective is to be able to simulate data that has

similar characteristics to the data observed in the 2013-16 EVD epidemic in west Africa. We

therefore have removed all of the 9114 cases where at least one of the three variables was miss-

ing. The simulation model was built on the remaining 13506 − 9114 = 4392 complete cases.

The estimated CFR over time for these cases is shown in Fig 1.

Methods

The trial program is triggered when a fixed number of n0 = 10 confirmed and hospitalized

cases have been reported. This leads to a trigger time of 11 days after the report of the first con-

firmed and hospitalized case. Recruitment of the trial is then started with a delay caused by the

time it takes to setup the trial. In order to explore the effect of different setup times relative to

the observed time course of the epidemic (Fig 2), the delay is chosen such that recruitment

starts 100, 200, 300 and 400 days after the start of the epidemic. The total time to conclusion of

the trial (including any analysis delays) is design and scenario specific.

Data generation

Data generation in our simulations is based on the real EVD dataset described above. In our

simulation only hospitalized patients with confirmed Ebola virus infection are recruited. The

recruitment times in the simulation are randomly sampled from the observed hospitalization

times in the original EVD dataset. The number of patients that can be recruited per day is lim-

ited to 10. Each recruited patient is randomized to either the control arm or any of the J� 1
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experimental treatment arms. The details of the randomization procedure are design specific

and are given in the clinical trial design descriptions below.

One could be tempted to build a univariate survival model for time to death and to consider

recovered patients as censored observations. However, such an analysis would not be valid

since the basic “independent censoring” assumption would be violated. Patients that survive

EVD tend to be in better health overall than those dying, which means their unobserved death

times also tend to be larger. Time to recovery and time to death need to be treated as compet-

ing risks [12], since observing one precludes the observation of the other (at least within the

scope of our analysis, since a recovered patient is discharged from the treatment center and

not followed-up until the eventual death).

For each patient a failure time and its cause (recovery or death) is generated from a compet-

ing risks model (Fig 3) with distributions determined by the two conditional cause-specific

hazards for recovery hR(t|Z, E) and death hD(t|Z, E), respectively, given treatment arm Z
and recruitment time E. For both cause-specific hazards a proportional hazards model with

Fig 1. Estimated case fatality rate over time with confidence intervals of all confirmed and hospitalized cases.

https://doi.org/10.1371/journal.pone.0203387.g001

Fig 2. Cumulative incidence of confirmed and hospitalized infections and deaths as a function of days since first

case.

https://doi.org/10.1371/journal.pone.0203387.g002
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recruitment time specific hazard ratios is assumed in each treatment arm. For j = 0, . . ., J

hRðtjZ ¼ j;E ¼ eÞ¼ hR0ðtÞebRðj;eÞ

hDðtjZ ¼ j;E ¼ eÞ¼ hD0ðtÞebDðj;eÞ;

where βR(0, e) = βD(0, e) = 0 for all e.

The baseline cause-specific hazards hR0 and hD0 are obtained by fitting a flexible parametric

spline model [13] to the observed data using the R package flexsurv [14]. Details of this model

are described in S2 Appendix. No drop-out or loss to follow-up is considered in the simula-

tions. Censoring only occurs when the follow-up of patients, who have been recruited less

than 14 days before an (interim) analysis and have not yet recovered or died, is truncated at

the time of the analysis (administrative censoring). Once failure and censoring times are

known, the clinical endpoint can be determined.

Endpoints

The choice of a clinical endpoint is an important aspect in the design of clinical trials. In the

context of an emerging epidemic with high mortality a balance must be found such that the

endpoint can be observed quickly but is nevertheless clinically meaningful. We select survival

to Day 14 post-randomization as the primary endpoint for our evaluation as it seems to be

the most frequently used endpoint in EVD trial proposals [8, 15, 16]. This endpoint is 1 for

a patient who is still alive at Day 14 after randomization and 0 otherwise. The Day 14 case fatal-

ity rate pj in Arm j is estimated by p̂j ¼ CÎFjð14Þ, where CÎFj is the estimate of the cumulative

incidence function (CIF) of death in Arm j (see S1 Appendix). The advantage of estimating

the case fatality rate using the cumulative incidence function is that we could consider the case

fatality rate at different times from the same underlying survival model (e.g. at Day 14 and Day

28), and can handle potential administrative right-censoring caused by (interim) analyses.

Evaluation criteria

In the context of an ongoing epidemic of a severe disease, the performance of a trial design

must be evaluated taking into account the large uncertainty about reaching the recruitment

target, the goal of quickly finding the most effective treatment, and the ethical problem of ran-

domizing patients to standard of care for a disease with high mortality. The following evalua-

tion criteria will be considered in our comparison of the trial designs:

1. False positive rate (Type I error):

A false positive decision, i.e. an ineffective experimental treatment is declared superior to

the standard of care when it is not.

2. False negative rate (Type II error):

The probability of declaring a superior treatment ineffective.

Fig 3. Competing risks. The two possible outcomes for a hospitalized patient are recovery from EVD or death.

https://doi.org/10.1371/journal.pone.0203387.g003
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3. Average time to a conclusion:

This depends on the total number of patients recruited and any analysis delays. Designs

that allow for early stopping at an interim analysis will on average reach a conclusion much

faster than fixed sample size designs. More complex designs might require more time to

analyse the data.

4. Average sample size:

The average sample size is closely related to time to conclusion. Sequential trials with possi-

ble early stopping at an interim analysis will recruit fewer patients on average and therefore

reach a conclusion faster.

5. Best treatment identified:

When several experimental treatments (with at least one effective treatment among them)

are tested in parallel, the probability of identifying the best treatment instead of only identi-

fying any effective treatment becomes a relevant operating characteristic. In the two-arm

case the probability of finding the best treatment (given that the experimental treatment is

superior) is simply the statistical power of the trial.

6. Average number of patients treated with ineffective treatment:

A trial design which minimizes the number of patients allocated to an ineffective treatment

arm might be preferable from an ethical perspective and also increase the willingness of eli-

gible patients to participate.

Clinical trial designs

In this section we give a short description of the 6 two-arm and 3 multi-arm candidate designs

that we consider in our evaluation. Commonly used frequentist and Bayesian designs are

considered.

In general a multi-arm multi-stage starts with a number of experimental treatment arms

and a common control arm (standard of care) to which all treatments are compared as illus-

trated in Fig 4. At each interim analysis a decision for each treatment arm is made to either

drop the arm for lack of benefit (stopping for futility), declare superiority over the standard of

care (stopping for efficacy), or continue with the next stage. The trial is stopped when either all

treatments have been dropped, or at least one treatment is found to be superior to the standard

of care or the final analysis is reached.

Design parameters for the two- and multi-arm frequentist designs are chosen such that a

one-sided type I error of 2.5% is achieved under the null hypothesis of no randomized treat-

ment effect and a power of 90% for an alternative hypothesis of case fatality rate p = 0.4 in

the control arm vs. p = 0.2 in the experimental treatment arm(s) (without binding futility

stopping).

The Bayesian designs offer no formal control of frequentist operating characteristics, but

the stopping criteria are tuned such that a false positive rate of 2.5% is achieved for each treat-

ment/control comparison when treatment and control have the same CFR. Using uniform

priors for the Bayesian designs results in similar operating characteristics as the frequentist

designs.

In frequentist designs the final efficacy boundary is typically set equal to the final futility

boundary. The futility boundaries are usually non-binding, i.e. even when the futility boundary

is crossed it may be decided to continue the trial (without inflating the type I error) or, at the

final analysis, to conclude that the evidence is not conclusive in either direction and more data

is needed to declare superiority or futility.
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A general flowchart that applies to all designs described in this section is described in Fig A

in S3 Appendix.

Multi-arm designs. In multi-arm studies J� 1 experimental treatments are compared to

a common concurrent standard of care control group. Up to 5 equally spaced analyses (includ-

ing the final analysis) are performed. Efficacy and futility criteria for early stopping are evalu-

ated at each analysis. The trial stops if all experimental treatments have been stopped for

futility, or if any of the experimental treatments has been found to be superior. The trial con-

cludes without decision if the maximum sample size or the maximum number of interim

analyses has been reached with at least one experimental treatment still active or if the target

sample size for the next analysis cannot be reached, because of a lack of eligible patients. Each

experimental treatment is compared only to the standard of care arm. No direct comparisons

between experimental treatment arms are performed. If an experimental treatment meets the

futility criterion it is dropped and recruitment continues only in the remaining treatment

arms. The control arm cannot be dropped.

The stopping criteria for the frequentist designs are formulated as thresholds for the stan-

dardized test statistic

Zj ¼
p̂0 � p̂j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

0
þ ŝ2

j

q ; ð1Þ

where ðp̂0; ŝ
2
0
Þ and ðp̂j; ŝ

2
j Þ are the estimated CFR at Day 14 and estimated variance in the

Fig 4. Illustration of a frequentist multi-arm multi-stage design with 3 treatment arms and 5 planned (interim)

analyses. Standardized test statistic Z(t) as a function of time t for 3 different treatment arms together with upper

(efficacy) and lower (futility) stopping boundaries. In this example the trial would stop at the fourth interim analysis

with one treatment crossing the upper boundary (square). One treatment (triangle) would be dropped at the second

interim analysis, because it crosses the lower boundary. The third treatment (circle) would be declared ineffective at

the time the trial stops.

https://doi.org/10.1371/journal.pone.0203387.g004
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control and experimental treatment arm j, respectively. It can be shown that this test statistic is

asymptotically standard normally distributed.

The Bayesian designs are based on thresholds for the posterior probabilities P(pj < p0|Data)

of an experimental treatment arm having a smaller CFR at Day 14 than the control arm.

All designs aim for a familywise type I error of 2.5% under the null hypothesis of no treat-

ment effect in any of the treatment arms and a power of 90% under the alternative hypothesis

of 40% mortality in the control arm vs. 20% mortality in all experimental treatment arms.

In the case of J = 4 experimental arms and one control arm a total maximum sample size

of nmax = 550 is needed to reach a power of 90%. This results in 22 patients per arm being

recruited between any two of the 5 analyses. The sample size is not reallocated when an arm is

dropped, i.e. the number of patients allocated to a specific arm does not increase as result of

one or more arms being dropped.

1. Multi-arm multi-stage design (MAMS):

The frequentist MAMS design is based on [17] and stopping boundaries are calculated

using the method of [18] based on the same error spending functions as for the two-arm

group-sequential design (GSD).

These boundaries are non-binding, i.e. even if a treatment arm crosses the futility boundary

it can still be decided to not drop this arm without inflating the type I error. The values are

listed in Table A in S1 Table.

2. Bayesian MAMS with complete randomization (Bayes MAMS):

We assume the number of observed deaths by Day 14 follows a binomial distribution with

unknown case fatality rate pj in Arm j. With a conjugate Beta(1, 1) prior, i.e. uniform prior

on [0, 1] for each pj, the posterior distribution in Arm j is Beta(1 + yj, 1 + nj − yj), where yj

is the number of observed deaths by Day 14 and nj is the sample size in arm j (j = 0, 1, . . .).

Superiority and futility criteria are checked for each experimental treatment arm at every

analysis and are based on the posterior probabilities of efficacy. The trial is stopped for

efficacy, if the posterior probability of superiority of any of the experimental treatments

over standard of care exceeds 99%, i.e. P(pj < p0|Data) > 0.99. An experimental treatment

arm is dropped if the posterior probability that the treatment is at least 10% better than

the standard of care is less than 10%, i.e. P(pj < p0 + 0.1|Data)<0.1. The trial is stopped

for futility if all experimental treatment arms have been dropped. Superiority and futility

thresholds are selected such that the false positive rate is controlled for each treatment-con-

trol comparison.

3. Bayesian MAMS with response-adaptive randomization (Bayes RAR MAMS):

Same as the Bayesian MAMS design, but with response-adaptive randomization, i.e. at

every interim analysis the allocation probabilities are recalculated given the observed

data, in order to minimize the number of patients allocated to the less effective treatment

arm. The trial starts with a balanced allocation among all arms until the first interim

analysis to ensure that a minimum number of patients is allocated to each arm. We follow

the procedure described in [19] to update the allocation probability at every interim anal-

ysis. The posterior probability that treatment j is better than every other treatment is

θj = P(pj < pk8k 6¼ j|Data) j = 0, 1, . . ., J. The new allocation probability for treatment j is

then proportional to

qj /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yjVðpjÞ

nj þ 1

s

; ð2Þ

where V(pj) is the estimated variance of the case fatality rate and nj is the current sample
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size for treatment j. The stopping boundaries are the same as for the Bayes MAMS

design, i.e. the calculation of the boundaries ignores that the randomization procedure

is response-adaptive.

Two-arm designs. The two-arm designs are special cases of the multi-arm designs where

only one experimental treatment arm is compared to standard of care historic or concurrent

control arm.

For the two-arm single stage designs no early stopping is possible and no adjustments for mul-

tiplicity are necessary. These designs serve as benchmark for the multi-stage designs that allow

for early stopping. A total (i.e. all arms) sample size of 212 is required to achieve 90% power to

detect an absolute 20% reduction in the case fatality rate from 40% in the control group to 20%

in the experimental treatment arm. For the sequential two-arm designs the total maximum sam-

ple size is set to 225 and a maximum of 45 patients is recruited between any two interim analyses.

1. Two-arm single-stage randomized controlled clinical trial (TACC):

Special case of the MAMS design with one experimental treatment (J = 1) and one analysis.

The null hypothesis of no treatment effect is rejected if Z1 > zα, where zα is the 1 − α quan-

tile of the standard normal distribution with α = 0.025 in order to achieve a one-sided type

I error of 2.5%.

2. Two-arm single-stage historically controlled trial (TAHC):

All recruited patients are allocated to the experimental treatment arm. The control group

is formed by all historic confirmed and hospitalized cases recorded before the start of trial.

105 patients are recruited to the experimental treatment arm (50% of the sample size of the

randomized two-arm design). Testing of the null hypothesis is done in exactly the same

way as for the designs with concurrent controls. In a disease with very high mortality on

standard of care, this design avoids the ethical problem of allocating patients to standard

of care when an experimental treatment is available, which is believed to be more effective

(otherwise the trial would not be conducted). This design can achieve higher power due

to the potentially much larger control group (depending on the trial start). For very early

starts, the historic control group may be relatively small however.

3. Group-sequential two-arm RCT (GSD) [20]:

Special case of the MAMS design with one experimental treatment (J = 1). This is a standard

one-sided two-arm group-sequential RCT with up to 5 equally spaced interim analysis. Effi-

cacy and futility boundaries are calculated using the R package gsDesign [21] using the

default Hwang-Shi-DeCani error spending functions. The values are listed in Table A in S1

Table. The final futility boundary is equal to the final efficacy boundary.

The Bayesian two-arm designs are all special cases of their multi-arm counterparts with one

experimental treatment arm (J = 1):

4. Bayesian two-arm single-stage RCT (Bayes TACC) [22]

5. Bayesian Group-sequential two-arm RCT with complete randomization (Bayes GSD)

6. Bayesian Group-sequential two-arm RCT with response-adaptive randomization (Bayes

RAR GSD)

Simulation scenarios

We explore the operating characteristics of the trial designs in various scenarios with one or

more experimental treatments, which are compared to a common control (standard of care).

Performance of different clinical trial designs to evaluate treatments during an epidemic
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In order to explore the effect of an improving standard of care during an ongoing epidemic

on the operating characteristics of the trial designs, we also consider scenarios where the case

fatality rates are decreasing over time, as a result of a linear decrease of the log-hazard ratios of

the two cause-specific hazard rates by about 10% over the first half of the epidemic.

We also explore the effect of starting recruitment at different times during the time course

of the epidemic. The first cases of West Africa EVD epidemic were reported in March 2014

in Liberia. Studies for evaluating treatments which started enrollment during the epidemic

include the Ebola Tx trial [8] (start February 2015) and the PREVAIL II trial [23] (start March

2015). This would roughly correspond to the enrollment start times of 300 and 400 days after

the first confirmed and hospitalized case in our simulations. A part of our motivation to evalu-

ate trial designs before an outbreak was the aim of reducing this delay. Therefore we also

considered simulation scenarios where enrollment starts only 100 or 200 days after the first

confirmed and hospitalized case.

Two-arm scenarios.

1. No treatment effects. Case fatality rates (CFR) for control and experimental treatment are

constant and equal to 0.4

2. No treatment effects, but a linear decrease of the log-hazard ratio in both arms across the

first half of the epidemic, resulting in decrease of the case fatality rates from 0.4 at t = 0 to

about 0.3 at t = 250.

3. Experimental treatment (p1 = 0.2) superior to standard of care (p0 = 0.4)

4. Experimental treatment (p1 = 0.2) superior to standard of care, whose mortality decreases

from p0 = 0.4 at t = 0 to p0 = 0.3 at t = 250. The decrease in the difference of case fatality

rates over time, will result in less power to detect this difference at the same sample size as

in Scenario 3.

5. Case fatality rates decreasing in both treatment arms. Experimental treatment (p1 = 0.2 at

t = 0 decreasing to p1 = 0.1 at t = 250) superior to standard of care (p0 = 0.4 at t = 0 decreas-

ing to p0 = 0.3 at t = 250).

Multi-arm scenarios. The multi-arm scenarios with four experimental treatment arms

and 1 common control group are similar to the two-arm scenarios.

6. No case fatality rate differences with constant case fatality rates 0.4 in all arms

7. No case fatality rate differences, but decreasing case fatality rate from 0.4 at t = 0 to 0.3 at

t = 250 in all arms.

8. All experimental treatments (pj = 0.2, j = 1, . . ., 4) superior to standard of care (p0 = 0.4)

9. Decreasing case fatality rates in all arms, all experimental treatments superior to standard

of care (Table 1). Treatment 3 and 4 are the most effective treatments at all times.

Table 1. Case fatality rates at the beginning of the epidemic and after 250 days in each arm.

Time [days] Case fatality rates

p0 p1 p2 p3 p4

0 0.40 0.34 0.27 0.20 0.20

250 0.30 0.23 0.15 0.10 0.10

https://doi.org/10.1371/journal.pone.0203387.t001

Performance of different clinical trial designs to evaluate treatments during an epidemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0203387 September 11, 2018 9 / 19

https://doi.org/10.1371/journal.pone.0203387.t001
https://doi.org/10.1371/journal.pone.0203387


Results

We report the results of 100000 simulations of each of the 9 scenarios with 4 different recruit-

ment starting times (100, 200, 300 and 400 days after the first hospitalized confirmed EVD

case). All simulations are done in R [24, 25].

Two-arm scenarios

The average duration of the trials first decreases and then increases substantially as recruit-

ment starts later in the time course of the epidemic as a result of a slow down in the rate of

new infections (Figs 5 and 6). Starting recruitment during the peak of the epidemic when

the number of new infections per day is the highest seems to be optimal in terms of trial dura-

tion. However, a trial which is started earlier and runs slightly longer will still conclude earlier

than a trial which is started later but runs shorter. The total time it takes to reach a conclusion

(measured from the start of the epidemic) increases for all designs with increasing recruitment

start time. Note that in the subfigures for average duration, average total time and average

total sample size in Fig 5 the line for the frequentist single stage two-arm design (TACC) is

completely obscured by the Bayesian single stage two arm design (Bayes TACC).

If recruitment begins very late (after 400 days) the planned sample size cannot be reached

(Figs 5 and 6). In this case, the single stage designs (TACC and Bayes TACC) conclude without

decision in every simulation run (Figs 7 and 8). The historic control design (TAHC) can still

reach its recruitment target, since it requires only 50% of the patients to be recruited. It there-

fore maintains its power whereas all other designs suffer from a substantial decrease in power,

because of the smaller sample size. However, the historic control design has a substantially

inflated type I error in Scenario 2 (up to 3 times the nominal level), since it compares a group

of older controls with a higher case fatality rate to newer patients on the experimental treat-

ment arm. Type I error inflation is expected for the historic control design, and to a lesser

degree for response-adaptive randomization design. The type I error of the complete randomi-

zation designs is not affected by a simultaneous decrease in mortality in both arms. The

sequential designs (GSD, Bayes GSD, Bayes RAR GSD) consistently outperform the single

stage designs in terms of average duration and average sample size. The Bayesian sequential

designs tend to stop earlier in the scenarios with a non-zero treatment effect than the frequen-

tist group-sequential design. This results in a smaller average sample size.

Multi-arm scenarios

The results of the multi-arm scenarios (Figs 9 and 10) correspond to the results of the two-arm

scenarios. There is almost no difference between the two Bayesian designs with complete and

response-adaptive randomization, respectively. However, the differences in terms of average

sample size and average duration between the Bayesian and frequentist designs that was seen

in the two-arm case is much more pronounced in the multi-arm case. In the two-arm case the

largest difference in average sample size is in Scenario 5 with recruitment start after 300 days

(139 for GSD vs. 112 for Bayes GSD/RAR). This increase of approximately 24% in sample

size results in a difference in average duration of about 5 days (49 days for GSD vs. 44 days for

Bayes GSD/RAR). In the multi-arm case the largest difference in average sample size is in Sce-

nario 8 also with a recruitment start after 300 days (349 for MAMS vs 201 for Bayes MAMS

and 184 for Bayes RAR MAMS), an increase of 74% and 90%, respectively. The difference in

duration is about 30 days (95 days for MAMS vs. 64 and 60 days for Bayes MAMS and Bayes

MAMS RAR, respectively). Even with the larger sample size the overall power to detect at

least one effective treatment is smaller for the MAMS design, since the Bayesian designs only
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Fig 5. Average duration, average total time to conclusion, average total sample size and rejection rate for each design for the two-arm scenarios 1 and 2 as a

function of recruitment start time. For the historic control design (TAHC) only the average number of patients in the experimental treatment arm is shown.

https://doi.org/10.1371/journal.pone.0203387.g005
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control the type I error for each treatment-control pair, which results in an almost 4-fold infla-

tion of the overall type I error.

In Scenario 9, experimental treatment arms 3 and 4 are the most effective. Table 2 shows

the probability of correctly identifying either one or both of those two treatments as superior

to standard of care. The Bayesian MAMS design with complete randomization has a slight

advantage over the Bayesian RAR and frequentist MAMS designs. The two Bayesian designs

at least have a probability of about 40% of correctly identifying an effective treatment even for

a very late start of the trial, whereas the frequentist MAMS design ends with no decision in

almost every case, because it fails to reach its recruitment target. From Table 3 it can be seen

that the response-adaptive design indeed allocates fewer patients to the control group in Sce-

narios 8 and 9 than any other design.

We also investigated different treatment effect sizes in simulations not reported here and

the conclusions remained the same, since all designs were affected in a similar way.

Fig 6. Average duration, average total time to conclusion, average total sample size and rejection rate for each design for the two-arm scenarios 3, 4 and 5 as a

function of recruitment start time. For the historic control design (TAHC) only the average number of patients in the experimental treatment arm is shown.

https://doi.org/10.1371/journal.pone.0203387.g006
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Discussion

We demonstrate how integrating outbreak epidemiology into the selection process for a clini-

cal trial design can help streamline clinical trials during outbreaks.

In general there were no substantial differences between the single stage Bayesian and fre-

quentist designs when using non-informative priors, as would be expected. However, in the

sequential case the Bayesian designs required a smaller sample size and reached a conclusion

faster on average than their frequentist counterparts. These differences were substantial in the

Fig 7. Percentage of trial results for each design for the two-arm scenarios 1 and 2 as function of recruitment start time.

https://doi.org/10.1371/journal.pone.0203387.g007
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multi-arm case. The implications for practice are that a faster conclusion may enable role-out

of an efficacious treatment into larger confirmatory studies before the outbreak wanes, or

allow a non-efficacious approach to be abandoned for trials of other possible treatments.

An important difference between the designs as implemented here is that the Bayesian

designs may conclude the trial without decision at the final analysis, whereas the frequentist

Fig 8. Percentage of trial results for each design for the two-arm scenarios 3, 4 and 5 as function of recruitment start time.

https://doi.org/10.1371/journal.pone.0203387.g008
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designs force a decision at the final analysis by setting the futility boundary to be equal to the

efficacy boundary. In our simulations a “no decision” result is only possible if the final analysis

cannot be reached, because of a lack of new patients. However, the futility boundaries are non-

binding and in practice it may still be concluded that further data is required even after the

boundary has been crossed. When the treatment effect is smaller than anticipated, e.g. when

improving standard of care in both arms reduces the difference in treatment effect between

treatment and control, the designs will be underpowered. In terms of practical approaches,

not forcing a decision for futility or superiority might be the most appropriate action in such a

situation.

Interim analyses are beneficial, leading to smaller and faster trials on average (at the price

of a small power loss at the same maximum sample size). A trial with interim analysis may

be successful, by stopping early for efficacy, even when the planned maximum sample size

could not be reached, due to a waning of the epidemic. Even more important are the ethical

Fig 9. Average duration, average total time to conclusion, average total sample size, rejection rate (of H0) for each design as function of recruitment start time in

the multi-arm scenarios 6-9.

https://doi.org/10.1371/journal.pone.0203387.g009
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implications of early stopping for futility, reducing the number of patients exposed to an inef-

fective treatment.

Designs using historical controls are problematic when the treatment effects change over

time, e.g. due to improvement in the standard of care, although they may have higher power

due to a potentially much larger control arm. Furthermore, when the trial is started very early

Fig 10. Percentage of trial results for each design as function of recruitment start time in the multi-arm scenarios 6-9.

https://doi.org/10.1371/journal.pone.0203387.g010

Table 2. Probability of identifying experimental treatment 3 or 4 as effective in scenario 9.

Prob. best treatments identified (%)

Start Bayes MAMS Bayes RAR MAMS MAMS

100 65.40 61.30 64.10

200 68.45 63.79 65.90

300 68.95 63.89 66.93

400 39.90 38.37 0.07

https://doi.org/10.1371/journal.pone.0203387.t002
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in the time course of the epidemic, few historic controls may be available and extrapolation to

previous outbreaks may be unsound.

Response-adaptive randomization designs may be favourable because they minimize

patients allocated to ineffective treatments, and so may be preferable from a patient and ethical

perspective. In these designs no type I error inflation because of changing treatment effects

over time compared to the complete randomization Bayesian design was observed.

A key aim of all designs is to reduce the size of or eliminate the control group because of

ethical and operational constraints. Relying on historic information is problematic when the

historic data contradicts current data, e.g. when the CFR changes over time. Robust methods

for constructing priors incorporating historic information have been proposed (e.g. [26, 27]).

The operating characteristics of designs using such priors constructed from historic informa-

tion across several outbreaks, are a topic of future research. An alternative which also uses

historic information is the MSA design of [15], which starts with a single-arm but which can

switch to a two-arm randomized controlled design if the absolute treatment effect is found to

not be large enough.

The comparison of the clinical trial designs is based on a selected number of simulation sce-

narios informed by epidemiologic data from the 2013-2016 West Africa EVD outbreak. Future

outbreaks of EVD or of different infectious diseases will have different characteristics which

might result in different conclusions about the appropriate clinical trial designs.

This work advances one approach to enabling clinical researchers conducting trials in chal-

lenging circumstances to best serve their patients, that is, by harnessing routinely collected epi-

demiological information to identify trial designs most likely to succeed at a particular point

during an outbreak. Further extrapolation of this work to outbreaks with different transmis-

sion patterns will be helpful, given the continued risk of emerging infectious disease outbreak,

including pandemic influenza.
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S1 Appendix. Cumulative incidence function.
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Table 3. Average number of patients allocated to control group (Arm 0) for scenarios 8 and 9 and different

recruitment start times.

Average number of patients in Arm 0

Scenario Start Bayes MAMS Bayes RAR MAMS MAMS

8 100 28 23 44

200 28 23 44

300 28 23 44

400 21 19 23

9 100 30 24 45

200 29 24 44

300 28 23 44

400 22 19 23

https://doi.org/10.1371/journal.pone.0203387.t003

Performance of different clinical trial designs to evaluate treatments during an epidemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0203387 September 11, 2018 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203387.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203387.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203387.s003
https://doi.org/10.1371/journal.pone.0203387.t003
https://doi.org/10.1371/journal.pone.0203387


S1 Table. Stopping boundaries and cumulative sample sizes at each analysis for the fre-

quentist designs.

(PDF)

Acknowledgments

This work is funded in part from Dr Jaki’s Senior Research Fellowship (NIHR-SRF-2015-08-

001) supported by the National Institute for Health Research. The views expressed in this pub-

lication are those of the authors and not necessarily those of the NHS, the National Institute

for Health Research or the Department of Health. PH and AR are supported by the Wellcome

Trust of Great Britain (grant number 106491/Z/14/Z).

Author Contributions

Conceptualization: Matthias Brueckner, Andrew Titman, Thomas Jaki, Amanda Rojek, Peter

Horby.

Methodology: Matthias Brueckner, Andrew Titman, Thomas Jaki, Amanda Rojek, Peter

Horby.

Software: Matthias Brueckner.

Supervision: Thomas Jaki.

Writing – original draft: Matthias Brueckner, Amanda Rojek.

Writing – review & editing: Andrew Titman, Thomas Jaki, Amanda Rojek, Peter Horby.

References
1. Moon S, Sridhar D, Pate MA, Jha AK, Clinton C, Delaunay S, et al. Will Ebola change the game? Ten

essential reforms before the next pandemic. The report of the Harvard-LSHTM Independent Panel on

the Global Response to Ebola. The Lancet. 2015; 386(10009):2204–2221. https://doi.org/10.1016/

S0140-6736(15)00946-0

2. World Health Organization. Report of the Ebola Interim Assessment Panel. Geneva; 2017. Available

from: http://www.who.int/csr/resources/publications/ebola/report-by-panel.pdf?ua=1.

3. The National Academies Press. Integrating Clinical Research into Epidemic Response: The Ebola

Experience. Washington DC: The National Academies of Sciences, Engineering, Medicine; 2017.

Available from: http://dx.doi.org/10.17226/24739.

4. World Health Organization. An R&D blueprint for action to prevent epidemics. Geneva; 2016. Available

from: http://www.who.int/csr/research-and-development/WHO-R_D-Final10.pdf?ua=1.

5. Rojek A, Horby P, Dunning J. Insights from clinical research completed during the west Africa Ebola

virus disease epidemic. Lancet Infectious Diseases. 2017; https://doi.org/10.1016/S1473-3099(17)

30234-7 PMID: 28461209

6. Joffe S. Evaluating novel therapies during the Ebola epidemic. Jama. 2014; 312(13):1299–1300.

https://doi.org/10.1001/jama.2014.12867 PMID: 25211645

7. Adebamowo C, Bah-Sow O, Binka F, Bruzzone R, Caplan A, Delfraissy JF, et al. Randomised con-

trolled trials for Ebola: practical and ethical issues. Lancet. 2014; 384(9952):1423. https://doi.org/10.

1016/S0140-6736(14)61734-7 PMID: 25390318

8. Edwards T, Semple MG, De Weggheleire A, Claeys Y, De Crop M, Menten J, et al. Design and analysis

considerations in the Ebola_Tx trial evaluating convalescent plasma in the treatment of Ebola virus dis-

ease in Guinea during the 2014-2015 outbreak. Clinical Trials (London, England). 2016; 13(1):13–21.

https://doi.org/10.1177/1740774515621056

9. Thielman NM, Cunningham CK, Woods C, Petzold E, Sprenz M, Russell J. Ebola clinical trials: Five les-

sons learned and a way forward. Clinical trials. 2016; 13(1):83–86. https://doi.org/10.1177/

1740774515619897 PMID: 26768559

10. Frieden TR. Evidence for health decision making–beyond randomized, controlled trials. New England

Journal of Medicine. 2017; 377(5):465–475. https://doi.org/10.1056/NEJMra1614394 PMID: 28767357

Performance of different clinical trial designs to evaluate treatments during an epidemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0203387 September 11, 2018 18 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203387.s004
https://doi.org/10.1016/S0140-6736(15)00946-0
https://doi.org/10.1016/S0140-6736(15)00946-0
http://www.who.int/csr/resources/publications/ebola/report-by-panel.pdf?ua=1
http://dx.doi.org/10.17226/24739
http://www.who.int/csr/research-and-development/WHO-R_D-Final10.pdf?ua=1
https://doi.org/10.1016/S1473-3099(17)30234-7
https://doi.org/10.1016/S1473-3099(17)30234-7
http://www.ncbi.nlm.nih.gov/pubmed/28461209
https://doi.org/10.1001/jama.2014.12867
http://www.ncbi.nlm.nih.gov/pubmed/25211645
https://doi.org/10.1016/S0140-6736(14)61734-7
https://doi.org/10.1016/S0140-6736(14)61734-7
http://www.ncbi.nlm.nih.gov/pubmed/25390318
https://doi.org/10.1177/1740774515621056
https://doi.org/10.1177/1740774515619897
https://doi.org/10.1177/1740774515619897
http://www.ncbi.nlm.nih.gov/pubmed/26768559
https://doi.org/10.1056/NEJMra1614394
http://www.ncbi.nlm.nih.gov/pubmed/28767357
https://doi.org/10.1371/journal.pone.0203387


11. Garske T, Cori A, Ariyarajah A, Blake IM, Dorigatti I, Eckmanns T, et al. Heterogeneities in the case

fatality ratio in the West African Ebola outbreak 2013–2016. Phil Trans R Soc B. 2017; 372

(1721):20160308. https://doi.org/10.1098/rstb.2016.0308 PMID: 28396479

12. Beyersmann J, Allignol A, Schumacher M. Competing Risks and Multistate Models with R. Springer

Science & Business Media; 2011.

13. Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds models for

censored survival data, with application to prognostic modelling and estimation of treatment effects.

Statistics in Medicine. 2002; 21(15):2175–2197. https://doi.org/10.1002/sim.1203 PMID: 12210632

14. Jackson C. flexsurv: A Platform for Parametric Survival Modeling in R. Journal of Statistical Software.

2016; 70(8):1–33. https://doi.org/10.18637/jss.v070.i08

15. Cooper BS, Boni MF, Pan-ngum W, Day NPJ, Horby PW, Olliaro P, et al. Evaluating Clinical Trial

Designs for Investigational Treatments of Ebola Virus Disease. PLOS Medicine. 2015; 12(4):e1001815.

https://doi.org/10.1371/journal.pmed.1001815 PMID: 25874579

16. Berry SM, Petzold EA, Dull P, Thielman NM, Cunningham CK, Corey GR, et al. A response adaptive

randomization platform trial for efficient evaluation of Ebola virus treatments: A model for pandemic

response. Clinical Trials (London, England). 2016; 13(1):22–30. https://doi.org/10.1177/

1740774515621721

17. Magirr D, Jaki T, Whitehead J. A generalized Dunnett test for multi-arm multi-stage clinical studies with

treatment selection. Biometrika. 2012; 99(2):494–501. https://doi.org/10.1093/biomet/ass002

18. Ghosh P, Liu L, Senchaudhuri P, Gao P, Mehta C. Design and monitoring of multi-arm multi-stage clini-

cal trials. Biometrics. 2017; https://doi.org/10.1111/biom.12687 PMID: 28346823

19. Saville BR, Berry SM. Efficiencies of platform clinical trials: A vision of the future. Clinical Trials (London,

England). 2016; 13(3):358–366. https://doi.org/10.1177/1740774515626362

20. Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. CRC Press;

1999.

21. Anderson K. gsDesign: Group Sequential Design; 2016. Available from: https://CRAN.R-project.org/

package=gsDesign.

22. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian Approaches to Clinical Trials and Health-Care Eval-

uation. John Wiley & Sons; 2004.

23. The PREVAIL II Writing Group. A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection.

New England Journal of Medicine. 2016; 375(15):1448–1456. https://doi.org/10.1056/NEJMoa1604330

PMID: 27732819

24. R Core Team. R: A Language and Environment for Statistical Computing; 2017. Available from: https://

www.R-project.org/.

25. Allignol A, Schumacher M, Beyersmann J. Empirical Transition Matrix of Multi-State Models: The etm

Package. Journal of Statistical Software. 2011; 38(4):1–15. https://doi.org/10.18637/jss.v038.i04

26. Hobbs BP, Sargent DJ, Carlin BP. Commensurate Priors for Incorporating Historical Information in Clin-

ical Trials Using General and Generalized Linear Models. Bayesian Analysis. 2012; 7(3):639–674.

https://doi.org/10.1214/12-BA722 PMID: 24795786

27. Schmidli H, Gsteiger S, Roychoudhury S, O’Hagan A, Spiegelhalter D, Neuenschwander B. Robust

meta-analytic-predictive priors in clinical trials with historical control information. Biometrics. 2014;

70:1023–1032. https://doi.org/10.1111/biom.12242 PMID: 25355546

Performance of different clinical trial designs to evaluate treatments during an epidemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0203387 September 11, 2018 19 / 19

https://doi.org/10.1098/rstb.2016.0308
http://www.ncbi.nlm.nih.gov/pubmed/28396479
https://doi.org/10.1002/sim.1203
http://www.ncbi.nlm.nih.gov/pubmed/12210632
https://doi.org/10.18637/jss.v070.i08
https://doi.org/10.1371/journal.pmed.1001815
http://www.ncbi.nlm.nih.gov/pubmed/25874579
https://doi.org/10.1177/1740774515621721
https://doi.org/10.1177/1740774515621721
https://doi.org/10.1093/biomet/ass002
https://doi.org/10.1111/biom.12687
http://www.ncbi.nlm.nih.gov/pubmed/28346823
https://doi.org/10.1177/1740774515626362
https://CRAN.R-project.org/package=gsDesign
https://CRAN.R-project.org/package=gsDesign
https://doi.org/10.1056/NEJMoa1604330
http://www.ncbi.nlm.nih.gov/pubmed/27732819
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.18637/jss.v038.i04
https://doi.org/10.1214/12-BA722
http://www.ncbi.nlm.nih.gov/pubmed/24795786
https://doi.org/10.1111/biom.12242
http://www.ncbi.nlm.nih.gov/pubmed/25355546
https://doi.org/10.1371/journal.pone.0203387

