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The mechanisms underlying sepsis-induced cardiomyopathy (SIC) remain poorly
understood, and there are no specific therapeutics for SIC. We investigated the effects
of maresin conjugates in tissue regeneration 1 (MCTR1) on SIC and explored its potential
mechanisms. The experiments were conducted using an endotoxemia model induced by
lipopolysaccharide (LPS). Mice were given MCTR1 intravenously 6 h after LPS stimulation.
Echocardiography was performed to assess cardiac function 12 h after LPS
administration. Treatment with MCTR1 significantly enhanced cardiac function and
reduced LPS-induced increase of mRNA expression levels of inflammation cytokines.
Transcriptomic analysis indicated that MCTR1 inhibited neutrophil chemotaxis via the IL-
17 signaling pathway. We confirmed that MCTR1 reduced the expressions of neutrophil
chemoattractants and neutrophil infiltration in the LPS-stimulated hearts. MCTR1 also
resulted in a considerable reduction in IL-17A production mainly derived from gd T cells.
Moreover, our results provided the first evidence that neutralizing IL-17A or depletion of gd
T cells markedly decreased neutrophil recruitment and enhanced cardiac function in LPS-
induced cardiac injury. These results suggest that MCTR1 alleviates neutrophil infiltration
thereby improves cardiac function in LPS-induced cardiac injury via the IL-17 signaling
pathway. Thus, MCTR1 represented a novel therapeutic strategy for patients with SIC.

Keywords: neutrophil, interleukin-17A, lipopolysaccharide, cardiac injury, gd T cells
INTRODUCTION

Sepsis is defined as a lethal organ dysfunction caused by a dysregulated host response to infection (1).
The heart is one of the most vulnerable organs in sepsis. Sepsis-induced cardiac dysfunction, also
called sepsis-induced cardiomyopathy (SIC), has been summarized as a global (systolic and diastolic)
but reversible dysfunction of both the left and right sides of the heart (2–4). Despite remarkable
org April 2021 | Volume 12 | Article 6745421

https://www.frontiersin.org/articles/10.3389/fimmu.2021.674542/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.674542/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.674542/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.674542/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.674542/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:wjg@wmu.edu.cn
mailto:jsw@wmu.edu.cn
https://doi.org/10.3389/fimmu.2021.674542
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.674542
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.674542&domain=pdf&date_stamp=2021-04-26


Yang et al. MCTR1 Reduces Neutrophil Infiltration
scientific and clinical efforts, the mechanisms underlying the
myocardial dysfunction in sepsis are still not fully understood,
and there are no specific therapeutics for SIC (3).

The pathophysiologic cascade of sepsis begins when the host
immune system responds to an invading pathogen, resulting in the
immune response activation. Interleukin-17A (IL-17A) is one of the
members of the IL-17 family. Compared with other members, IL-
17A plays a more prominent role in the mammalian immune
system (5–7). IL-17A is a critical mediator of neutrophil
recruitment and migration through the induction of
granulopoiesis and the production of neutrophil chemokines,
including granulocyte colony-stimulating factor (G-CSF),
chemokine (C-X-C motif) ligand 1 protein (CXCL1), and
chemokine (C-X-C motif) ligand 2 protein (CXCL2) (8).
Although IL-17A exerts a host-defensive role in many infectious
diseases, it promotes inflammatory pathology in auto-immunity
and other settings (9). Dysregulated IL-17A production or
uncontrolled response to IL-17A signaling promotes pathogenic
inflammation (10). In the mouse model of myocardial ischemia–
reperfusion injury, IL-17A was mainly produced by gd T cells, and
blockade of IL-17A significantly reduced neutrophil infiltration in
the heart and alleviated cardiac injury (11, 12). Moreover, anti-IL-
17A could protect the lungs in lipopolysaccharide (LPS)-induced
acute lung injury and improve survival in polymicrobial sepsis
induced by cecal ligation and puncture (CLP) (13–15). However,
the role of IL-17A in sepsis-induced cardiac dysfunction is not clear.

Specialized pro-resolving mediators (SPMs) are enzymatically
derived from essential fatty acids and have crucial roles in
restoring tissue homeostasis during tissue inflammation (16).
SPMs are distinct from immunosuppressive molecules as they
not only dampen inflammation but also promote host defense
(17). SPMs are partly defined by their overlapping functions as
limiting neutrophil tissue accumulation, counter-regulating pro-
inflammatory cytokines, and encouraging macrophage
phagocytosis (18). Previous investigations indicated that the IL-
17 signaling pathway might involve the inflammation resolving
work of SPMs in myocardial infarction and allergic airway
inflammation (19–21). In our previous study, we found that
maresin conjugates in tissue regeneration 1 (MCTR1), a newly
identified SPM, could reduce lipopolysaccharide (LPS)-induced
cardiac injury by upregulating mitochondrial biosynthesis and
improve the survival rate (22). The mechanism of SPMs on sepsis-
induced cardiac dysfunction is not clear, and whether the IL-17
signaling pathway is engaged is also unknown. Therefore, in this
study, we tried to clarify the mechanism by which MCTR1
reversed sepsis-induced cardiac dysfunction. We also verified the
role of IL-17A in sepsis-induced cardiac dysfunction and
confirmed whether IL-17A participated in the effect of MCTR1
on sepsis-induced cardiac dysfunction.
MATERIALS AND METHODS

Animals
All animal care and experimental protocols complied with the
Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health (NIH Publication 8th edition,
Frontiers in Immunology | www.frontiersin.org 2
2011). Eight-to-twelve-week-old male C57BL/6 mice (Shanghai
Experimental Animal Center of China) were used in this study,
and the weight of mice was around 25 g. All these mice were
housed at four per cage and maintained in a specific pathogen-
free room with controlled temperature (23 ± 1°C) and humidity
(55 ± 5%) under a 12 h light/dark cycle. The mice were given
standard laboratory chow and water ad libitum. All animal
experiments were approved by the Animal Studies Ethics
Committees of the Second Affiliated Hospital of Wenzhou
Medical University.

Experimental Procedures
To evaluate the effects of MCTR1 on cardiac after LPS
stimulation, the mice were randomly divided into four groups:
saline control, LPS, LPS plus MCTR1, and MCTR1 along groups.
The mouse model of endotoxemia was induced by an
intraperitoneal injection of 0.2 ml of sterile saline containing
LPS (10 mg/kg, serotype 055: B5; Sigma, Saint Louis, MO, USA).
The control mice received an injection of saline in the same
volume and route. MCTR1 was obtained from Cayman
Chemical (Ann Arbor, MI, USA). MCTR1 was dissolved in
ethanol supplied by the manufacturer and was stored at −80°C.
Ethanol was blown away by nitrogen before use, and MCTR1
was dissolved rapidly in sterile saline to the desired
concentration. In the MCTR1 groups, mice received MCTR1
(0.15 nmol/mouse) intravenously via the caudal vein 6 h after
LPS stimulation as previously described (22). The dose of
MCTR1 was selected based on previous studies (22, 23).

To evaluate the role of the gd T cells and IL-17A in the cardiac
dysfunction after LPS stimulation, neutralization of endogenous
IL-17A and depletion of gd T cells were performed.
Neutralization of endogenous IL-17A as previously described
(12, 24), 100 mg anti-mouse IL-17A antibody (CAT: MAB421,
R&D System, Minneapolis, MN, USA) or 100 mg isotype control
antibody was administered intravenously 5 min before LPS
treatment. Mice were depleted of gd T cells as previously
described (14, 25). Five days before treatment with LPS, 500
mg Ultra-LEAFTM Purified anti-mouse TCRgd antibody (CAT:
107517, BioLegend, San Diego, CA, USA) was administrated to
mice by intraperitoneal injection. Sham depletion mice received
equal amounts of isotype control antibodies. For tissue
collection, mice were anesthetized by overdose pentobarbital
sodium (100 mg/kg intraperitoneal injection) and then
sacrificed by bloodletting from the abdominal aorta at 12 h
after LPS treatment.

Echocardiography
Echocardiography was performed with a Vevo 3100 instrument
(Visual Sonics, Toronto, ON, Canada) as described previously
(12, 26). Mice were anesthetized with 1.2% isoflurane. Left
ventricular end-diastolic volume (LVEDV) and left ventricular
end-systolic volume (LVESV) were evaluated using B-mode
configuration. Left ventricular ejection fraction (EF) was
calculated using the following formula: EF = [(LVEDV −
LVESV)/LVEDV] × 100%. Left ventricular end-diastolic
diameter (LVEDD) and Left ventricular end-systolic diameter
(LVESD) were measured from M-mode tracing. Left ventricular
April 2021 | Volume 12 | Article 674542
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fractional shortening (FS) was calculated using the following
formula: FS = [(LVEDD − LVESD)/LVEDD] × 100%.

RNA-Seq
RNA-Seq was performed by Aksomics (Shanghai, China).
Significance of differential ly expressed genes from
transcriptome data was statistically determined with moderated
t-test (p-value < 0.05), and false discovery rate (FDR; < 0.05%).
The statistically significant genes were submitted to DAVID
version 6.8 software (http://david.abcc.ncifcrf.gov) for gene
ontology (GO) analysis. Functional pathways were selected in
the KEGG database (Kyoto encyclopedia of genes and genomes,
https://www.kegg.jp). Significantly enriched GO or functional
pathways for up-regulated (UP) and down-regulated (DOWN)
groups were visualized with –log10 transformation of p-value.

Western Blotting Analysis
Tissues from the left ventricular were lysed in a RIPA lysis buffer
with PMSF. The supernatants were quantified using the
bicinchoninic acid (BCA) method. Then 30 mg denatured
prote in samples were separa ted by 10–12% SDS-
polyacrylamide gel and transferred onto PVDF membranes
(Millipore, Billerica, MA, USA). After blocking with 5%
skimmed milk in TBST at room temperature for 2 h, the
membranes were probed overnight at 4°C with one of the
f o l l ow ing p r ima r y an t i b od i e s : CXCL1 ( 1 : 1 , 0 00 ,
Affinity Biosciences, Changzhou, China) and G-CSF (1:1,000,
Bioss, Beijing, China). The membranes were then washed off of
excess antibody and incubated with horseradish peroxidase-
linked secondary antibodies (1:3,000) at room temperature for
1 h. After washing with TBST, the specific bands were visualized
using the chemiluminescence detection system and analyzed
with the AlphaEaseFC software (Alpha Innotech, San Leandro,
CA, USA).

ELISA
IL-17A in mouse serum was determined using a mouse IL-17A
enzyme-linked immunosorbent assay (ELISA) kit (Boyun biotech,
Shanghai, China) according to the manufacturer’s instructions.

Immunofluorescence
Immunofluorescence analysis was performed on the paraffin-
embedded sections. After deparaffinization, rehydration, and
antigen retrieval with sodium citrate (pH 6.0), the tissue
Frontiers in Immunology | www.frontiersin.org 3
sections were blocked with donkey serum at room temperature
for 1 h. Subsequently, the tissue sections were incubated with an
anti-CXCL1 primary antibody (1:100, Affinity Biosciences,
Changzhou, China) or an anti-Ly6G primary antibody (1:100,
R&D Systems, Minneapolis, MN, USA) overnight at 4°C.
Secondary antibodies coupled to Alexa Fluor 594 fluorophores
(1:200) were then used and applied for 1 h at room temperature.
Nuclei were stained with DAPI. Finally, tissue sections were
observed with a Zeiss fluorescence microscope (Carl Zeiss AG,
Oberkochen, Germany). A specific region of interest (ROI) was
analyzed using ImageJ (version 1.38×, NIH, Bethesda, MD, USA)
based on previous report (27).

Quantitative PCR
Total RNA was extracted from mouse left ventricular tissues
using TRIzol Reagent (Invitrogen, Carlsbad, CA, USA).
Complementary DNA was synthesized from 1 mg RNA by
reverse transcription kit (Thermo Scientific, Rockford, IL,
USA). SYBR Green Real-time PCR Master Mix (Toyobo,
Osaka, Japan) was used for real-time PCR. Gene expression
levels were normalized with GAPDH as the housekeeping gene,
and the expression changes were calculated using the 2−△△Ct
method. All primer sequences were summarized in Table 1.

Flow Cytometric Analysis
Single-cell suspensions were prepared as described previously
(12, 28). Briefly, mice were deeply anesthetized and intracardially
perfused with 20 ml of ice-cold PBS to eliminate blood cells. The
hearts were minced with fine scissors and placed into a cocktail
of 1 mg/ml collagenase II (Worthington, Lakewood, NJ, USA),
100 U/ml elastase (Worthington), and 100 U/ml DNase I
(Sigma-Aldrich) and shaken at 37°C for 1 h. Tissue samples
were then triturated through a 70 mm cell strainer and
centrifuged (5 min, 400 g, 4°C). The obtained cells were
counted after erythrocyte lysis and washed using PBS for
further analysis. For staining, 5 × 106 cells were pre-incubated
for 5 min on ice with anti-CD16/CD32 antibody (2.4G2, BD
Bioscience, San Jose, CA, USA) to block the non-specific
antibody and then stained with directly conjugated antibodies
for 30 min at 4°C in the dark in PBS. For intracellular cytokine
staining, single-cell suspensions were stimulated with 50 ng/ml
(PMA, Sigma-Aldrich), 1 mg/ml ionomycin (Sigma-Aldrich),
and Golgi-PlugTM (BD Biosciences) for 4 h. Surface staining
was performed first. After fixation and permeabilization using
TABLE 1 | Primer sequences for quantitative PCR.

Gene Gene bank no. Forward (5′–3′ sequence) Reverse (5′–3′ sequence)

Nppb NM_001287348.1 GAAGGACCAAGGCCTCACAA ACTTCAGTGCGTTACAGCCC
Tnf NM_001278601.1 CCCTCACACTCACAAACCAC ACAAGGTACAACCCATCGGC
Il1b NM_008361.4 TGCCACCTTTTGACAGTGATG TGATGTGCTGCTGCGAGATT
Il6 NM_031168.2 TGATGTGCTGCTGCGAGATT CGCACTAGGTTTGCCGAGTA
ccl2 NM_011333.3 TGCCCTAAGGTCTTCAGCAC AAGGCATCACAGTCCGAGTC
ccl7 NM_013654.3 GGTCACGCCTAAGGAATGGT GGGGGAGAATTCTGCAGCTAA
cxcl1 NM_008176.3 ACTCAAGAATGGTCGCGAGG GTGCCATCAGAGCAGTCTGT
G-csf NM_009971.1 CAGCCCAGATCACCCAGAATC GCTGCAGGGCCATTAGCTTC
Il17a NM_010552.3 GCTGACCCCTAAGAAACCCC GAAGCAGTTTGGGACCCCTT
Gapdh NM_001289726.1 GGGTCCCAGCTTAGGTTCAT GGGACGAGGAAACACTCTCC
April 20
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the Cytofix/Cytoperm Soln kit (BD Biosciences), intercellular
proteins were stained. All experiments were performed on an
Attune NxT flow cytometer (Invitrogen) and analyzed using
FlowJo version 10 software.

Myeloperoxidase Activity
The heart tissues were weighed and homogenized in the
homogenate medium supplied by the myeloperoxidase (MPO)
test kit (Jiancheng, Nanjing, China). We determined the MPO
activity according to the manufacturer’s instructions.

Statistics
Data are represented as mean ± standard deviation (SD). All data
were analyzed by one-way analysis of variance followed by
Tukey’s post hoc test for multiple comparisons. P-values <0.05
were considered statistically significant. Statistical analyses were
performed using GraphPad Prism 7.0 software (GraphPad
Software, San Diego, CA).
RESULTS

Post-Treatment With MCTR1 Improved
Cardiac Function in LPS-Induced
Cardiac Injury
We previously demonstrated that cardiac function was decreased
after LPS administration and peaked at 6 and 12 h after challenge
(22). To verify whether MCTR1 can promote cardiac function
Frontiers in Immunology | www.frontiersin.org 4
recovery from damages of LPS, mice received MCTR1 6 h after
administration with LPS. Then cardiac function was determined
using echocardiography in another 6 h, that is 12 h after LPS
administration (Figure 1A). The results in this study revealed
that the left ventricular end-systolic volume (LVESV)
significantly increased after the application of LPS. Post-
treatment with MCTR1 markedly attenuated the increase of
LVESV induced by LPS (Figure 1B). LPS significantly
decreased left ventricular fractional shortening (FS) and
ejection fraction (EF), which could be notably recuperated by
MCTR1 without any effects on baseline cardiac function, and the
values of FS and EF in the LPS + MCTR1 group were
significantly lower than in the MCTR1 alone group (Figures
1C, D). These results indicated that MCTR1 could partly
improve cardiac function in LPS-induced cardiac injury.
In accordance with this, MCTR1 significantly reduced the
mRNA expression level of natriuretic peptide B (nppb) which
was up-regulated by LPS (Figure 1E). MCTR1 treatment
markedly attenuated LPS-induced increase of mRNA
expression levels of inflammation mediators as well, while the
mRNA expressions of those mediators were significantly higher
in the LPS + MCTR1 group than in the MCTR1 alone group
(Figures 1F–H).

RNA-Seq Analysis
To explore the mechanism of the effect of MCTR1 on the heart in
LPS-induced endotoxemia, we performed RNA sequencing-
based transcriptomic profiling of RNA isolated from cardiac
tissues derived from LPS group and LPS + MCTR1 group in
A B C D

E F G H

FIGURE 1 | The effect of MCTR1 on cardiac function in LPS-challenged mice. (A) Representative M-mode echocardiographic recordings. (B–D) Left ventricular
end-systolic volume (LVESV), fractional shortening (FS), and ejection fraction (EF) were analyzed (n = 8). (E–H) Nppb, Tnf-a, IL-1b, and IL-6 mRNA expressions were
examined by quantitative PCR in the hearts (n = 6). Data are shown as means ± SD. **P < 0.01; ***P < 0.001; NS, not significant.
April 2021 | Volume 12 | Article 674542
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triplicate. Gene expression profiles of the two groups were
evaluated by gene ontology (GO) and functional pathways
(Kyoto encyclopedia of genes and genomes, KEGG) analysis.
Genes were mostly enriched in the following top five GO groups
(Figure 2A): response to organic substance, neutrophil
chemotaxis, granulocyte chemotaxis, neutrophil migration and
chemokine mediated signaling. KEGG pathway enrichment
analysis demonstrated that the IL-17 signaling pathway was
the most significantly affected pathway (Figure 2B).

MCTR1 Repressed the Expressions of
Neutrophil Chemokines
We first verified several chemokines that changed significantly in
transcriptomic results using quantitative PCR. The mRNA
expression levels of CCL2, CCL7, CXCL1, and G-CSF
exhibited remarkably enhancement in the LPS group compared
with the control group. MCTR1 significantly attenuated the
increase of these chemokines induced by LPS. Among them,
the expression levels of CXCL1 and G-CSF, well-known
neutrophil chemoattractants, changed most obviously (Figures
3A–D). Next, we used western blot to determine the protein
expression levels of CXCL1 and G-CSF. The results revealed that
MCTR1 dramatically down-regulated the CXCL1 and G-CSF in
protein expression levels which were increased in the LPS group,
while MCTR1 alone did not affect both of them (Figures 3E–G).
Immunofluorescence analyses of cardiac tissues confirmed that
CXCL1 mainly expressed in the LPS-injured hearts with very low
Frontiers in Immunology | www.frontiersin.org 5
expression in the non-LPS challenge hearts, and in line with
aforementioned results, MCTR1 could considerably lessened the
expression of CXCL1 induced by LPS, while the level of CXCL1
was significantly higher in the LPS + MCTR1 group than in the
MCTR1 alone group (Figures 3H, I).

MCTR1 Attenuated Neutrophil Infiltration
in LPS-Stimulated Hearts
Consistent with increased chemoattractants, LPS induced a surge
in neutrophil recruitment to the myocardium, and MCTR1
dramatically attenuated neutrophil recruitment induced by LPS
as determined by flow cytometric analysis of CD11b+Ly6G+

neutrophils; neutrophil ratio was significantly higher in the
LPS + MCTR1 group than in the MCTR1 alone group
(Figures 4A, B). Immunofluorescence analyses of Ly6G
expression and MPO activity determination confirmed that
neutrophil infiltration was increased in the LPS group versus
control group, and MCTR1 significantly reduced neutrophil
infiltration in the LPS-stimulated hearts, Ly6G expression and
MPO activity were significantly higher in the LPS + MCTR1
group than in the MCTR1 alone group (Figures 4C–E).

MCTR1 Alleviated the Expression of
IL-17A in LPS-Stimulated Hearts
As the IL-17 signaling pathway may be involved in the effect of
MCTR1 on cardiac function according to the transcriptomic
analysis, and one of the prominent roles of IL-17A is neutrophil
A

B

FIGURE 2 | Distinct transcriptional signature between LPS and LPS + MCTR1 groups. 12 h after LPS treatment, the hearts were harvested and the transcriptome
were analyzed by RNA Sequencing (RNA-Seq) technology between LPS and LPS + MCTR1 groups. Significance of differentially expressed genes was divided into
UP- and DOWN-regulated gene lists. UP and DOWN genes were submitted for gene ontology (GO) analysis (A) and Kyoto encyclopedia of genes and genomes
(KEGG) pathway enrichment analyses (B).
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recruitment, we therefore first determined the expression of IL-
17A by quantitative PCR and ELISA. The results revealed that
LPS stimulation resulted in a significant increase in IL-17A
production in the mouse hearts, which was markedly reduced
in LPS + MCTR1 group, and the production of IL-17A was
significantly higher in the LPS + MCTR1 group than in the
MCTR1 alone group (Figures 5A, B). Accumulating evidence
demonstrated that lymphocytes and innate myeloid immune
cells are able to produce IL-17A (6). To clarify the cell source of
IL-17A in the LPS-stimulation hearts, cardiac single cell
Frontiers in Immunology | www.frontiersin.org 6
suspension was stained and analyzed by flow cytometry. The
results showed that gd T cells were the dominant cells secreting
IL-17A, but not CD4+ (Th17) or CD8+ T cells (Figures 5C–E).
Treatment with MCTR1 resulted in a considerable reduction in
IL-17A production from T cells in LPS challenged hearts, and IL-
17A production was significantly higher in the LPS + MCTR1
group than in the MCTR1 alone group (Figures 5F, G).
Collectively, these results indicated that MCTR1 alleviated
neutrophil infiltration by reducing the production of IL-17A
mainly derived from gd T cells in LPS-induced cardiac injury.
A

E

H I

F G

B C D

FIGURE 3 | The effect of MCTR1 on chemokines expression in cardiac injury after LPS administration. (A–D) mRNA expression levels of CCL2, CCL7, CXCL1
and G-CSF were examined using quantitative PCR in the hearts (n = 6). (E–G) Protein expression levels of CXCL1 and G-CSF were detected by western
blotting. Densitometry ratios of target proteins to loading control GAPDH were obtained (n = 6). (H) The Representative immunofluorescence staining of CXCL1
in the hearts. (I) Fluorescence intensity of CXCL1 was determined by using Image J software (n = 4). Data are shown as means ± SD. **P < 0.01; ***P < 0.001;
NS, not significant.
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Neutralization of Endogenous IL-17A or
Depletion of gd T Cells Protects Against
LPS-Induced Cardiac Injury
The roles of IL-17A and gd T cells in LPS-induced cardiac injury
are still not elucidated, and we have demonstrated that IL-17A
was mainly derived from gd T cells in LPS-induced cardiac
injury. To verify the effect of IL-17A derived from gd T cells,
we first depleted gd T cells in mice by administrating anti-TCRgd
antibody and observed that the production of IL-17A in these gd
T cells depletion mice robustly decreased after LPS treatment
(Figures 6A, B). We next analyzed mRNA expression levels of
neutrophil chemoattractants upon neutralizing IL-17A or
depleting gd T cells in endotoxemia. As shown in Figures
6C, D, either neutralization of IL-17A or depletion of gd T
cells could significantly reduce mRNA levels of CXCL1 and G-
CSF. Likewise, neutralizing IL-17A markedly decreased
neutrophil infiltration as well as depletion of gd T cells as
determined by MPO activity and flow cytometry analysis in
LPS-induced cardiac injury (Figures 6E–G). There was no
significant difference in CXCL1 and G-CSF mRNA levels,
MPO activity, and neutrophil ratio between the LPS + anti-IL-
17A group and the LPS + anti-TCRgd group (Figures 6C–G). To
Frontiers in Immunology | www.frontiersin.org 7
assess whether the neutralization of IL-17A or depletion of gd T
cells reversed the cardiac function inhibition caused by the
general inflammation, we analyzed LVFS and LVEF 12 h after
LPS administration. Neutralization of IL-17A could improve
cardiac function to the same extent as depletion of gd T cells
(Figures 6H–J).
DISCUSSION

The present study investigated the effects and the mechanisms
involved in the post-treatment with MCTR1 in the LPS-induced
cardiac injury. Our results revealed that post-treatment with
MCTR1 after intraperitoneal injection of LPS enhanced cardiac
function and decreased the inflammation mediators in gene and
protein levels. According to the transcriptome analysis, we
confirmed that MCTR1 caused the reduction of neutrophil
chemoattractants levels and the alleviation of neutrophil
infiltration. MCTR1 also inhibited the production of IL-17A,
which is mainly derived from gd T cells in LPS-injured heart. In
addition, our study added novel findings that neutralization of
IL-17A or depletion of gd T cells significantly ameliorated LPS-
A

C

B

D

E

FIGURE 4 | MCTR1 reduced neutrophils infiltration in LPS-induced cardiac injury. (A) The representative flow cytometry dot plots of CD11b+Ly6G+ neutrophils
infiltrated in myocardium. (B) Percentage of CD11b+Ly6G+ neutrophil population in the hearts (n = 4). (C) Representative immunofluorescence staining of Ly6G in
hearts. (D) Fluorescence intensity of Ly6G was determined by Image J software (n = 4). (E) Cardiac MPO activity was examined by MPO test kit (n = 6). Data are
shown as means ± SD. **P < 0.01; ***P < 0.001; NS, not significant.
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induced cardiac injury, which was associated with a reduction of
neutrophil infiltration and improvement of cardiac function.

Patients with SIC typically exhibit ventricular dilatation,
reduced ventricular contractility, and/or both right and left
ventricular dysfunction with a reduced response to volume
infusion (2, 29). We previously demonstrated that cardiac
function in mice decreased most significantly at 6 and 12 h
after intraperitoneal injection of LPS, and then gradually
recovered (22). Here, we found that post-treatment with
MCTR1 6 h after LPS treatment markedly reduced the left
ventricular end-systolic volume and increased the left
ventricular fractional shortening, left ventricular ejection
fraction. Under this, MCTR1 inhibited LTD4-induced adverse
inotropic action in isolated Ciona intestinalis (sea squirt)
primordial hearts (23). In the LPS-induced acute lung injury,
MCTR1 alleviated lung injury by protecting lung endothelial
glycocalyx (30). In an animal model of myocardial infarction
(MI), another SPM, RvD1 reduced neutrophil infiltration in
ventricular and attenuated inflammation, thereby leading to
the improvement of cardiac function (21).

Following cardiac injury, neutrophils lead the first wave of
host defense to infection or tissue damage. Neutrophils are
essential for the initiation of inflammation, resolving, and
Frontiers in Immunology | www.frontiersin.org 8
cardiac repair (31, 32). However, excess infiltration and
activation of neutrophils lead to collateral damage in the
myocardium (33). After the onset of inflammation, neutrophils
and macrophages produce a series of SPMs, including lipoxins,
resolvins, protectins, and maresins (16). These SPMs inhibit the
excessive infiltration of neutrophils and help orchestrate the
return to homeostasis (34–36). Transcriptome profiling in this
study suggested that MCTR1 decreased neutrophil infiltration in
which the IL-17 signaling pathway involved, and we confirmed
that MCTR1 reduced the expression levels of G-CSF and CXCL1
which regulated neutrophil chemotaxis, decreased neutrophil
recruitment in LPS-injured heart. IL-17 dominantly signals in
non-hematopoietic cells (such as tissue-resident macrophages)
to induce chemokines, including CXCL1, CXCL2, and CXCL8
(IL-8). These chemokines can attract neutrophils to infected or
injured tissues. In addition, IL-17 induces G-CSF, which
promotes the production and maturation of neutrophils from
the bone marrow (33, 37). Our previous study revealed that
MCTR1 promoted M2 polarization of resident macrophages via
the STAT6 pathway to accelerate resolution of LPS-induced lung
injury (38).

Previous studies revealed that the production of G-CSF and
CXCL1 were regulated by IL-17A, which was primarily produced
A

D

F G

E

B C

FIGURE 5 | MCTR1 attenuated IL-17A production and IL-17A+ cells in LPS-induced cardiac injury. (A) The mRNA level of IL-17A in hearts was examined using
quantitative PCR (n = 6). (B) IL-17A in serum was determined by ELISA (n = 6). (C) Flow cytometric analysis of CD11b and CD3 expressions on gated IL-17A+ cells
in the LPS-damaged hearts. (D, E) TCRgd, CD4, and CD8 expressions on gated CD3+IL-17A+ cells were examined by flow cytometric analysis in the LPS-damaged
hearts (n = 4). (F, G) The percentage of IL-17A+ cells in all CD3+ T cells was determined by flow cytometric analysis (n = 5). Data are shown as means ± SD.
*P < 0.05; ***P < 0.001; NS, not significant.
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by gd T cells and played a pathogenic role in myocardial I/R
injury by inducing neutrophil infiltration (11, 12). These findings
support our results that IL-17A was predominantly produced by
gd T cells but not CD4+ or CD8+ T cells in LPS-induced cardiac
injury. IL-17A also contributed to the mechanisms of cardiac
injury in the heart transplantation model (24, 39), angiotensin II-
induced hypertensive heart injury (40), and myocarditis-induced
cardiac fibrosis (41). The elevated plasma IL-17 level was
Frontiers in Immunology | www.frontiersin.org 9
associated with poor outcomes in post-cardiac arrest syndrome
patients and left ventricular diastolic function in patients with
diastolic heart failure (42, 43). Several clinical trials have been
operated to evaluate the correlation between pro-inflammation
mediators (IL-17) and sepsis (or SIC). However, the findings
have been somewhat inconsistent. In critically ill children
with severe sepsis, IL-17 showed a weak positive correlation
with severity of illness and was significantly higher among
A

C

F

H I J

G

D E

B

FIGURE 6 | Neutralization of IL-17A or depletion of gd T cells reduced neutrophil infiltration and improved cardiac function in LPS-induced cardiac injury.
Cardiac function was determined using small animal ultrasound and cardiac tissues were collected 12 h after stimulation with LPS. (A, B) IL-17A+ cells in all
CD3+ T cells were examined by flow cytometric analyses (n = 5). (C, D) mRNA levels of G-CSF and CXCL1 were analyzed using quantitative PCR (n = 6).
(E) Cardiac myeloperoxidase activity was examined by MPO test kit (n = 6). (F, G) Flow cytometric analyses of the percentage of CD11b+Ly6G+ neutrophils in
hearts (n = 4). (H) Representative cardiographic images of M-mode. (I, J). Left ventricular FS and EF were determined by Echocardiographic analysis (n = 8).
Data are shown as means ± SD. ***P < 0.001; NS, not significant.
April 2021 | Volume 12 | Article 674542

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. MCTR1 Reduces Neutrophil Infiltration
non-survivors (44). Elevated serum IL-17 may increase
the susceptibility for septic complications in polytrauma
patients (45). However, in another preliminary study, the
IL‐17/IFN pathway was associated with a faster sepsis
resolution and a better survival (46). Here, we found that the
level of IL-17A increased in the LPS-stimulated mice. In
addition, our results provide the first evidence that
neutralization of IL-17A or depletion of gd T cells significantly
down-regulated the G-CSF and CXCL1 levels, profoundly
decreased neutrophil infiltration, and reversed the cardiac
function in LPS-induce cardiac injury.

Our results also exhibited that post-treatment with MCTR1
reduced the IL-17A secretion in LPS-induced cardiac injury.
Consistent with our results, previous studies have demonstrated
that some SPMs could promote inflammation resolution by
targeting at IL-17 signaling pathway. For example, resolvin E1
and resolvin E3 alleviated allergic airway inflammation by
inhibiting the production of IL-17A (19, 20). Maresin 1
reduced IL-17A production by gdTCRmid+ and CD4+ T cells
in imiquimod-induced skin inflammation (47). Thus, our
findings indicated that IL-17A might get involved in the
alternative function of MCTR1 on LPS-induced cardiac injury.

In conclusion, our results provide insights into the protective
role of MCTR1 in LPS-induced cardiac injury. MCTR1 alleviated
the expression levels of neutrophil chemokines and neutrophil
infiltration in the injured heart via the IL-17 signaling pathway
(Figures 7). Thus, MCTR1 represented a novel therapeutic
strategy for sepsis-induced cardiomyopathy.
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