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V0	� Mean velocity of the particle or molecule (μm/s)
v0	� Mean velocity of the particle or molecule in two 

dimensions (μm/s)
〈r2〉	� Mean square displacement of the particle or mol-

ecule position in two dimensions (μm2)
〈R2〉	� Mean square displacement of the particle or mol-

ecule position in three dimensions (μm2)
〈x2〉	� Mean square displacement of the particle or mol-

ecule position in one dimension (μm2)
α	� Anomalous diffusion exponent (–)
Γ	� Transport coefficient (μm2/sα)
λ	� Particle or molecule mean free path in two dimen-

sions (μm)
Λ	� Particle or molecule mean free path in three dimen-

sions (μm)
τ	� Brownian step time (s)

Introduction

In the interior of biological cells molecules and organelles 
are immersed in a very crowded aqueous environment 
which results in specific molecular mobility. Molecule tra-
jectories in cells are described by competing motion mod-
els which give the time dependences of the mean square of 
particle displacement, including free diffusion, anomalous 
diffusion, confined diffusion, and flow or directed motion 
which may result from molecular motor-driven transport. 
The three diffusive models can occur with directed motion, 
yielding more complex motion modeled by linear combina-
tions of the dependences (Saxton and Jacobson 1997). The 
motion of a molecule can be classified by using a method 
based on Bayesian inference to calculate the a-posteriori 
probability of an observed trajectory on the basis of one of 
the models (Monnier et al. 2012). One of the mechanisms 

Abstract  An equation of motion is derived from frac-
tal analysis of the Brownian particle trajectory in which 
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the time dependence of the mean square displacement for 
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explicit formula is derived for the transport coefficient, 
which is related to the diffusion constant, as dependent on 
the Brownian step time, and the anomalous diffusion expo-
nent. The model makes it possible to deduce anomalous 
diffusion properties from experimental data obtained even 
for short time periods and to estimate the transport coef-
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selected may be anomalous diffusion for which a single 
molecule trajectory, instead of being the random walk of 
the fractal dimension Dw = 2, is either stretched (super-dif-
fusion, Dw < 2) or contracted (sub-diffusion, Dw > 2) (Ben-
Avraham and Havlin 2000). For Dw = 1 the motion of the 
molecule is ballistic.

Several stochastic processes lead to anomalous diffu-
sion; these include the continuous-time random walk, frac-
tional Brownian motion, and Lévy flights and walks. The 
continuous-time random walk is a stochastic jump pro-
cess in which random times occur between particle jumps 
with arbitrary distributions of jump lengths (Burioni et al. 
2014). Fractional Brownian motion is a symmetric Gauss-
ian process for which the second moment scales as a power 
of time (Jeon and Metzler 2010). Lévy flight (Viswanathan 
et al. 2008) is a random walk with a step-lengths probabil-
ity distribution that is heavy-tailed, so the trajectory of the 
molecule contains occasional very long steps. In the Lévy 
walk the time to make a step is proportional to its length.

In cell membranes, anomalous diffusion is probably the 
result of both obstacles to diffusion and traps with a dis-
tribution of binding energies or escape times (Saxton and 
Jacobson 1997). Several detailed mechanisms were con-
sidered by Skaug et  al. (2011) as the source of observed 
sub-diffusion: obstruction by the membrane skeleton and 
its bound proteins (Ritchie et al. 2003), inclusion or exclu-
sion from lipid domains (Dietrich et  al. 2002), binding to 
immobile traps (Saxton 2007), or a combination of these 
(Nicolau et al. 2007).

Sub-diffusion can be regarded as a result of coexistence 
of normal transport, in time periods in which a particle or 
molecule locally diffuses freely, and no effective transport, 
when the object is temporarily trapped as a result of geo-
metrical complexity and interactions with the environment. 
The mean square displacement observed may, after smooth-
ing, be described by a power-law dependence of time. This 
problem has been extensively studied (Burada et al. 2009; 
Condamin et  al. 2008; Goychuk et  al. 2014; Santamaria 
et  al. 2006). Spatial restriction retards the motion of the 
molecule so the mean square displacement is smaller than 
for an unrestricted environment. The time taken to achieve 
a given diffusion distance is longer. Anomalous diffusion 
has been widely observed in the plasma membrane of bio-
logical cells, and has been used to investigate membrane 
organization. Sub-diffusion has been proposed as an indi-
cator of macromolecular crowding in the cytoplasm (Weiss 
et al. 2004).

Super-diffusion is faster than normal diffusion. As ana-
lyzed by Stauffer et al. (2007), super-diffusion is theoreti-
cally possible in molecularly crowded environments. In 
biological systems, it can be the result of cellular trans-
port  processes and is observed if the diffusion is directed 
by a motor protein (Goychuk et  al. 2014). It is believed 

that Lévy flights generate super-diffusion. However other 
mechanisms, for example fractional Brownian motion, can 
also lead to it (Viswanathan et al. 2008).

A moving particle or molecule follows linear segments. 
For a very short time the particle travels along the same 
segment and its movement can be regarded as ballistic 
(Caspi et al. 2002; Kneller 2011; Wu and Libchaber 2000), 
for which the fractal dimension Dw = 1. The fractal dimen-
sion then increases to achieve the asymptotic value after a 
very long time. Suppose that the movement can be regarded 
as Brownian, along a trajectory for which the fractal dimen-
sion is two. Spatial restriction in one direction, however, 
can retard the motion of the molecule. Wieser et al. (2007) 
showed equal mobility in the longitudinal and transverse 
directions for proteins diffusing in cellular nanotubes with 
saturation of the mean square displacement with time in 
the perpendicular direction. The measured diffusion coef-
ficient in cellular nanotubules is lower than for unrestricted 
environment, and can be estimated by considering confined 
mobility phenomenon as early-stage Brownian motion 
(Gmachowski 2014).

In sub-diffusion the mechanism is different. The mean 
square displacement increases with time but not linearly, 
as observed for ordinary diffusion. This is a common prop-
erty of all anomalous diffusion phenomena. The particle 
or molecule asymptotic trajectory is characterized by two 
variables, the transport coefficient Γ and the anomalous dif-
fusion exponent α. The mean square displacement of the 
particle or molecule position in two dimensions, detected in 
experiments with long time periods, is:

It seems promising to describe the trajectory of a mole-
cule by use of a modification of the scale-dependent fractal 
dimension method introduced by Takayasu (1982), origi-
nally for describing the transition of the trajectory fractal 
dimension from unity for the small scale to two for large 
scales. In the model proposed in this paper, the asymptotic 
fractal dimension of the trajectory of a molecule character-
izing its long-term motion can be adjusted.

Model

Let us analyze the fractal dimension of the random walk 
particle trajectory. The fractal dimension for a trajectory 
in fully developed Brownian motion is 2. If we consider a 
random walk whose mean free path is not negligible, the 
trajectory can be characterized by a scale-dependent frac-
tal dimension. Observing on a scale much shorter than 
the mean free path, one finds the trajectory is nearly a 

(1)
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r
2
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line (Kneller 2011). Otherwise, the random walk can be 
reduced to the Brownian motion when analyzed on a suf-
ficiently large scale (Bujan-Nuňez 1998; Matsuura et  al. 
1986; Rapaport 1984, 1985; Takayasu 1990).

The scale (s)-dependent fractal dimension for a random 
walk trajectory, given in a general form for three-dimen-
sional space (Bujan-Nuňez 1998), is:

where k is a proportionality constant, being a fitting term, 
and Λ is the particle mean free path. Accordingly, Dw (s) 
varies between 1 if s/kΛ → 0 and 2 if s/kΛ → ∞. The 
larger the scale of observation, the closer is the random 
motion to Brownian motion.

The first term on the right side of Eq. (2) is the asymp-
totic fractal dimension for the Brownian trajectory. On  the 
very small scale of observation the fractal dimension is 
unity, because the denominator of the second term is unity 
and then increases, approaching its asymptotic value when 
the denominator of the second term tends to infinity. The 
first term is thus Dw, the asymptotic value of the trajectory 
fractal dimension, and the initial value of the fraction is 
Dw − 1. This imposes the form of the generalized formula.

The formula is now generalized to describe the scale-
dependent fractal dimension with an adjusted asymptotic 
value

giving the same value, 1, characteristic of ballistic motion, 
if s/kΛ → 0, but a required value of Dw, instead of 2, if 
s/kΛ → ∞. This formula is supposed to describe the tran-
sition of the character of the particle trajectory from bal-
listic to that characteristic of anomalous diffusion. This 
approach treats the Brownian motion as a special case for 
which the trajectory fractal dimension tends to 2 for large 
scales of observation. This means that putting Dw = 2 into 
Eq. (3) produces Eq. (2). Putting Dw = 1 into Eq. (3) one 
obtains Dw (s) =  1, confirming the ballistic character of 
motion in the whole range of the observation scale.

The trajectory length depends on the scale of observa-
tion according to the fractal formula:

Integrating with use of Eq. (3):

one obtains:

(2)Dw(s) = 2−
1

1+ s/kΛ

(3)Dw(s) = Dw −
Dw − 1

1+ s/kΛ

(4)
d ln L(s)

d ln s
= 1− Dw(s)

(5)

L(r)
∫

L(0)

dL

L
=

r
∫

0

−(Dw − 1)

s

kΛ

1+ s

kΛ

ds

s

L(0) is the trajectory contour length equal to the sum of 
the line segment lengths. The particle or molecule moves 
along a segment with a constant velocity V0. So the contour 
length can be calculated as the product of the time t and the 
mean velocity of the particle. Hence:

in which the mean velocity of the particle is replaced by the 
mean free path of diffusing particle divided by the charac-
teristic time, the Brownian step time:

The relationship obtained is:

Then, replacing r by 
√

〈

R2
〉

 one obtains the formula valid 
for three-dimensional space:

Substituting in Eq. (10)

one obtains the formula describing the mean square dis-
placement of the particle position in two-dimensional space 
〈r2〉 as dependent on the number of steps t/τ:

For short periods this formula converges to that characteris-
tic of ballistic motion (Dw = 1):

 irrespective of the value of the fitting term k.
For long periods the formula obeys:

where α = 2/Dw is the anomalous diffusion exponent.

(6)
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r

Λ
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To save the universality of the formula we have to put 
k =  2. Then, for Brownian motion (α =  1), we obtain a 
known formula for the mean square displacement of the 
particle or molecule position in two dimensions:

in which the diffusion coefficient is expressed as:

For long-term anomalous diffusion:

By use of Eq. (1) one can define the transport coefficient 
for anomalous diffusion:

where

With the definition of the diffusion coefficient, expressed 
by Eq. (17), one obtains:

For intermediate times:

Mean square displacements of the position of the mol-
ecule, normalized by the square of the mean free path as a 
function of normalized time, are depicted in Fig. 1 for dif-
ferent anomalous diffusion exponents. This equation, giv-
ing the interdependence of 〈r2〉/λ2 and t/τ, also makes it 
possible to draw the normalized mean square displacement 
of the molecule position in two dimensions 〈r2〉/4Γt as a 
function of normalized time. According to Eq. (19):

This is done in Fig. 2 for different sub-diffusion exponents.
Equation (22) can be rearranged to:
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Taking into account the definitions of the mean velocity 
of the particle (Eq. 14) and that of the transport coefficient 
(Eq. 20), one obtains:

from which the normalized mean square displacements of 
the molecule position can be calculated:

Equation (25) gives the full description of the trajectory 
of an anomalously diffusing molecule, irrespective of the 
stage of the movement. In can be used as a determinant of 
advancement of anomalous diffusion and may be used to 
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Fig. 1   Mean square displacements of the position of the molecule, 
normalized by square of mean free path as dependent on normalized 
time, depicted for different anomalous diffusion exponents in accord-
ance with Eq.  (22). The straight lines correspond to the asymptotic 
Brownian and ballistic movements
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Fig. 2   Normalized mean square displacements of the position of 
the molecule in two dimensions, as dependent on normalized time, 
depicted for different sub-diffusion exponents according to Eqs. (22) 
and (23)
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determine the transport coefficient Γ and the anomalous 
diffusion exponent α from experimental 〈r2〉 data. This for-
mula corresponds to the expression for ordinary diffusion 
(α = 1), previously tested for small particle movement and 
confined mobility in biomembranes (Gmachowski 2014). 
For the phenomenon in two-dimensional space it becomes:

Equation  (26) describes the time evolution of the mean 
square displacement of the particle or molecule position 
in two dimensions as dependent on the values of the trans-
port coefficient, the anomalous diffusion exponent, and the 
value of the mean velocity of the particle in two dimen-
sions. The presence of the velocity is justified by the ballis-
tic contribution to the motion of the particle. This quantity 
can be determined from the diffusion coefficient by using 
rearranged Eq. (17):

Equation (22), if taken for ordinary diffusion (α = 1):

can serve to determine particle mean free path λ. Let us 
write this equation for two different mean square displace-
ments of the particle position measured at two different 
times. The characteristic time for the two cases remains 
unchanged, so dividing the formulae one obtains, after 
rearrangement:

a formula serving to determine particle or molecule mean 
free path from data measured for ordinary diffusion.

Comparison with experiment

Biological systems are heterogeneous. Heterogeneity 
is connected with non-ergodicity. Ergodic behavior is 
described by a stochastic process modeling anomalous dif-
fusion under experimental investigation. So it is important 
to incorporate heterogeneity into modeling of biological 
systems (Székely and Burrage 2014). Particularly relevant 
for diffusion in heterogeneous media seems to be a model 
for heterogeneous diffusion giving an approach to non-
ergodic anomalous diffusion (Cherstvy et al. 2013).

Experimental verification of ergodicity requires obser-
vation times that are sufficiently long. Skaug et al. (2011) 
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)

analyzed ergodicity by comparing time-averaged and 
ensemble-averaged mean square displacements for anoma-
lous diffusion measured in a lipid bilayer membrane. They 
showed that time-averaged mean square displacements for 
the longest trajectories are scattered around the ensemble 
averaged for the system investigated.

Skaug et  al. (2011) used supported lipid bilayers to 
model (Chan and Boxer 2007) a real cell membrane. The 
researchers correlated anomalous diffusion with lipid 
bilayer membrane structure. The diffusion and anomalous 
diffusion were investigated for 1,2-dioleoyl-sn-glycero-
3-phosphocholine (DOPC) in a supported lipid bilayer, pre-
pared on mica, with different amounts of 1,2-distearoly-sn-
glycero-3-phosphocholine (DSPC). Different values of the 
concentration of obstacles to diffusion were obtained which 
resulted in different values of the anomalous transport coef-
ficient of DOPC. With no obstacles the diffusion coefficient 
was measured as 4.15 μm2/s. Increasing of the area fraction 
of the obstacles reduced both the transport coefficient and 
the anomalous diffusion exponent. The authors presented 
experimental data in the form of time dependences of the 
mean square displacements measured for several different 
area fractions of obstacles.

By using values of the mean square displacements 
measured for ordinary diffusion at limiting experimental 
times of 0.035 and 0.14 s, the value of the mean free path 
λ =  0.0559 μm was calculated by use of Eq.  (30). Then 
one Brownian step time τ = 3.77 × 10−4 s was computed 
by use of Eq. (17).

The mean velocity of the molecule in two dimensions, 
appearing in Eq.  (26), is expressed by D, Γ and α. To 
achieve this we combine Eqs. (17, 21, 28) to obtain:

Equation  (26) with v0 given by Eq.  (31), is fitted by 
experimental results for mean square displacement for 
times 0.035, 0.07, 0.105, and 0.14  s, normalized by 
4Γ t

α using originally calculated (Skaug et  al. 2011) data 
of α =  0.86, Γ =  1.55; α =  0.77, Γ =  0.78; α =  0.56, 
Γ = 0.16. This is represented by open symbols in Fig. 3. 
The corresponding filled symbols are drawn for best fit 
data obtained by use of Eq. (21) with the determined value 
of τ = 3.77× 10−4  s. They are α  =  0.871, Γ  =  1.64; 
α = 0.780, Γ = 0.854; α = 0.573, and Γ = 0.193.

Although the original values are only slightly lower than 
those calculated by use of the proposed method, quite dif-
ferent location of points represented by open symbols and 
filled symbols may be observed in Fig. 3. The filled sym-
bols are much closer to the model line, this is a result of 
a more precise determination of transport variables by 
use of proposed method. Very similar results, α =  0.862, 

(31)v0 = 2
√
D

(

Γ

D

)
1

2(α−1)
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Γ = 1.54; α = 0.773, Γ = 0.812; α = 0.582, and Γ = 0.206, 
can be obtained by using only the mean square displace-
ment for the shortest time, 0.035 s. The corresponding val-
ues of the normalized mean square displacement 〈r2〉/4Γtα 
are 0.803, 0.752, and 0.608, which means that the proposed 
method enables effective analysis of short-term experimen-
tal data.

The calculated values of the mean velocity of the mol-
ecule in two dimensions are all 148  μm/s, which cor-
responds to λ =  0.0559 μm and one Brownian step time 
τ =  3.77 ×  10−4  s, both computed previously from data 
measured for ordinary diffusion. The values of the mean 
velocity computed by use of Eq. (31) using originally cal-
culated (Skaug et  al. 2011) data of α =  0.86, Γ =  1.55; 
α = 0.77, Γ = 0.78; α = 0.56, Γ = 0.16 are 137, 154, and 
165 μm/s, i.e. almost the same.

The values of transport variables determined by use of 
the proposed method are obtained by use of Eq. (21). The 
results are depicted in Fig.  4, which shows all pairs of 
transport variables α and Γ reported by Skaug et al. (2011). 
Agreement of reported results with the model line is good.

Complete results for super-diffusion in biological sys-
tems are not available in the literature. To demonstrate 
the reliability and potential usefulness of the proposed 
model for a wider range of anomalous diffusion exponents, 
results obtained by Li et  al. (2006) for one-dimensional 
sub and super-diffusive molecular displacements in disor-
dered porous media were used. Hydrodynamic dispersion 
of water flowing through porous glass with nominal pore 
sizes in the range 100–160 μm was analyzed. The charac-
ter of the anomalous diffusion behavior depended on the 

flow velocity through the porous medium. Crossover was 
observed from sub-diffusive mean square displacement, 
α = 0.84, in the absence of hydrodynamic flow, to a super-
diffusive, almost ballistic power law, α = 1.95, at the high-
est flow rates.

Let us write Eq. (18) for two different mean square dis-
placements of the molecule position measured at the same 
time for anomalous and normal diffusion. The molecule 
mean free path for the two cases remains unchanged, so 
dividing the formulae one obtains, after rearrangement:

where the displacements in two dimensions are replaced by 
that in one dimension. From the experimental plot reported 
by Li et al. (2006) giving the time dependence of the mean 
square displacement, it is possible to show that the mean 
square displacement ratio is 8.5 for α = 1.95 and α = 1 and 
time equal to 0.3  s. The calculated Brownian step time is 
τ = 1.58 × 10−2 s.

The values of the transport coefficient normalized by the 
diffusion coefficient were then calculated from the plot for 
the same time and Eq. (19) rearranged for one-dimensional 
displacement to give:

and

from which:

(32)τ =
(〈

x
2
〉

/

〈

x
2
〉

Br

)
1

1−α
·
t

2

(33)
〈

x
2
〉

= 2Γ t
α

(34)
〈

x
2
〉

Br
= 2Dt

(35)
Γ

D
=

〈

x
2
〉

/

〈

x
2
〉

Br
t
1−α

[1-(<r2>1/2/v0t)α/(2-α)]2-α
0.5 0.6 0.7 0.8 0.9 1.0

<r
2 >
/4
Γ
tα

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 3   Graphical representation of Eq. (26) with v0 given by Eq. (31), 
fitted by experimental results of mean square displacement normal-
ized by use of the originally calculated data for DOPC transport in 
supported lipid bilayers (Skaug et al. 2011): open circles, α = 0.86, 
Γ = 1.55; open squares, α = 0.77, Γ = 0.78; open inverse triangles, 
α = 0.56, Γ = 0.16. The corresponding filled symbols are drawn for 
best fit data obtained by use of Eq.  (21): filled circles, α =  0.871, 
Γ = 1.64; filled squares, α = 0.780, Γ = 0.854; filled inverse trian-
gles, α = 0.573, Γ = 0.193
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Fig. 4   Normalized transport coefficient of DOPC in supported lipid 
bilayers (Skaug et al. 2011) as a function of the anomalous diffusion 
exponent calculated by use of Eq. (21) and using Eqs. (28) and (30) 
to determine the one step time τ (solid line), fitted with originally 
calculated values of α and Γ (open squares) and those chosen to fit 
Eq. (26) (open circles)
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The values determined are 0.58  s0.16 for α  =  0.84 and 
27  s−0.95 for α =  1.95, whereas the diffusion coefficient 
calculated from Eq.  (34), D =  2.0 ×  10−9  m2/s, is only 
slightly lower than the molecular diffusivity of bulk water 
(2.3 × 10−9 m2/s).

To obtain a universal coordinate system for anomalous 
diffusion variables, in which the variables could be com-
pared for different characteristic times, Eq.  (21) is rear-
ranged to give:

The resulting Fig.  5 presents all the experimental values 
originally calculated (Skaug et al. 2011) and deduced from 
reported data (Li et al. 2006), covering both the sub-diffu-
sion and super-diffusion ranges.

All the calculations discussed in this paper confirm the 
accuracy of original estimate and provide an effective frac-
tal model for the trajectory of particles or molecules dif-
fusing anomalously. The model takes into account ballis-
tic motion, which is essential at the very beginning of the 
motion, and the time evolution of the trajectory character. 
The model increases the precision of the transport variables 
obtained for anomalous diffusion.

Discussion and conclusions

This fractal model of Brownian particle motion makes it 
possible to describe the trajectory of a molecule diffusing 
anomalously if the asymptotic fractal dimension of the tra-
jectory is regarded as an adjustable variable. Except for the 
power dependence valid for long-term diffusion, the model 
describes the early stage of the transition from ballistic 

(36)
Γ

D
· τα−1 = 2

1−α

to sub or super-diffusive motion. The formula obtained 
(Eq. 26) makes it possible to derive the values of the trans-
port coefficient and the anomalous diffusion exponent from 
experimental data even if the data are measured in the short 
term, when the power dependence (Eq. 1) is still not fully 
applicable.

The data describing anomalous diffusion are connected 
with those describing normal diffusion. The transport coef-
ficient normalized by the diffusion constant is the double 
Brownian step time to the power of one minus the anom-
alous diffusion exponent (Eq.  21). This is a functional 
dependence enabling more precise derivation of the anoma-
lous diffusion variables from experimental data.

The originally obtained anomalous diffusion variables, 
both the transport coefficient and the anomalous diffusion 
exponent, are slightly lower than those calculated by use 
of the proposed method. This is because of the time period 
over which the experimental data were measured, too short 
to safely use the power dependence (Eq. 1). Small differ-
ences in the anomalous diffusion variables result, however, 
in quite different location of points in Fig. 3. More precise 
determination of the transport variables leads to reduction 
of the mutual distance. The points calculated by use of 
Eq. (21) are much closer to the model line.

The proposed method is applicable to data obtained in 
short time periods. Transport variables calculated solely by 
use of experimental data for mean square displacement in 
the shortest times are in good agreement with those deter-
mined for longer time periods.

As already mentioned, and confirmed experimentally, 
the model presented in this paper is not restricted to sub-
diffusion. It describes super-diffusive trajectories up to bal-
listic trajectories for which α = 2. The corresponding form 
of Eq. (20) is:

Hence Eq. (19) becomes:

which one would expect for ballistic motion. The root 
mean square displacement is the mean free path multiplied 
by the number of steps.

Statistical models and methods lead to similar power-
law characteristics for anomalous diffusion, for example 
continuous time random walks (Tejedor and Metzler 2010; 
Neusius et al. 2009), fractional Langevin Brownian motion 
(Jeon and Metzler 2010), and mixed models with different 
trapping (Miyaguchi and Akimoto 2015). Recent models 
combined Bayesian inference (Monnier et  al. 2012) with 
the over-damped Langevin equation in which spatially 
varying friction is used, reflecting the heterogeneity of the 

Γ =
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Fig. 5   Graphical representation of Eq. (36) (solid line) fitted with the 
originally calculated values of α and Γ for DOPC transport in sup-
ported lipid bilayers (Skaug et  al. 2011; τ =  3.77 ×  10−4  s; open 
squares) and the values deduced from reported data (Li et al. 2006) 
for displacement of water molecules in disordered porous glass 
(τ = 1.58 × 10−2 s; open circles)
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plasma membrane on the full cell scale. In that way varia-
bles for different scales (Masson et al. 2014) were obtained.

Models describing the ballistic-sub-diffusive transi-
tion are of special interest for experimenters interested in 
single-particle-tracking. Jeon and Metzler (2010) presented 
an exact solution to the fractional Langevin equation in the 
form of the time dependence of mean-squared displace-
ment, and  showed a transition from short-term ballistic 
motion to long-term anomalous diffusion. In this solution 
the generalized Mittag–Leffler function is used. The func-
tion obtained is depicted in a plot. The observed transition 
from the ballistic to sub-diffusion region is rather narrow 
and spans no more than one order of magnitude of time. 
The time average mean-square displacement for fractional 
Brownian–Langevin motion presented by Deng and Barkai 
(2009) has a similar property.

The equation proposed in this paper, and the form 
which is simpler to use, has a wider transition which spans 
approximately three orders of magnitude of time for ordi-
nary diffusion of Brownian particles (Gmachowski 2013, 
2014; Pusey 2011). This wide transition has been con-
firmed by use of the experimental data analyzed in this 
work. The wideness of the transition and, hence, the shape 
of the time dependence of the mean square displacement 
of the molecule, is of fundamental importance, because the 
experimental trajectories are in the range of the transition.

Analysis of experimental data shows that the fractal model 
of molecule trajectories is sufficient to describe anomalous dif-
fusion phenomena. The model trajectory consists of equal seg-
ments which can be either contracted or stretched, modeling 
sub-diffusive or super-diffusive phenomena. Therefore, it can 
be regarded as a new approach to anomalous diffusion which 
is a simple alternative to current models with distributions of 
step lengths. The transition of the character of the motion from 
ballistic to anomalous diffusion is described by the time evolu-
tion of the trajectory fractal dimension. This can be regarded 
as a new aspect of the modeling of anomalous diffusion which 
results in the wider transition observed experimentally.

A universal coordinate system has been derived for 
anomalous diffusion in which the anomalous diffusion vari-
ables can be compared for different characteristic times in 
the full range of the anomalous diffusion exponent. This 
can be helpful for interpretation of experimental data, espe-
cially those obtained for short periods of time. This also 
enables estimation of the transport coefficient for systems 
for which the diffusion behavior has been investigated.
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tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.

References

Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals 
and disordered systems. Cambridge University Press, Cambridge
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