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Abstract: Biliary tract cancer (BTC) is constituted by a heterogeneous group of malignant tumors
that may develop in the biliary tract, and it is the second most common liver cancer. Human
ribonucleotide reductase M1 (hRRM1) has already been proven to be a potential BTC target. In
the current study, a de novo design approach was used to generate novel and effective chemical
therapeutics for BTC. A set of comprehensive pharmacoinformatics approaches was implemented
and, finally, seventeen potential molecules were found to be effective for the modulation of hRRM1
activity. Molecular docking, negative image-based ShaEP scoring, absolute binding free energy,
in silico pharmacokinetics, and toxicity assessments corroborated the potentiality of the selected
molecules. Almost all molecules showed higher affinity in comparison to gemcitabine and naphthyl
salicylic acyl hydrazone (NSAH). On binding interaction analysis, a number of critical amino acids
was found to hold the molecules at the active site cavity. The molecular dynamics (MD) simulation
study also indicated the stability between protein and ligands. High negative MM-GBSA (molecular
mechanics generalized Born and surface area) binding free energy indicated the potentiality of the
molecules. Therefore, the proposed molecules might have the potential to be effective therapeutics
for the management of BTC.

Keywords: biliary tract cancer; human ribonucleotide reductase; de novo design; molecular docking;
molecular dynamics simulation

1. Introduction

Cholangiocarcinoma or biliary tract cancer (BTC) is the highly aggressive and second
most common liver cancer worldwide followed by hepatocellular carcinoma (HCC) [1].
The BTC originated from the biliary epithelium of the small ducts in the periphery of the
liver and the main ducts of the hilum. The BTC is covering about less than one percent
of all human cancers and about 15% of primary liver cancer [1]. Every year, more than
8000 people are diagnosed with BTC in the United States of America (USA). In particular,
BTC is found to be diffident in the western world, having an incidence of about 2 persons
per 100,000 in each year. It is a matter of concern that the part of Southern Asia including
China, Thailand, and Korea are more prone to have BTC evidence of a much higher rate in
comparison to Europe and the USA. In particular, BTC depends upon the demographic
distribution of the risk factors and most probably depends upon the ethnic race. It is
evident that about 0.1 per 100,000 is found in Australia, and 110 out of 100,000 are found in
Thailand. The data of the last several decades suggest the steady rise of BTC all over the
world [2–8]. It is important to note that the quiet presence of BTC and its highly insistent
nature influence the mortality rates globally [9]. The surgical resection is the only effective
curative therapy for the BTC, but it is asymptotic in nature at the beginning and generally
diagnosed at an advanced stage that leads to a compromise of treatment options [10,11]. A
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large-scale sharing of awareness and knowledge along with diagnosis and therapies are
gradually improving but no significant prognosis has been improved in the last decade,
which is substantiated by the five-year survival of 7–20% [12–19].

Ribonucleotide reductase (RR) is one of the effective and potential therapeutic cancer
targets and important to regulate the enzyme in the DNA synthesis and repair pathway.
It is unique and plays an important role to reduce the nucleotide diphosphates (NDPs)
to 2′ deoxyribonucleotide diphosphates (dNDPs). Further, in the rate-limiting step, de-
oxyribonucleotide triphosphates (dNTPs) are synthesized from purine- and cytidine-based
DNA precursors [20] and maintain the balanced pools of it in the cell [21]. In the replication
and repair of DNA in all living cells, the RR is essential to control cell proliferation and
maintain genome stability [22,23]. Lack of continuous proper concentrations of dNTPs may
be harmful to the cells and may lead to DNA breakage, mutagenesis, and cell death [24]. In
the stage of cancer progression, deficiency of dNTPs may be observed due to uncontrolled
cell proliferation, which further leads to replication stress followed by enhancement of
genomic instability [25,26]. On the other hand, a high concentration of dNTP is responsible
for mutagenesis development [27,28].

Structurally, RR is a heterodimeric compound comprised of two subunits, RR1 (α) and
RR2 (ß). RR1 is mainly responsible for the activation of several oncogenes [29], whereas
RR2 is overexpressed in the related increased Raf-1 membrane-associated protein and
mitogen-activated kinase (MAPK) activity [30] and resistant to cytotoxic therapy [31].
In particular, RR1 is the catalytic subunit that possesses the catalytic site (C-site), two
allosteric sites, the specificity site (S-site), and the activity site (A site). The RR2 subunit
houses a free radical essential for catalysis [32]. The presence of three cysteine residues
in the catalytic site conducts the thiol-based redox chemistry in the reduction of ribose
substrate to 2′-deoxyriobose [32]. RR1, i.e., α subunit, is a dimer form in the presence of
the allosteric effectors dATP and ATP in the form of α6ß2 and α6ßi (where i = 2, 4, and 6),
respectively [33]. The human RR (hRR) is a crucial target for cancer therapy and consists of
two subunits, namely, hRRM1 and hRRM2 [34]. It is evident that nucleoside analogs such
as gemcitabine, clofarabine, and cladribine nucleotides inhibit hRRM1 by stabilizing a form
of the α6 complex [35–38]. The hRRM2 subunit is the non-heme iron and a tyrosine-free
radical that is essential for the enzymatic reduction of ribonucleotides [39]. The inhibition
of hRRM1 by a number of effective anti-cancer hRR nucleotide-analog inhibitors including
gemcitabine may trigger the cancer cells to ionizing radiation and to DNA-damaging
drugs [40]. Beyond the above, the capability of inhibition of hRR by the anti-cancer
analog hRR decreases dNTPs, which enhances the ability of gemcitabine triphosphate
to be incorporated into growing DNA strands by DNA polymerase. Gemcitabine is an
extensively effective and potential chemical entity for the treatment and management
of BTC [41,42]. Several studies have already provided sufficient evidence in favor of
gemcitabine alone as effective against BTC up to 30% [43–45]. Moreover, along with
capecitabine or platinum analogs, gemcitabine produced response rates of 26 to 53% in
clinical trial phase II [46,47]. The combination of gemcitabine and cisplatin has been tested
for BTC in several clinical trial studies and was found to be about 21 to 53% effective [48].
A number of studies already reported the serious adverse effect of gemcitabine on its
cytotoxicity to the normal cells that lead to termination of DNA chains and irreversible
inhibition of hRR [49–51]. Therefore, targeting the hMMR1 subunit of the hRR to design
and identification of promising chemical entities will be an effective approach to treat and
manage the BTC.

Identification of any chemical component for the treatment of a certain disease is a
critically complex, challenging, extensively time-consuming, and high-cost-intensive ap-
proach in the pharmaceutical industry. It has been reported that bringing a single drug
molecule into the market starting from basic research may take about 12–16 years of time
and a cost estimated at USD 2.5 million [52–55]. Recently, it has been reported that only
one successful compound may be found from about 10,000 molecules through research
and development [56,57]. One of the important aims of the European Union Sustainable
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Development Goals is to provide good health and wellbeing for everyone, and drugs should
be available to the common people at an affordable cost [58]. Hence, the current drug devel-
opment protocols must be changed to make it economically sustainable and feasible to the
research communities. The use of advanced computational resources and power in the phar-
maceutical industry enhanced the drug discovery pipeline with lower cost and minimum
time along with trivial animal sacrifice. Virtual screening of any existing database or compu-
tationally designed novel compounds through de novo design has already gained exciting
popularity in the scientific communities across the globe. De novo drug design (DNDD) is
the method to design novel chemical compounds with the help of computational approaches
without any prior relationships [59]. The meaning of 'de novo' is 'from the beginning', which
indicates that novel molecules can be designed without any pre-defined template(s) [60]. In
this method, one can explore the boundless chemical space and design molecules that have
intellectual properties that are effective for novel therapies [59]. Applications of several
computational strategies including negative image-based (NIB) screening [61], molecular
docking [62], un-supervised pharmacophoric features assessment [63], in silico pharma-
cokinetics and toxicity [64], PLANTS-based docking [65], absolute binding free energy
assessment [66], and molecular dynamics (MD) simulation [67] to reduce the chemical space
have already proven their efficiency and efficacy in drug discovery research. NIB screening
can directly be used to develop the models from the receptor cavity of the macromolecule
using the shape and electrostatic complementary between active site and bound small
molecule. Molecular docking is the pivotal methodology for screening of small to ultra large
chemical databases for any specific drug target. Pharmacokinetic and toxicity assessment of
chemical compounds have become pioneer approaches to explore the promising chemical
entities. MD simulation followed by binding affinity calculation have been widely adopted
by the scientific community to explore the dynamic behavior of the small molecules inside
the receptor cavity of the macromolecule. Hence, to identify promising molecules for the
effective therapeutic application in BTC, DNDD-based design of hRRM1 inhibitors followed
by screening through the above computational methodologies was the main objective of
the current work. The credential of the work is supported by the identification of several
promising molecules and their strong affinity to being potential hRRM1 inhibitors subjected
to experimental validation.

2. Materials and Methods

The DNDD approach was used to design a set of novel compounds for the hRRM1,
and subsequently, several screening parameters were implemented to reduce the chemical
space. In this pipeline, a rigorous approach such as MD simulation followed by molecular
mechanics generalized Born and surface area (MM-GBSA)-based binding free energy cal-
culation were also performed to screen out the inactive molecules. For the comparative
analyses, two standard molecules, namely, gemcitabine and naphthyl salicylic acyl hydra-
zone (NSAH), were used throughout the study. Gemcitabine has already been approved
as a potential drug molecule for the treatment of advanced BTC [68,69]. In a recent study,
NSAH was reported as a unique potential hRRM1 inhibitor [70].

2.1. Protein Target Selection and Preparation

The crystal structure of hRRM1 was obtained from the Research Collaboratory for
Structural Bioinformatics (RCSB) Protein Data Bank (PDB), California, USA [71]. The PDB
is the largest resource of experimental three-dimensional (3D) structures of macromolecules.
The 3D coordinates of hRRM1 for the current experiment were considered to have PDB ID:
3HND [33]. The resolution and R-value of the structure were found to be 3.21 Å and 0.254,
respectively. The sequence length of the protein was found to be 792 amino acids long. The
missing atoms and amino acids were repaired using the online server CHARMM-GUI [72].
The CHARMM-GUI was developed and is maintained by Dr. Im’s research group at
Lehigh University, Bethlehem, USA. AutoDock Tools (ADT) [73] was used to prepare the
molecule before it was used in any in silico study. The missing atoms and amino acids
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were checked and repaired. Co-crystal water molecules and all hetero atoms were removed.
The hydrogens and Gasteiger charges were added. The prepared protein molecule was
saved in .pdb format for further use. Prior to using the protein molecule in AutoDock Vina
(ADV) [74], the prepared protein was assigned the AD4 (AutoDock4) atom type and saved
in the .pdbqt file format. Both ADT and ADV are maintained by The Scripps Research
Institute, LaJolla, CA, USA.

2.2. De Novo Design Using LigBuilder

DNDD is one of the pivotal drug discovery approaches to design and identify novel
molecules for any specific target. In order to design novel chemical entities targeting
hRRM1, the open source LigBuilder v3.0, Perking University, Beijing, China [75] was
used, which is an extensively and highly acknowledged de novo molecule generation tool.
This tool was developed by the Institute of Physical Chemistry, Peking University, China.
It is a genetic algorithm-based tool to construct the ligands library. More precisely, the
LigBuilder develops the pool of small molecules according to the user-defined active site
of the target molecule, and, subsequently, optimization and screening are done based on
the input 3D structure of the protein molecule. The LigBuilder executes with two modules,
namely, ‘cavity’ and ‘build.’ To detect the cavities in a protein molecule, the ‘cavity’ module
considers the protein 3D structure and best docked/co-crystal ligand in .mol2 format. The
best-docked pose of gemcitabine in .mol2 and 3D coordinates of hRRM1 were given for the
‘cavity’ module to explore the binding sites and generate the required data for the ‘build’
module. In LigBuilder, ‘build’ is a core functional module for the design and subsequent
analysis of the molecules obtained based on ‘cavity’ output data. Using the fragment-based
design methodology, the ‘build’ module mainly produces a set of molecules according to
the input parameters. Along with binding site data derived through the ‘cavity’ module, the
‘build’ module considers a number of other inclusive parameters such as lead optimization,
fragment linking, design mimicking, binding-affinity estimation, ligand filtering, ligand
recommendation, synthesis analysis, substructure search, molecule clustering, etc. To
generate the molecules, the LigBuilder uses three modes, namely, ‘growing,’ ‘linking,’ and
‘exploring.’ In the current study, the exploring mode was used to automate the generation of
hRRM1 inhibitors. In short, the 3D coordinates of hRRM1 and the best docked gemcitabine
structures were given as inputs. The ‘cavity’ module explored potential pharmacophoric
features by using the key interactions site at the active site of hRRM1. Following the
available pharmacophoric features, the ‘build’ module generated the set of molecules with
a given number of parameters, including the number of generations, the population size,
and the maximal number of outputs. After the successful generation of the molecular
dataset, it was carefully checked for structural duplicity and similarity or dissimilarity
before further analysis.

2.3. Molecular Docking Using Autodock Vina

Molecular docking is an effective and widely used molecular screening tool based on
binding energy and interactions. Molecules generated from the de novo design approach
were used for molecular docking to select compounds having a better binding affinity
towards hRRM1. To use any docking methodology to dock unknown molecules, it is
necessary to validate the docking protocol before executing it. The main objective of
the docking protocol validation is to find the docking parameters that can reproduce a
similar orientation as the experimental conformation of the molecule. In the current study,
the self-docking approach was used to validate the docking protocol. In this approach,
the co-crystal GDP was re-drawn and docked at the same position where it was bound.
The best docked pose was superimposed on the co-crystal conformer of the GDP and
the RMSD was recorded. The above procedure was repeated by changing the docking
parameters such as the size and coordinates of the grid to optimize the docking parameters.
It has been reported that the docking protocol gives RMSD ≤ 2 Å between the docked
and co-crystal ligand and may be capable enough of reproducing a conformation similar
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to the crystalized orientation [76]. Considering the validated docking parameters, the
molecular docking of de novo designed molecules along with gemcitabine and NSAH was
performed. Before docking, the entire set of designed molecules along with gemcitabine
and NSAH was prepared using OpenBabel [77] and Python RDKit [78]. Both are publicly
available molecular file format conversion and preparation tools. Followed by the removal
of redundant compounds all molecules were converted into a 3D format. The Gasteiger
charge [79] was added and protonated at a pH of 7.4. Finally, all molecules were converted
into .pdbqt format for the docking in ADV. From the docking validation procedure, the
grid coordinates at the active site were considered to be (−22.188, 16.448, 24.853) along the
x-, y-, and z-axes, respectively, with a grid size of 60 × 60 × 60. After successful molecular
docking of the entire dataset, the binding energy of each molecule was explored. To select
better hRRM1 affinity molecules, the highest negative binding energy among gemcitabine
and NSAH was considered to be the threshold value. Molecules found to have better
affinity towards hRRM1 in comparison to the threshold were taken into consideration for
the next step of the assessment.

2.4. Unsupervised Pharmacophoric Features Assessment and Negative Image-Based Modeling
2.4.1. K-Means Clustering

Unsupervised learning algorithms are used only when there is an input without any
reference to their labels (i.e., unlabeled data) or if the relationship between the observations
or outcome is unknown. Additionally, unsupervised algorithms improve the clustering
process by using distance metrics and centroid points as constraints. This is helpful in
identifying clusters that are linked to a particular target. K-means clustering is one of the
most popular and straightforward unsupervised methods available. It needs a definite
number of clusters (k), which is the number of centroids needed in the dataset. A centroid
is a location that represents the center of the cluster. Each cluster is allocated a data point
using Euclidean distance by minimizing the in-cluster sum of squares. In other terms,
the k-means (average) algorithm identifies the k number of centroids and then allocates
every data point to the nearest cluster while keeping the centroids as small as possible.
The k-means clustering algorithm [80] is given in Algorithm 1. In the current study, eight
different pharmacophore properties such as hydrogen bond (HB) donor (HBD), HB acceptor
(HBA), hydrophobe (HY), ring aromatic (RA), ionizable, lumped hydrophobe, negative
ionizable and Zn binder for the six known hRRM1 inhibitors, and the entire set of molecules
remained after the molecular docking-based screening was calculated using the Python
RDkit. The calculated pharmacophore features can be used to form clustering groups. In
order to predict the active compounds using unsupervised learning, the k-means clustering
method was employed (active was considered as ‘1′ and inactive as ‘0′, and hence k = 2).
The algorithm selects the centroids randomly, which are used as the initial points for each
cluster, and then performs iterative calculations to optimize the centroids’ positions. The
cluster creation or optimization is stopped when either (i) the centroids have stabilized
because the clustering has been successful—there is no change in their values (convergence
= 1 × 10−4); or (ii) the defined maximum number of iterations (1000) has been achieved.
The following is the pseudo-code for the k-means clustering algorithm:

Algorithm 1. The k-means clustering algorithm

Initialize ni, i = 1, . . . k, to k random xt

Repeat
For all xt ∈ X

bt

i ←{
1 i f ||x1 − ni|| = minj||xt − nj||

0 otherwise
For all ni, i = 1, . . . , k

ni ← ∑t bt
i xt/ ∑t bt

i
Until mi converge
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2.4.2. Negative Image-Based Modeling

NIB screening is one of the geometry-optimized molecular docking approaches that
considers both key information of receptor cavity and bound ligand, and, subsequently,
the negative image is built based on shape and electrostatic parameters. PANTHER [81], a
cavity detection tool, was used to develop the NIB models from the gemcitabine-bound
receptor cavity of hRRM1. The radius size of the active site was considered to be 10 Å. A
total of three NIB models was developed by using the docked gemcitabine at the centroid,
defining the ligand distance limit of 1.2 Å, and body-centered cubic (bcc) packing. The cen-
ter of the binding site was considered as it was considered in molecular docking at (−22.188,
16.448, 24.853) along the x-, y-, and z-axes, respectively. By considering the above center
of the binding site, the negative image was created by pinning the shape/electrostatics or
charge features of the ligand-binding cavity. To check the predictive ability of each model,
a set of six known drugs/standard molecules for hRRM1 was used to calculate the ShaEP
score by mapping through the ShaEP similarity tool. The total similarity score in the range
of 0 to 1 was calculated by the ShaEP tool through the shape and electrostatic potential
(ESP) of the NIB model. During the execution of scoring, equal weights were given for both
shape and ESP. The correlation between inhibitory activity and ShaEP score was calculated
for all three models. The best predictive model was further used to predict the ShaEP score
of molecules that remained after molecular docking. The user-defined arbitrary ShaEP
score was used to wipe out the low-affinity molecules.

Molecules designated as active in k-means clustering and ShaEP score better than the
threshold were carefully checked, and common compounds found in both of the above
approaches were considered for further assessment. The NIB package was developed by
the University of Jyvaskyla, Jyvaskylan yliopisto, Finland.

2.5. Pharmacokinetics, Drug-Likeness, and Toxicity Assessment

De novo designed common molecules retained from both k-means clustering and the
NIB model approach were used for the calculation of pharmacokinetic and drug-likeness
properties using SwissADME [82], an online freely available tool. To check the drug likeness
and ADME profile, several parameters including gastrointestinal (GI) [83] and blood–brain
barrier (BBB) [83] absorption, solubility [83], Lipinski’s rule of five (LoF) [84], and Veber’s
rule [85] were explored. In particular, the molecules found to be absorbed by the GI and
not by the BBB along with highly soluble molecules were considered for further analysis.
LoF explains that a molecule might possess drug likeness if the molecular weight (MW),
hydrophobicity (logP), HBA, and HBD are not more than 500, 5, 10, and 5, respectively.
Veber’s rule explains that being a drug, a molecule should have a number of rotatable
bonds (NRB) ≤ 10 and a polar surface area ≤ 140 Å2.

Molecules following the ADME and drug-likeness characteristics were further used
for toxicity assessment. pkCSM [86], an online tool, was used to extract several toxicity
parameters including AMES toxicity, maximum recommended tolerated dose (MRDT),
minnow toxicity (MT), and skin sensitization (SS). AMES explains mutagenic characteristics
of the molecule and gives a positive or negative indication, whereas MT is known as
LC50 [87] and represents the concentration of the molecule required to cause the death
of 50% of flathead minnows. A molecule having an LC50 value of less than 0.5 mM is
considered to be highly acutely toxic in nature. MRTD is the threshold toxic dose of the
molecule in humans, and an MRTD ≤ 0.477 log(mg/kg/day) is considered to be a low
dose. SS determines any adverse effect on the skin after taking the molecule and indicates
either positive or negative.

Molecules that satisfied pharmacokinetic, drug likeness, and toxicity parameters were
carried forwarded for quality assessments.
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2.6. Molecular Docking Using PLANTS and SwissDock, and Absolute Binding Free Energy
Calculation Using KDEEP

PLANTS [65], molecular docking software, uses the ant colony optimization (ACO) [88]
method to dock the small molecules in the protein receptor site, and it was developed
by the University of Konstantz, Germany. The fundamental concept of the method is
that ants leave pheromones on the ground after finding food substances. Following the
pheromones, other ants of the same species start chasing the trails with a higher concentra-
tion of pheromones and subsequently increase the pheromone layer on the trail [89]. The
PLANTS tool follows the MIN–MAX ACO algorithm [90] in which each virtual ant identi-
fies a solution to a general function defining the problem. The empirical scoring function
further evaluates the solution, with a high value of the pheromone parameter receiving
the best solution [91]. For the next iteration, during the ants' search for the solution, the
values of the pheromone parameters for all the variables are considered [90]. SwissDock
is an open source web server-based molecular docking engine, and it can be accessed at
http://www.swissdock.ch/ (accessed on 3 September 2022). This webserver is developed
and maintained by the Swiss Institute of Bioinformatics, Lausanne, Switzerland. Molecules
obtained after toxicity analysis were considered for molecular docking using the PLANTS
tool and SwissDock web server, and the binding energy from both the docking engines of
each molecule was recorded.

Further, the above set of molecules was used for calculation of absolute binding free
energy through KDEEP [66], an online publicly available tool, which can be accessed through
https://www.playmolecule.com/Kdeep/, Barcelona, Spain (accessed on 20 June 2022). It is
based on the machine learning (ML) approach, such as 3D-convolutional neural networks
(3D CNNs), for predicting protein−ligand absolute binding affinity. It is important to
note that KDEEP is pre-trained, tested, and validated through the PDBbind v.2016 database,
Shanghai, China (accessed on 28 June 2022). This tool takes the input of the receptor file and
the set of small molecules of which the absolute binding free energy needs to be calculated.
In the current study, prepared hRRM1 target protein and de novo molecules obtained
after toxicity assessment were given as inputs, and the remaining parameters were kept
as default. Based on the pharmacophoric features (HBA, HBD, RA, HY, metallic, positive
or negative ionizable, and total excluded volume) of proteins and ligands, it gave the 3D
voxel representation of the binding site. Using the 3D CNN algorithm and pharmacophoric
features, the models were generated, and subsequently these models were used for the
absolute binding free energy calculation.

2.7. Pharmacophoric Features Assessment

One of the decisive variables for being a good binder at the active site is the ex-
istence of essential pharmacophoric characteristics in any small molecule. Therefore,
four prominent pharmacophoric features, namely, HBA, HBD, HY, and RA, were ex-
tracted using Python RDKit [78] from the de novo designed molecules reserved after
toxicity analysis along with gemcitabine and NSAH. A comparative analysis of the pharma-
cophoric features was carried out between proposed hRRM1 inhibitors, and gemcitabine
and NSAH. The pharmacophore fraction was computed to have a better understanding of
the role of the pharmacophoric functions in the proposed compounds compared to standard
BTC molecules.

In particular, the combined pharmacophore fraction (cPharmFrac) and pharmacophore
fraction (PharmFrac) were estimated from merged gemcitabine and NSAH, and proposed
hRRM1 inhibitors, respectively. The cPharmFrac of both standard molecules was calcu-
lated by division of the total number of specific pharmacophoric features present in both
molecules by the total number of all pharmacophoric features of gemcitabine and NSAH.
In the case of the de novo designed molecule, the PharmFrac was estimated by dividing
the number of specific pharmacophoric features by the total number of features of the

http://www.swissdock.ch/
https://www.playmolecule.com/Kdeep/
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particular molecule. The following expressions were used to calculate the cPharmFrac
and PharmFrac:

cPharmFrac =
∑ Spharm

ns f
(1)

PharmFrac =
Ppharm

np f
(2)

Spharm represents the pharmacophoric features (HBA, HBD, HY, and RA) of standard
molecules such as gemcitabine and NSAH. The nsf defines the total number of all phar-
macophoric features in both the standard molecules. Ppharm signifies the total number of
individual pharmacophoric features (i.e., HBA, HBD, HY, and RA are considered individu-
ally) of a particular proposed molecule, and npf denotes the total number of features present
(i.e., summation of HBA, HBD, HY, and RA) in the proposed molecules.

2.8. Molecular Dynamics Simulation

All-atom MD simulation is an excellent and widely used approach to explore the
behavior of the ligand–protein complex in dynamic states immerged in explicit water
molecules. Initially, the stability between the molecules retained after toxicity along with
gemcitabine and NSAH, and hRRM1 complexes were assessed through a short time span
MD simulation of 10 ns. Based on the statistical parameters and MM-GBSA-based binding
affinity, top-ranked molecules, gemcitabine and NSAH bound with hRRM1, were further
extended up to 100 ns. The MD simulation was carried out in GROningen MAchine for
Chemical Simulations (GROMACS) v2021.2 [92,93], an open source software tool developed
by Groningen University, Groningen, Netherlands The experiment was performed with a
time step, constant pressure, and constant temperature of 2 fs, 1 atm, and 300 K, respectively.
The topology of hRRM1 was generated through an all-atoms CHARMM36 forcefield [94].
The proposed hRRM1 inhibitors, and gemcitabine and NSAH were considered in Swiss-
Param [95] to obtain the topology and other parameter files. The protein–ligand complexes
were immerged into the cubic box with a minimum distance of 10 Å from the center to the
box edge. The system was solvated using the transferable intermolecular potential with a
3 points (TIP3P) [96] water model. A number of required Na+/Cl− ions was added to
neutralize each of the systems. The steepest-descent algorithm was used to minimize
each system for addressing the close contacts or overlaps between the atoms. To equally
distribute the water molecules and ions around the system, each of the systems was equili-
brated through NVT (constant number of particles, volume, and temperature) followed
by NPT (constant number of particles, pressure, and temperature). Upon successful com-
pletion, the MD simulation trajectories were used to calculate a number of parameters
including hRRM1 backbone RMSD, ligand RMSD, root-mean-square fluctuation (RMSF),
radius of gyration (RoG), and the number of inter-molecular HBs.

2.9. Binding Free Energy Using MM-GBSA Approach and Per-Residue Decomposition
Energy Calculation

The binding free energy (∆Gbind) calculated using the MM-GBSA approach from
MD simulation trajectories is considered to be more authentic and widely acceptable in
comparison to the binding energy derived in the molecular docking study. Moreover,
it is computationally efficient and considered to be a better estimation in comparison
to the several scoring functions. From the MD simulation trajectories, the (∆Gbind) of
each of the final hRRM1 inhibitors along with gemcitabine and NSAH were calculated
using the gmx_MMPBSA module [97]. A total of 2000 frames from the entire trajectory
was considered for (∆Gbind) estimation. The following expressions were used to calculate
the ∆Gbind:

∆Gbind =
〈

Gcomplex

〉
−
〈
Greceptor

〉
−
〈

Gligand

〉
(3)

where Gcomplex, Greceptor, and Gligand are the binding energy of the protein–ligand complex,
receptor, and ligand, respectively.
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The ∆Gbind can also be expressed as

∆Gbind = ∆H − T∆S (4)

∆H is the enthalpy of binding, whereas T∆S represents the conformational entropy
after ligand binding. On the removal of the entropic term, the estimated value represents
the effective free energy [98]. The effective free energy is sufficient to compare the relative
binding energy of any small molecule.

Further, the ∆H can be split into the following individual terms

∆H = ∆EMM+∆Gsol (5)

where ∆EMM can be expressed as a summation of bonded and non-bonded terms as below.

∆EMM= ∆Ebonded+∆Enonbonded (6)

Ebonded represents the combination of three terms including bond stretching, angle
bending, and torsion angle. The ∆Enonbonded is the combination of electrostatic and van der
Waals’ terms. Both expressions are given below.

∆Ebonded= ∆Ebond_length+∆Eangle+∆Edihedral (7)

∆Enonbonded= ∆Eele+∆EvdW (8)

The solvation energy (∆Gsol) for GB models can be calculated using the polar con-
stituent only. The nonpolar (NP) constituent is mostly thought to be proportional to the
molecule’s total solvent accessible surface area (SASA), with a proportionality constant
derived from experimental solvation energies of small nonpolar molecules [99,100]. Both
solvation and non-polar energy terms are expressed as given below.

∆Gsol= ∆Gpolar+∆Gnon-polar= ∆GGB+∆Gnon-polar (9)

∆Gnon-polar= NPTENSION+∆SASA+NPOFFSET (10)

Upon successful calculation of the ∆Gbind of each molecule, it was documented along
with the standard deviation.

Dynamic changes of the amino acids present around the active site of any protein
target play a key role in holding the ligand. The contribution of amino acids toward
the ligand for the binding interaction formation may be explored through per-residue
decomposition energy. A total of 2000 frames from the whole trajectory was used to
calculate the per-residue decomposition energy of hRMM1 amino acids around 5 Å from
the final molecules [101].

3. Results and Discussion

A comprehensive computational molecular design and optimization protocol was
implemented to identify potential novel hRRM1 inhibitors/modulators for the treatment
and/or management of BTC. To find out novel and effective compounds against disease-
specific macromolecular targets, the computational drug discovery pipeline has already
gained gigantic momentum in more than the last three decades.

Herein, a number of pharmacoinformatics approaches including de novo molecular
design technique, followed by molecular docking, NIB screening, pharmacophoric features
assessment, ADME, toxicity, machine learning (ML)-based absolute binding affinity estima-
tion, MD simulation, and MM-GBSA-based binding free energy estimations were employed
and executed for sequentially filtering out some potent drug-like candidates for hRRM1
target protein. The entire stepwise schematic workflow of the employed work is given in
Figure 1. Validation of the molecular docking methodology is an essential step before it can
be used to screen any molecular dataset, whether it be an existing database or a newly built
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molecule. Therefore, in the current study, the self-docking approach was initially adopted
to check the reproducibility of the comparable orientation of the co-crystal GDP through a
molecular docking study. The re-drawn GDP was docked at the same position of the active
site of hRRM1 where the co-crystal GDP was bound. The best-docked pose was extracted
and superimposed on the original co-crystal conformer of GDP. To explore the orientational
similarity between the best-docked pose and the original crystal conformer, the RMSD was
calculated and found to be 1.235 Å. In the molecular docking study, the observed RMSD
(<2 Å) indicated that the conformational orientation of the docked pose was found to be
almost similar to co-crystal-bound GDP. Hence, it can be postulated that if any new or
unknown molecule is docked in hRRM1 through the above docking parameters, it will be
able to produce possibly similar orientational conformations as the crystallized ligand of
hRRM1. The superimposed docked pose and co-crystal conformer is given in Figure S1
(Supplementary Data).
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3.1. De Novo Design of hRRM1 Inhibitors and Virtual Screening

Gemcitabine was initially docked in the active site of hRRM1 (PDB ID:3HND) through
ADV, and the binding energy was found to be −8.50 kcal/mol. Out of nine docked poses,
the best pose was selected through the binding energy and binding interaction analyses.
The above complex of hRRM1 and gemcitabine was used to design the novel molecules
through the de novo design approach. Upon successful completion of all 10 given sessions
of jobs, a total of 10,000 new molecules was designed based on the features' active site
cavity. For all those newly designed molecules, the molecular frameworks such as structural
organization and bad valence error representation were checked. Few newly designed
molecules may have structural similarities due to the usage of the same receptor cavity
during molecule generation. As a result, duplicate or identical molecules were removed
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prior to further analysis. A total of 3477 de novo designed molecules was found to be
identical and hence were eliminated from the dataset. The remaining 6523 unique hRRM1
molecules were taken into consideration for further assessment. On close inspection, it
was observed that molecules were structurally diverse in nature, having a wide variety
of scaffolds. Almost all of the molecules consist of several pharmacophoric features that
might be crucial for the interactions with hRRM1 active site amino acid residues.

3.1.1. Molecular Docking Based Screening

The entire set of molecules obtained through the de novo design approach along with
gemcitabine and NSAH were considered for the molecular docking in ADV. From the
molecular docking study, it was revealed that almost each and every molecule showed
a significant binding affinity towards hRRM1, having a binding energy range of −5.10
to −13.80 kcal/mol. The binding energy values of gemcitabine and NSAH were found
to be −7.20 and −8.50 kcal/mol, respectively. To reduce the chemical space of docked
de novo designed inhibitors, the threshold binding energy was set to −8.50 kcal/mol.
The main motive behind such consideration was to select molecules that show better
binding affinity towards hRRM1 in comparison to gemcitabine and NSAH. Applying the
above criteria, it was found that 4839 compounds failed to show better binding affinity
towards the hRRM1 and hence were removed from further evaluation. The remaining
1684 novel inhibitors/modulators were further considered for a number of pharmacophoric
feature assessments based on the k-means clustering approach and followed by other
filtration techniques including NIB screening, pharmacokinetics and toxicity analyses,
quality checking through PLANTS docking, ML-based absolute binding free energy, MD
simulation, and MM-GBSA-based binding free energy.

3.1.2. K-Means Clustering of Pharmacophoric Features

The presence of suitable pharmacophoric features in any small molecule is very
crucial for showing strong binding affinity with active site amino acid residues of the
target protein. The pharmacophoric pattern in de novo designed molecules obtained after
the molecular docking study was explored through an unsupervised k-means clustering
algorithm. In this method, a set of known active BTC drug/standard molecules was
considered as a training set, and eight pharmacophoric features of each molecule were
calculated through Python RDKit. Further, the same set of pharmacophoric features for
1684 de novo designed inhibitors was extracted. Based on pharmacophoric features of
drug/standard molecules and exploring the features of test compounds, the de novo
designed molecules that remained after the docking study were classified into active
and inactive classes. A set of 1365 molecules was found to be active and considered for
further assessment.

3.1.3. Negative Image-Based Screening

The GDP bound complex of hRRM1 was used to develop the NIB models by consid-
ering the geometry and electrostatic characteristics of the receptor cavity. Three models
(Models I, II, and III) were generated by considering the GDP as the centroid, limiting
the model generation to 1.5 Å around the GDP and bcc cubic packing, respectively. All
three generated models were found to be perfectly mapped with the co-crystal GDP and
are given in Figure 2.

It was essential to evaluate the predictivity and validity of the NIB model before using
the prediction on the unknown molecular dataset. The ShaEP score of a set of known active
hRRM1 inhibitors was estimated and is given in Table 1. Upon close observation, it can
be seen that the ShaEP score was found to be in the range of 0.513 to 0.720. Precisely, the
lowest and highest ShaEP scores of the hRRM1 inhibitors' scores were observed to be 0.307
and 0.654, 0.513 and 0.681, and 0.454 and 0.645 for Models I, II, and III, respectively. It
is interesting to see that not a single molecule predicted a ShaEP value less than 0.5 after
estimation using Model II. Further, to check the quality of the prediction of each model, the
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correlation coefficient (R) between the ShaEP score and logarithm value of the experimental
IC50 was calculated for all three models and is given in Table 1. It can be seen that Model II
had the highest R value of 0.660, followed by Model III and Model I with 0.535 and 0.480,
respectively. The above data and observations undoubtedly suggested that the prognostic
power of Model II was better than the other two models. Hence, Model II was selected
for utilization of the ShaEP score-based screening of molecules that remained after the
molecular docking study.
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Table 1. Experimental inhibitory concentration and ShaEP score based on three models for known
hRRM1 inhibitors.

Molecules Log (IC50) in µM Model I Model II Model III

Gemcitabine 2.622 0.451 0.513 0.645
M40128 2.396 0.530 0.529 0.454

M777989 2.879 0.307 0.720 0.548
M951562 2.807 0.489 0.681 0.568
NSAH 2.495 0.389 0.524 0.495

M859980 3.420 0.654 0.653 0.597

Correlation coefficient (R) 0.480 0.660 0.535

Molecules that remained after the molecular docking binding energy-based screening
(a total of 1684 compounds) were mapped on Model II, and the ShaEP score was calculated.
Upon detailed analysis, it was revealed that the ShaEP score was found to be in the range of
0.231 to 0.857. Moreover, most of the molecules almost perfectly occupied the entire part of
the model. To select better-fitted molecules, arbitrarily the ShaEP score of 0.6 and more was
considered as a threshold. It is important to note that the ShaEP scores of both standard
molecules were found to be less than 0.530. Hence, molecules that were shown to have a
ShaEP score ≥ 0.6 were taken for further evaluation. A set of 1245 molecules satisfied the
above criteria.

The common molecules obtained from both methodologies, such as k-means clus-
tering of pharmacophoric and NIB screening, were used to investigate the next level of
assessments, and it was found that 1079 molecules were retained.

3.1.4. Pharmacokinetics and Drug-Likeness Parameter Assessment

In the computational drug design paradigm, pharmacokinetics and drug likeness param-
eters evaluation have become essential aspects to screen potential small molecules with safer
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ADME and better medicinal chemistry properties. In the current study, molecules that retained
after k-means clustering of pharmacophoric features and NIB screening were considered for the
calculation of various ADME parameters. The SwissADME tool was used for the calculation of
the pharmacokinetic properties of a total of 1079 molecules. Several parameters including GI
absorption = yes, BBB = No, solubility = high, TPSA≤ 140 Å2, and violation of LoF and Veber’s
rule, i.e., as 0 (zero), were implemented to reduce the chemical space. After implementing the
above rules, it was found that 649 molecules failed to follow at least one of the rules and hence
were removed for further assessment. Hence, the remaining 430 molecules were used for the
next level of screening to wipe out the inactive molecules.

3.1.5. Toxicity Assessment

Molecules retained after the ADME analysis were further used for the calculation
of the toxicity parameters using pkCSM, a widely used toxicity prediction online tool.
Molecules found to have hepatotoxic and mutagenic (AMES toxicity) characteristics were
removed. The extreme toxic dose, i.e., MTD, and lethal concentration (minnow toxic-
ity) values of each molecule were checked, and compounds beyond the acceptable range
(>0.477 and <0.5 mM, respectively) were deleted. Finally, skin allergic compounds were
identified using the skin sensitization parameter. Molecules having non-allergic character-
istics were considered for further analysis. A total of 17 molecules persisted after screening
through the above parameters and was taken into consideration for the MD simulation
study. The two-dimensional (2D) representation of the 17 molecules is given in Figure 3.
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3.1.6. Molecular Docking Using PLANTS and SwissDock, and Absolute Binding Affinity
Calculation through KDEEP

A total of 17 molecules was found to be safe and free from any toxic nature and
therefore was further considered for the quality assessment through molecular docking
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in PLANTS. Following docking, the absolute binding affinity calculation was also carried
out using KDEEP. PLANTS is the ACO-based docking engine that samples the search space.
The same parameters of grid configuration, i.e., active site coordinates and grid size, used
in the ADV docking study were considered in PLANTS docking. After successful docking,
the PLANTS score was recorded, and it is given in Table 2. The PLANTS scores of the
hRRM1 inhibitors were found to be within the range of −61.00 to −93.00 kcal/mol. On the
other hand, the PLANTS scores of both standard molecules, gemcitabine and NSAH, were
found to be −67.106 and −80.290 kcal/mol, respectively. It is interesting to note that except
for BD_13, all other molecules were found to have better binding affinity in comparison to
gemcitabine. When the PLANTS scores were compared to the NSAH, it was discovered
that BD 1, BD 6, BD 7, BD 8, BD 9, BD 12, BD 14, and BD 17 had a stronger binding affinity
for the hRRM1. The rest of the compounds were discovered to have a binding affinity
similar to NSAH. For further cross check, all the above molecules were docked using
the SwissDock server, and ∆G (kcal/mol) was recorded and is given in Table 2. The ∆G
values of gemcitabine and NSAH were found to be 7.46 and 7.19 kcal/mol, respectively.
It is important to note that all the proposed hRRM1 molecules were found to have better
binding affinity in comparison to NSAH. On the other hand, except for BD_4 and BD_5, all
other molecules showed higher binding affinity in comparison to gemcitabine. The above
observations from the SwissDock study clearly corroborated the outcomes from PLANTS
and ADV.

Table 2. PLANTS-based docking score and absolute binding affinity of identified hRRM1 in-
hibitors/modulators molecules.

Mols PLANTS Score (kcal/mol) SwissDock ∆G (kcal/mol) KDEEP ∆G (kcal/mol)

Gemcitabine −67.106 −7.46 −5.819
NSAH −80.290 −7.19 −5.520
BD_1 −83.636 −7.70 −6.961
BD_2 −76.806 −7.52 −8.999
BD_3 −75.577 −7.70 −5.986
BD_4 −73.217 −7.22 −7.777
BD_5 −75.217 −7.42 −8.313
BD_6 −89.560 −8.56 −8.092
BD_7 −92.362 −8.16 −8.854
BD_8 −82.278 −7.92 −8.612
BD_9 −83.276 −7.81 −8.109

BD_10 −79.143 −7.74 −7.821
BD_11 −71.442 −7.96 −7.512
BD_12 −87.175 −7.97 −9.222
BD_13 −61.565 −7.50 −7.382
BD_14 −84.934 −8.41 −7.711
BD_15 −78.741 −7.65 −8.140
BD_16 −72.471 −7.59 −9.358
BD_17 −83.795 −8.34 −8.129

The best-docked posed of all 17 molecules along with gemcitabine and NSAH obtained
from the PLANTS docking study were considered for the calculation of absolute binding affinity
towards hRRM1 through KDEEP. The absolute binding affinities of all the molecules are given
in Table 2. Upon close observation of the absolute binding affinities, it was revealed that all
17 de novo designed molecules were found to have better binding affinities in comparison to
both gemcitabine and NSAH. In detail, the absolute binding affinities of gemcitabine and NSAH
were recorded as −5.819 and −5.520 kcal/mol, respectively. Among the de novo designed
molecules, the highest and lowest absolute binding affinities were found for BD_16 and BD_3,
respectively. KDEEP-based absolute binding affinity data suggested that most of the identified
molecules possess a strong binding affinity towards hRRM1.

Overall, a few molecules were also found to show a slightly lower binding affinity
in comparison to standard molecules toward hRRM1. At the same time, all molecules
were found to have strong interaction affinities through absolute binding affinity analysis.
The molecules found with slightly less affinity were closely checked and found to show
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high negative absolute binding affinities in KDEEP. The chemical space could be reduced
based on the PLANTS score, but it would violate the KDEEP binding affinity assessment.
Hence, without removing any molecules for further evolution, all 17 molecules were carried
forward for pharmacophoric features exploration followed by MD simulation and binding
free energy estimation using the MM-GBSA approach.

3.1.7. Pharmacophoric Features Assessment

The optimal position and arrangement of pharmacophoric features can give crucial
binding interactions that might lead to achieving the active conformation of the molecule
with a better affinity towards the protein target. All 17 proposed hRRM1 inhibitors along
with gemcitabine and NSAH were considered for the estimation of available pharma-
cophoric features such as HBD, HBA, HY, and RA through Python RDKit [78], and the
results are given in Table S1 (Supplementary File). Gemcitabine and NSAH were found to
have values of 3 and 3, 5 and 3, 0 and 4, and 1 and 3 of HBD, HBA, HY, and RA, respec-
tively. The total numbers of pharmacophoric features present in gemcitabine and NSAH
were found to be 9 and 13, respectively. Interestingly, all 17 de novo designed molecules
contained a higher number of pharmacophoric features in comparison to gemcitabine. On
the other hand, except for BD_1, BD_2, BD_3, and BD_6, all other hRRM1 inhibitors were
found to hold a higher number of pharmacophoric features than NSAH. Further, to better
understand the presence of pharmacophoric features in the molecules, the cPharmFrac and
PharmFrac were calculated using Equations (1) and (2), respectively, and the results are
given in Table 3.

Table 3. cPharmFrac and PharmFrac of hRRM1 inhibitors obtained from Python RDKit.

Molecules 1 HBD 2 HBA 3 HY 4 RA

cPharmFrac

Gemcitabine +
0.273 0.364 0.182 0.182NSAH

PharmFrac

BD_1 0.182 0.364 0.364 0.091
BD_2 0.200 0.300 0.300 0.200
BD_3 0.300 0.200 0.400 0.100
BD_4 0.214 0.357 0.286 0.143
BD_5 0.133 0.467 0.267 0.133
BD_6 0.167 0.417 0.333 0.083
BD_7 0.214 0.357 0.357 0.071
BD_8 0.143 0.357 0.357 0.143
BD_9 0.286 0.286 0.357 0.071
BD_10 0.231 0.231 0.462 0.077
BD_11 0.231 0.308 0.385 0.077
BD_12 0.267 0.200 0.400 0.133
BD_13 0.231 0.462 0.231 0.077
BD_14 0.286 0.286 0.357 0.071
BD_15 0.214 0.286 0.357 0.143
BD_16 0.200 0.333 0.333 0.133
BD_17 0.231 0.308 0.385 0.077

1 HB donor; 2 HB acceptor; 3 hydrophobic; 4 ring aromatic

From Table 3, it can be observed that PharmFrac like HBD, HBA, and HY of almost
all 17 molecules were found to be similar to or better than the cPharmFrac. It is important
to note that all de novo designed molecules were seen to have a higher contribution
of HY PharmFrac in comparison to cPharmFrac. The above observation suggested that
molecules possessed sufficient chemical functionality to form potential HB and hydrophobic
interactions with active site amino acid residues of hRRM1.
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3.1.8. MD Simulation and MM-GBSA Binding Free Energy Estimation

To explore the more rigorous conformational stability and binding affinity of each
of the 17 molecules towards hRRM1, a short MD simulation of 10 ns was carried out.
To compare the MD simulation data and binding free energy of the de novo designed
molecules, both standard molecules, gemcitabine and NSAH, were also taken for MD
simulation. A number of stability determining parameters such as protein backbone and
ligand RMSD, RoG, and intermolecular hydrogen bonds were analyzed. All the above
data are given in Figures S2–S5 (Supplementary File). Each of the protein backbone RMSD,
ligand RMSD, and RoG parameters was found to explain the stability of the protein–
ligand complexes with some variations. The inter-molecular HBs in almost each of the
17 molecules were found to be comparable with gemcitabine and better than NSAH. Further,
the binding affinity of each molecule along with gemcitabine and NASH was assessed
through the calculation of binding free energy (∆Gbind) using the MM-GBSA approach,
and it is given in Table 4. High negative ∆Gbind reflects the higher binding affinity of
the molecules towards hRRM1. It can be seen that the ∆Gbind values of gemcitabine and
NASH were found to be –36.65 and −19.53 kcal/mol, respectively. As seen in Table 4, it
was observed that BD_7 and BD_8 showed better binding affinity in comparison to both
gemcitabine and NSAH. Further, BD_1, BD_10, and BD_14 were found to have ∆Gbind
values of −24.62, −27.02, and −29.75 kcal/mol, respectively. The binding affinities of the
above three molecules were found to be better than NSAH and comparable to gemcitabine.
Although BD_6 showed a slightly better binding energy in comparison to NSAH, at the
same time it was far from gemcitabine. The remaining molecules were found to have low
binding affinities in comparison to both standard molecules.

Table 4. Binding energy of the 17 best hRRM1 inhibitors, gemcitabine, and NSAH through the
MM-GBSA approach.

Molecule ∆Gbind kcal/mol Standard Deviation

Gemcitabine −36.65 3.15
NSAH −19.53 2.91
BD_1 −24.62 3.74
BD_2 −23.75 2.81
BD_3 −17.79 4.11
BD_4 −12.59 3.94
BD_5 −12.45 3.84
BD_6 −20.74 5.22
BD_7 −48.27 4.68
BD_8 −39.72 3.41
BD_9 −18.27 4.12

BD_10 −27.02 3.15
BD_11 −14.56 5.82
BD_12 −15.04 4.91
BD_13 −17.89 5.01
BD_14 −29.75 4.75
BD_15 −9.74 6.16
BD_16 −14.65 3.14
BD_17 −7.08 4.22

From all the above data and analyses, it is nearly clear that the selected 17 molecules
possess a strong competence of being potential hRRM1 inhibitors. The molecular docking
through both ADV and PLANTS undoubtedly substantiated the high affinity of these
molecules towards hRRM1. Unsupervised k-means clustering already approved these
molecules as active in nature, and this was corroborated by high negative convolutional
neural networks based on absolute binding free energy estimated through KDEEP. More-
over, the negative image of the active site cavity showed complete affection towards the
molecules confirmed through a high ShaEP score. The contribution of significant PharmFrac
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for each molecule exposed their prospect of being a good binder at the hRRM1 receptor site.
A number of statistical parameters calculated from a short MD simulation of each molecule
bound with hRRM1 unfolded their compactness and convincing association in the dynamic
states. High negative binding free energy calculated using the MM-GBSA method disclosed
the strong affinity and their being promising compounds to modulate the hRRM1 activity.
In general, it can be considered that all the 17 molecules in Figure 3 might be crucial for
the modulation of hRRM1 activity and effective chemical entities for the management of
BTC. Although it is very clear that all the molecules (in Figure 3) showed their potentiality,
BD_1, BD_7, BD_8, BD_10, and BD_14 were found to have more affinity towards hRRM1.
For further confirmation and exploration of the relative stability, the above five molecules
along with gemcitabine and NSAH bound with hRRM1 were subjected to extended MD
simulation up to 100 ns of time span.

3.2. Binding Interaction Analysis

The binding interaction analyses of the top five molecules, gemcitabine, and NSAH
were explored, and it is given in Figure 4. Each of HIS200, SER202, GLU431, SER448, and
THR607 were found to form HB interactions with gemcitabine separately. Additionally,
ALA201 and THR604 established hydrophobic interaction with gemcitabine. Upon binding
interaction analysis of NSAH with hRRM1, it was revealed that ALA245, GLY246, ARG293,
and ALA296 were critically connected through HB interactions. NSAH also formed two
hydrophobic connections with each of GLN288 and LEU428. BD_1 possesses a number
of important chemical functional groups to form critical bonds with hRRM1 active site
amino acid residues. The amine group present in BD_1 was seen to interact with ALA245
and GLY247 through HB interactions. ASN427, LEU428, and CYS429 of hRRM1 formed
HB interactions with the oxo group attached to oxazolone of BD_1. The hydroxyl group
attached to the phenyl ring of BD_1 was successfully connected with SER606 and THR607
through one and two HB interactions, respectively. Beyond the above, the phenyl ring and
the unsaturated chain between phenyl and oxazolone rings were found to be important to
impart hydrophobicity, which was confirmed by the formation of hydrophobic interactions
with LEU446, MET602, and ALA605. The hydroxyl group attached to the phenyl ring in
BD_7 critically established HB interactions with ASN427 and GLU431. The oxo group of
cyclopentadienone was crucial to form HB interactions with SER448 and THR607. Both
hydroxyl groups attached to the non-cyclic part of BD_7 interacted with SER202, SER606,
and THR607 via HB interactions. Both cyclic rings such as phenyl and cyclopentadienone
were found to be important for hydrophobic interactions with ALA201, LEU446, THR604,
and THR607. A number of crucial binding interactions in terms of HB and hydrophobic
contacts were found between hRRM1 amino acids and BD_8. Both the hydroxyl groups,
the oxo group, and the nitrogen atom at the oxadiazole ring present in BD_8 participated
in HB formation with SER202, ASN427, GLU431, SER606, and THR607. Moreover, both
the unsaturated alkyl group and phenyl ring were critically found to be hydrophobic
in nature and formed hydrophobic contacts with LEU446 and ALA605. Two hydroxyl
groups of BD_10 were potentially formed HB with each of TYR155, SER202, SER448, and
THR607, separately. Moreover, the NH– group of dihydropyrazine in BD_10 was also seen
to connect with GLY247 through HB interactions. Moreover, saturated and unsaturated
alkyl groups of BD_10 were found effective to form hydrophobic contacts with ALA201,
MET602, PRO603, and THR604. Similar to the above molecules, BD_14 was also found to
have a number of crucial chemical functional groups important for binding interactions
with hRRM1 amino acid residues. A hydroxyl group attached with the phenyl ring was
seen to form three HB interactions with ASN427, LEU428, and CYS429. Another two
hydroxyl groups present at the alkyl terminal of BD_14 were critically formed in one and
two HB interactions with SER606 and THR607, respectively. Both PRO203 and LEU446 of
hRRM1 successfully established hydrophobic binding interactions with BD_14.
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From the binding interaction analyses, it was found that SER202 and GLU431 were
found to establish HB interactions in gemcitabine, BD_7, and BD_8. Similarly, SER448 was
also found to interact with gemcitabine, BD_7, and BD_10. It is important to note that
THR607 was found to interact with gemcitabine and all five proposed hRRM1 inhibitors.
Both ALA201 and THR604 were seen to form hydrophobic contacts with gemcitabine, BD_7,
and BD_10. The amino acids residue ALA245 was found to interact with both NSAH and
BD_14. Hence, it was undoubtedly clear that all the five proposed molecules were found to
show almost a similar binding interaction pattern in molecular docking simulation.

From the analysis of the binding interaction, it was very clear that all proposed
molecules perfectly occupied the biologically relevant active site of hRRM1. For better
observation, the surface view of all hRRM1 molecules including gemcitabine and NSAH
was explored, and it is given in Figure 5. It is very clear that all molecules including
gemcitabine and NSAH were bound in almost the same position of the hRRM1 active
site cavity. Moreover, a number of common amino acids was also seen to interact with
standard and proposed molecules. Hence, detailed binding interactions analysis and a
buried view in 3D space successfully substantiated the potentiality and effectivity of the
proposed molecules for hRRM1 activity modulation.

3.3. Molecular Dynamics Simulation of Top Five hRRM1 Inhibitors

For extensive exploration of the dynamic nature of the five best molecules along
with gemcitabine and NSAH, the MD simulation was further extended up to 100 ns
of time span. From the completed MD simulation trajectories, a number of statistical
parameters including protein backbone RMSD, ligand RMSD, RMSF, RoG, and number of
inter-molecular hydrogen bonds was extracted. The average, maximum, and minimum
protein backbone RMSD, ligand RMSD, RMSF, and RoG are given in Table 5.
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Table 5. Statistical parameters from MD simulation trajectories for hRRM1 inhibitors.

Parameters Gemcitabine NSAH BD_1 BD_7 BD_8 BD_10 BD_14

Backbone
RMSD (nm)

Min. 0.001 0.001 0.001 0.000 0.001 0.000 0.000
Max 1.263 0.681 0.947 1.106 1.599 0.875 1.250
Avg 1.057 0.442 0.806 0.884 1.092 0.785 0.611

Ligand
RMSD (nm)

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max 0.114 0.187 0.214 0.109 0.165 0.313 0.209
Avg 0.044 0.072 0.107 0.053 0.099 0.199 0.123

RMSF (nm)
Min 0.063 0.052 0.051 0.051 0.071 0.053 0.066
Max 1.525 2.286 1.731 1.242 3.803 1.988 2.210
Avg 0.220 0.188 0.177 0.177 0.357 0.176 0.296

RoG (nm)
Min 2.843 2.804 2.780 2.815 2.851 2.776 2.846
Max 2.999 2.991 3.028 2.976 3.205 3.035 3.156
Avg 2.911 2.881 2.858 2.870 3.029 2.846 2.926

Min: minimum; Max: maximum; Avg: average.

3.3.1. Root-Mean Square Deviation

The protein backbone RMSD obtained from MD simulation trajectories is one of the
important parameters to explore the insight protein backbone and ligand stability during
the MD simulation. The consistent deviation or low variation of the RMSD value explains
the consistency of the protein–ligand complexes in dynamic states. The RMSD of each of
the 100,000 frames over the time of simulation was plotted and is given in Figure 6.

It was seen that the hRRM1 backbone bound with gemcitabine deviated slightly in
the initial stage of simulation, and afterward it achieved consistency around an RMSD of
1 nm till the end of the simulation. Although the RMSD of the hRRM1 backbone bound
with NSAH was found to be low, in the range of 0.44 to 0.69 nm, it was observed to deviate
throughout the entire simulation. Among the top five proposed hRRM1 inhibitors, the
hRRM1 backbone bound with BD_1, BD_7, and BD_10 was found to deviate in an almost
similar manner at around 0.8 to 0.9 nm and remained consistent throughout the simulation.
The hRRM1 backbone RMSD was found to deviate up to about 25 ns when bound with
BD_14, and afterward it attained consistency at around 0.6 nm till the end of the simulation.
It was unlikely that the hRRM1 backbone RMSD bound with BD_8 was found to deviate
continuously throughout the simulation. It might be due to more conformational changes
of BD_8 inside the hRRM1 binding pocket, resulting in consistent deviation of the backbone.
The average hRRM1 backbone RMSD was found to be 1.057, 0.442, 0.806, 0.884, 1.092, 0.785,
and 0.611 nm for gemcitabine, NSAH, BD_1, BD_7, BD_8, BD_10, and BD_14, respectively.
The above value undoubtedly explained that the hRRM1 backbone RMSD of all proposed
molecules was lesser than gemcitabine, except for BD_8. More deviation of the hRRM1
backbone bound with BD_8 might be the reason for having a slightly higher average RMSD.
The lowest average hRRM1 backbone RMSD was found for NSAH, but the backbone was
found to be a bit unstable in the MD simulation trajectory. Hence, from the above data and
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observations, it was clear that except for BD_8, the remaining proposed molecules bound
with hRR achieved stability in the dynamic states.
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The ligand RMSD data against the time of simulation of gemcitabine, NSAH, BD_1,
BD_7, BD_8, BD_10, and BD_14 was plotted and is given in Figure 7. With some exceptions,
almost all ligands remained steady in dynamic states throughout the simulation. BD_10
was seen to be coherent from the beginning to about 60 ns. Afterward, suddenly the RMSD
was increased from around 0.15 to 0.30 nm and further attained steadiness till the end of the
simulation. The above change might be due to a change in the conformational orientation
of the molecule. The differences between the maximum and average RMSD can give an
idea about the overall deviation of molecules from their mean position, and they were
found to be 0.070, 0.115, 0.107, 0.056, 0.066, 0.114, and 0.086 nm for gemcitabine, NSAH,
BD_1, BD_7, BD_8, BD_10, and BD_14, respectively. The above low values along with a
consistent variation of ligand RMSD suggested the steadiness of the molecules inside the
active site cavity of hRRM1.
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3.3.2. Root-Mean Square Fluctuation

The individual amino acids play a critical role in the stability of the protein and ligand
complex in the MD simulation. Based on the deviation or conformational changes of bound
small molecules, the amino acid residues fluctuate from their original position. From the
entire MD simulation trajectories, the RMSF of hRRM1 amino acids was calculated and
is plotted in Figure 8. It is clearly visible from Figure 8 that with a few exceptions at both
terminals, all amino acids of hRRM1 bound with the proposed hRRM1 inhibitors as well as
gemcitabine and NSAH were found to fluctuate almost in comparable modus. Average
RMSF was found to be 0.220, 0.188, 0.177, 0.177, 0.357, 0.176, and 0.296 nm with binding
with gemcitabine, NSAH, BD_1, BD_7, BD_8, BD_10, and BD_14, respectively. The similar
fluctuations of hRRM1 amino acids bound with all hRRM1 modulators and lower average
values clearly substantiated that each of the amino acids fluctuated in an almost similar
fashion and held the small molecules in dynamic states.
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3.3.3. Radius of Gyration

The compactness and rigidity of any MD simulation system can be assessed using
the RoG parameter. A lower RoG value explains folding, whereas a higher value of RoG
indicates the unfolding of the protein. The RoG of each frame was calculated, and it
is depicted in Figure 9. Not a single frame was found to have an abnormal deviation
from its original position. It is important to note that frames among all systems varied
between 2.776 and 3.205 nm. Additionally, the average RoG of the systems bound with
the proposed hRRM1 inhibitors was found to be much closer to gemcitabine and NSAH.
Hence, the above observations clearly were substantiated and explained the steady
deviation of the system.
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3.3.4. Intermolecular Hydrogen Bonds Analysis during MD Simulation

For the stability of the protein and ligand complex, the number of intermolecular
hydrogen bonds is one of the crucial factors to keep them together in dynamic states. Due
to conformational changes in the MD simulation processing, a number of existing HBs
break, and a new set of bonds is formed. The MD simulation trajectories were used to
calculate the number of HBs between the hRRM1 active site amino acids and ligands, and
it is given in Figure 10. Gemcitabine and BD_8 were found to possess at least one HB in
each of the 100,000 frames. Similarly, BD_14 was also found to retain at least one HB except
for a very few frames. A much smaller number of HBs was found between hRRM1 and
NSAH, although among the proposed hRRM1 molecules, BD_1 and BD_7 were found to
have a number of frames without any HBs, but a large number of frames also formed HBs
up to six for both molecules. The variation of the number of HBs in different frames in each
molecule explained that each molecule went through a conformational ensemble during
the course of MD simulation. Therefore, the existence of HBs between hRRM1 and its
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ligand substantiated and corroborated that the hRRM1 kept the small molecules tightly
inside the receptor cavity.
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3.4. Binding Free Energy Using MM-GBSA Approach and Per-Residue Decomposition Energy

The ∆Gbind values of the proposed five molecules and the two standard molecules,
gemcitabine and NSAH, were calculated from 100 ns MD simulation trajectories through
the MM-GBSA approach. Calculated ∆Gbind values and standard deviations of gemcitabine,
NSAH, BD_1, BD_7, BD_8, BD_10, and BD_14 towards hRRM1 are given in Table 6.
Moreover, for the above molecules, binding free energy was also calculated from the 10 ns
MD simulation (Table 4) during the screening of the molecule. From both Tables 4 and 6,
it can be seen that the binding affinity of each molecule changed towards hRRM1 on the
extension of the MD simulation. In particular, a small ∆Gbind of gemcitabine was reduced;
that is, its affinity towards hRRM1 increased. On the other hand, the affinity of NSAH was
decreased after 100 ns of MD simulation analysis. In the comparison of ∆Gbind from 10 to
100 ns MD simulation trajectories, it was observed that all proposed molecules enhanced
their affinity towards hRRM1. The possible reason behind the increase in affinity might
be the more conformational analysis in the longer time span of MD simulation. Overall,
the high negative ∆Gbind values of each of the proposed inhibitors undeniably showed that
they possess a strong affinity towards hRRM1.



Biomolecules 2022, 12, 1279 25 of 34

Table 6. Binding free energy of final five BTC molecules calculated from 100 ns MD simulation trajectory.

Molecule ∆Gbind kcal/mol (Std. Dev.)

Gemcitabine −39.13 (±3.07)
NSAH −17.53 (±3.41)
BD_1 −31.13 (±3.52)
BD_7 −55.27 (±4.75)
BD_8 −47.11 (±2.99)

BD_10 −35.31 (±3.02)
BD_14 −37.39 (±4.65)

Std. Dev.: standard deviation.

The amino acids around the bound ligand are the key contributors to the binding
interaction, and they can be assessed through the calculation of per-residue decomposition
energy. From each MD simulation trajectory, the per-residue decomposition energy of
amino acids around 5 Å of bound ligand was calculated and is plotted in Figure 11. The
high negative per-residue decomposition energy of any amino acid indicated the strong
contribution toward the binding of ligands, and it can be corroborated by the binding
interaction analyses in molecular docking. Especially, the per-residue decomposition
energy of ligand binding amino acids was checked, and it was found that almost all ligand-
binding amino acids for each ligand showed high negative values. The above observation
clearly corroborated the binding interaction analysis in the molecular docking study and
per-residue decomposition energy from the MD simulation.

Biomolecules 2022, 12, x FOR PEER REVIEW 27 of 35 
 

 
Figure 11. Per-residue decomposition energy of hRRM1 amino acids present around 5 Å of bound 
ligand. 

3.5. Post MD Simulation Binding Interaction Analysis 
During and after the MD simulation time, the binding interactions were investigated 

by extracting the protein–ligand complexes at different time intervals. Particularly, after 
successful completion of the MD simulation, protein–ligand complexes at the different 
time frames of 0, 25, 50, 75, and 100 ns were extracted and their binding interactions ana-
lyzed using PLIP. The ligand-binding amino acids of each mentioned time frame along 
with the associated interacting amino acids found in the molecular docking as well as the 
MD simulation study are given in Table 7.  

Table 7. Post-MD simulation binding interaction profile at 0, 25, 50, 75, and 100 ns. 

  Binding Interaction Analysis 
Mole-
cule 

Bonds Mol. Dock. 
Post-MD Simulation 

0 ns 25 ns 50 ns 75 ns 100 ns 

G
em

ci
ta

bi
ne

 HY ALA201, THR604 - - - - - 

HB 
HIS200, SER202, 
GLU431, SER448, 

THR607 

SER202, SER217, 
GLU431, SER448, 

THR607 

SER202, 
GLU431, 
SER448 

SER202, SER448, 
THR607 

ASN427, 
GLU431, 

ALA605, SER606, 
THR607 

SER202, 
ASN427, 
GLU431 

Figure 11. Per-residue decomposition energy of hRRM1 amino acids present around 5 Å of bound ligand.



Biomolecules 2022, 12, 1279 26 of 34

3.5. Post MD Simulation Binding Interaction Analysis

During and after the MD simulation time, the binding interactions were investigated
by extracting the protein–ligand complexes at different time intervals. Particularly, after
successful completion of the MD simulation, protein–ligand complexes at the different time
frames of 0, 25, 50, 75, and 100 ns were extracted and their binding interactions analyzed
using PLIP. The ligand-binding amino acids of each mentioned time frame along with
the associated interacting amino acids found in the molecular docking as well as the MD
simulation study are given in Table 7.

Table 7. Post-MD simulation binding interaction profile at 0, 25, 50, 75, and 100 ns.

Binding Interaction Analysis

Molecule Bonds Mol. Dock.
Post-MD Simulation

0 ns 25 ns 50 ns 75 ns 100 ns

G
em

ci
ta

bi
ne

HY ALA201,
THR604 - - - - -

HB

HIS200,
SER202,
GLU431,
SER448,
THR607

SER202,
SER217,
GLU431,
SER448,
THR607

SER202,
GLU431,
SER448

SER202,
SER448,
THR607

ASN427,
GLU431,
ALA605,
SER606,
THR607

SER202,
ASN427,
GLU431

N
SA

H

HY GLN288,
LEU428

ALA245,
GLN288,
LEU428

PHE206 ARG153

PRO203,
GLN214,
ALA245,
ALA296

PRO203,
PHE206,
LEU428

HB
ALA245,
GLN246,
ALA296

ALA245,
ARG293,
ARG293,
ALA296

SER202 SER154 - SER217,
ALA245

BD
_1

HY
LEU446,
MET602,
ALA605

- - - ALA201,
LEU446 -

HB

ALA245,
GLY247,
ASN427,
LEU428,
CYS429,
SER606,
THR607

ALA245,
ASN427,
CYS429,
SER606,
THR607

SER202,
ASN427,
LEU428

SER202,
SER217,
ASN427,
LEU428,
THR607

SER202,
SER217,
GLY247,
ASN427,
LEU428,
CYS429,
THR607

HIS200,
SER202,
ASN427,
CYS429

BD
_7

HY

ALA201,
LEU446,
LEU446,
THR604,
THR607

ALA201,
LEU446

ALA201,
LEU446

ALA201,
LEU446 ALA201 ALA201,

LEU446

HB

SER202,
ASN427,
GLU431,
SER448,
PRO603,
SER606,
THR607

SER202,
ASN427,
GLU431,
PRO603,
SER606

SER202,
ASN427,
GLU431,
PRO603,
THR607

SER202,
ASN427,
GLU431,
PRO603,
THR607

SER202,
ASN427,
GLU431,
PRO603,
THR607

SER202,
ASN427,
GLU431,
PRO603,
THR607
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Table 7. Cont.

Binding Interaction Analysis

Molecule Bonds Mol. Dock.
Post-MD Simulation

0 ns 25 ns 50 ns 75 ns 100 ns

BD
_8

HY LEU446,
ALA605 LEU446 LEU446,

MET602
LEU446,
ALA605

LEU446,
MET602 LEU446

HB

SER202,
ASN427,
GLU431,
SER606,
THR607

SER202,
ASN427,
GLU431,
SER606,
THR607

SER202,
ASN427,
ALA605

SER202,
ASN427,
ALA605

SER202,
CYS429,
GLU431,
ALA447,
SER448,
THR604,
ALA605

SER202,
CYS429,
GLU431,
THR604,
ALA605

HAL GLY247 GLY247 GLY247 GLY247 GLY247

BD
_1

0

HY

ALA201,
MET602,
PRO603,
THR604

ALA201 - LEU428,
THR607

ALA201,
LEU428

ALA296,
LEU428,
ALA605

HB

TYR155,
SER202,
GLY247,
SER448,
THR607

TYR155,
SER202,
ALA245,
ARG293,
SER448,
SER606,
THR607

TYR155,
SER202,
ARG293,
SER448,
SER606,
THR607

TYR155,
SER202,
ARG293,
ARG293,
SER448,
THR607

SER202,
SER217,
SER448,
THR607

SER448

pi-Cation - - - ARG293 - -

BD
_1

4

HY PRO203,
LEU446 ALA428 - PRO203 PRO203 -

HB

ALA245,
ASN427,
LEU428,
CYS429,
SER606,
THR607

SER202,
ASN427,
SER606,
THR607

SER202,
SER217,
GLY247,
SER606,
THR607

SER202,
GLY247,
THR607

SER202,
GLY247,
ASN427,
SER606

SER202,
GLY247,
ASN427,
SER606,
THR607

Mol. Dock: molecular docking; HY: hydrophobic bond; HB: hydrogen bond; HAL: halogen bond.

Figure 12 shows a representation of binding interactions between hRRM1 and putative
ligands at 100 ns. The initial binding position of the ligand and any displacement during
the MD simulation (at 100 ns) were investigated and compared using binding interaction
profiles of the protein–ligand complexes.

Both standard molecules, gemcitabine and NSAH, were found to retain a number of
binding interactions after MD simulation similar to molecular docking. As observed, amino acid
residues SER202 and GLU431 were found to interact with gemcitabine in molecular docking,
and these residues also retained their HB interaction after 100 ns. Similarly, NSAH was found
to interact with LEU428 and ALA245 in both pre- and post-MD simulation complexes. Upon
exploring the binding interactions of BD_1 with hRRM1 in molecular docking and post-MD
simulation, it was found that ASN427 and CYS429 successfully reserved their interactions.
From Table 7 and Figure 12, it can be seen that BD_7 retained a number of binding interactions
in pre- and post-MD simulation complexes. Residues ALA201 and LEU446 were seen to
form hydrophobic interactions with BD_7 in molecular docking, and the same amino acids
retained hydrophobic interactions after 100 ns of MD simulation. It is interesting to note that
SER202, ASN427, GLU431, PRO603, and THR607 preserved their HB interactions with BD_7
after the completion of the simulation. One hydrophobic and two HB interactions between
BD_8 and hRRM1 remained conserved in molecular docking and post-MD simulation through
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LEU446, SER202, and GLU431. A halogen bond was newly formed between BD_8 and GLY247.
Interestingly this halogen bond was not found in the molecular docking study and might be a
change of conformational orientation that brought the halogen atom near GLY427 that favored
the binding interaction. Except for SER448, no other hRRM1 amino acids were found to retain
their binding interactions with BD_10 after MD simulation. In the case of BD_14, three amino
acids, ASN427, SER606, and THR607, were commonly seen to form HB interactions in pre- and
post-MD simulations.
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Figure 12. Post-MD simulation binding interactions profile of identified hRRM1 inhibitors–
modulators at 100 ns.

Beyond the above common binding interactions between hRRM1 and the proposed
molecules, a number of new bonds were seen to form, and also a few existing bonds were
lost during the MD simulation. It is also important to note that a number of hydrophobic
and HB interactions remained intact after 25, 50, and 75 ns of MD simulation. Therefore,
from the post-MD simulation-based analysis, it is quite clear that during the MD simulation,
although some sort of small conformational changes were observed for hRRM1, each ligand
remained at the active site for a longer time span. The dynamicity of the small molecules
was also substantiated through the loss of existing contacts and the formation of a new set
of binding interactions. The position and binding mode of each ligand at 0, 25, 50, 75, and
100 ns were represented in the ‘stick’ view mode, as is given in Figure 13. It can be seen
that all molecules changed their conformational orientation slightly, but not moved away
from the active site. The above observations certainly indicated that all molecules remained
inside the active site throughout the simulation and definitely possessed a strong binding
affinity towards hRRM1.
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4. Conclusions

A set of novel hRRM1 inhibitors was generated through the de novo design approach
for the effective therapeutic application in BTC. A number of advanced computational drug
discovery approaches such as molecular docking, k-means pharmacophoric clustering,
NIB screening, pharmacokinetics, and toxicity assessments was carried out to wipe out
inactive molecules. Following the above, a total of 17 molecules was found to be crucial
for hRRM1 activity modulation. Further, the potentiality of the above molecules was
confirmed through MD simulation-based binding free energy calculation, PLANTS-based
binding energy, PharmFrac, and absolute binding free energy. Upon detailed analysis, the
top five molecules from the above set of 17 were further considered for binding interactions
analysis and extension of MD simulation. Several potential binding interactions between
the proposed molecules and hRRM1 revealed the strong affection of the molecules. A
number of common binding interactions with gemcitabine and NSAH was also favored,
being promising hRRM1 inhibitors. From MD simulation trajectories, several statistical
parameters explained the compactness and stability between protein and the proposed
molecules in dynamic states. High negative MM-GBSA-based binding free energy showed
a strong affinity of the molecules toward hRRM1. Post-MD simulation frames also revealed
a number of common binding profiles with molecular docking. Hence, the final proposed
molecules could emerge as promising hRRM1 inhibitors for the management of BTC,
subject to experimental validation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12091279/s1, Figure S1: Superimposed structure of co-
crystal and best docked pose of GDP. The RMSD was calculated 1.235 Å; Figure S2: hRRM1 backbone
RMSD bound with proposed molecules and gemcitabine and NSAH; Figure S3: RMSD of hRRM1
proposed molecules and gemcitabine and NSAH; Figure S4: The radius of gyration of hRRM1
bound with proposed molecules and gemcitabine and NSAH; Figure S5: Intermolecular hydrogen
bonds between hRRM1 and proposed molecules and gemcitabine and NSAH; Table S1: Number of
pharmacophoric features in hRRM1 molecules calculated using Python RDKit.
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