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Abstract

Therapeutic drugs for cognitive and psychiatric disorders are often characterized by their molecular mechanism of action.
Here we demonstrate a new approach to elucidate drug action on large-scale neuronal activity by tracking somatic calcium
dynamics in hundreds of CA1 hippocampal neurons of pharmacologically manipulated behaving mice. We used an adeno-
associated viral vector to express the calcium sensor GCaMP3 in CA1 pyramidal cells under control of the CaMKII promoter
and a miniaturized microscope to observe cellular dynamics. We visualized these dynamics with and without a systemic
administration of Zolpidem, a GABAA agonist that is the most commonly prescribed drug for the treatment of insomnia in
the United States. Despite growing concerns about the potential adverse effects of Zolpidem on memory and cognition, it
remained unclear whether Zolpidem alters neuronal activity in the hippocampus, a brain area critical for cognition and
memory. Zolpidem, when delivered at a dose known to induce and prolong sleep, strongly suppressed CA1 calcium
signaling. The rate of calcium transients after Zolpidem administration was significantly lower compared to vehicle
treatment. To factor out the contribution of changes in locomotor or physiological conditions following Zolpidem
treatment, we compared the cellular activity across comparable epochs matched by locomotor and physiological
assessments. This analysis revealed significantly depressive effects of Zolpidem regardless of the animal’s state. Individual
hippocampal CA1 pyramidal cells differed in their responses to Zolpidem with the majority (,65%) significantly decreasing
the rate of calcium transients, and a small subset (3%) showing an unexpected and significant increase. By linking molecular
mechanisms with the dynamics of neural circuitry and behavioral states, this approach has the potential to contribute
substantially to the development of new therapeutics for the treatment of CNS disorders.

Citation: Berdyyeva T, Otte S, Aluisio L, Ziv Y, Burns LD, et al. (2014) Zolpidem Reduces Hippocampal Neuronal Activity in Freely Behaving Mice: A Large Scale
Calcium Imaging Study with Miniaturized Fluorescence Microscope. PLoS ONE 9(11): e112068. doi:10.1371/journal.pone.0112068

Editor: Thierry Amédée, Centre national de la recherche scientifique, University of Bordeaux, France

Received July 18, 2014; Accepted October 7, 2014; Published November 5, 2014

Copyright: � 2014 Berdyyeva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that, for approved reasons, some access restrictions apply to the data underlying the findings. Most of the data
underlying the findings in this study are freely available in the paper and Supporting Information files. Raw imaging videos and the.mat tables containing the raw
counts on which we based our analysis of neuronal data are available in the Harvard Dataverse Network: http://dx.doi.org/10.7910/DVN/27574.

Funding: TB, LA, CD, SY, TL, and PB are paid employees at Janssen Pharmaceutical Research & Development, LLC; SO and KG are paid employees at Inscopix; YZ
and LB are paid consultants at Inscopix; KG is a founder and CEO of Inscopix; and MS is a Chief Scientist at Inscopix. The funders provided support in the form of
salaries for authors (TB, LA, CD, SY, TL, PB, SO, and KG), but did not have any additional role in the study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following competing interests: TB, LA, CD, SY, TL, and PB are paid employees at
Janssen Pharmaceutical Research & Development, LLC; SO and KG are paid employees at Inscopix; YZ and LB are paid consultants at Inscopix; KG is a founder and
CEO of Inscopix; and MS is a Chief Scientist at Inscopix. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.

* Email: tberdyy6@its.jnj.com

Introduction

Understanding how drugs affect complex neuronal networks is

critical for the future of neuroscience drug discovery. Therefore, it

is essential to invest in the development and applications of new

technologies that will enable researchers to study functional

neuronal networks. Recently, the BRAIN initiative outlined a set

of experimental techniques that hold the most promise to advance

our understanding of brain function and brain disorders [1]. One

of the highlighted techniques is calcium imaging of neuronal

activity, particularly in behaving animals [1,2,3].

Imaging neuronal calcium dynamics in behaving animals with

miniaturized integrated fluorescent microscopes takes advantage

of several recent break-throughs in technology: using viral vectors

to express fluorescent indicators in a targeted genetically identified

neuronal population [4]; the use of micro-optics to visualize deep

brain structures; and utilization of semiconductor optoelectronics

for rapid image acquisition [5,6]. Using a miniaturized (,2g)

integrated fluorescent microscope (nVista, Palo Alto, CA) allows

for high-speed imaging at the cellular level of hundreds of neurons

in multiple brain regions, including evolutionally conserved deep

structures, in freely behaving rodents [5,6,7].

This technology, especially if used in combination with other

recording techniques, is a transformative new platform for

neuroscience drug discovery research. This powerful combination

has the ability to efficiently identify compounds that either disrupt

normal neuronal activity, or restore normal network activity that

was affected by disease, stress or pharmacological manipulations.

The traditional drug discovery process is based on a drug’s ability
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to affect isolated biological targets in artificial systems with

subsequent validation in functional and behavioral assays. The

latter is often uninformative because the same underlying changes

in neuronal networks can have distinct species-specific behavioral

effects; conversely, apparently similar behaviors can have different

underlying causes. Despite the need to directly investigate drug

effects on neuronal activity in freely behaving animals, this step

was often omitted because, until recently, techniques lacked the

necessary neuronal yield and were not easily integrated into

industrial settings. High throughput in-vivo calcium imaging

overcomes these limitations.

To demonstrate the potential of this approach for drug

discovery, we conducted a proof-of-concept study investigating

the effects of Zolpidem on hippocampal neuronal activity

measured with the genetically-encoded calcium indicator

GCaMP3. Zolpidem was selected for these studies as it (a) is

widely used as a therapeutic agent; (b) is pharmacologically well-

characterized; (c) has a straightforward behavioral and physiolog-

ical readout (sleep); (d) has not been characterized in terms of

impact on the neuronal activity in behaving animals.

Zolpidem is a short-acting nonbenzodiazepine hypnotic that

potentiates GABA transmission by acting on GABA A receptors

(reviewed in [8–10]). Because GABA A receptors are widespread

in the brain, Zolpidem was proposed for use as a therapeutic agent

in a wide variety of CNS disorders such as epilepsy [11,12],

anxiety [13–17], pain management [18–20], deep coma and

disorders of consciousness [21–27] and many more (reviewed in

[28]). It is also one of the most commonly prescribed medications

for the treatment of insomnia in the world: in the US alone it

accounts for more than 30 million of yearly prescriptions [8].

Growing concern about the adverse effects of Zolpidem has led to

reduction in prescribed dosage in some patients and several FDA-

issued warnings regarding ataxia, impaired performance, slower

reaction time, higher risk for motor accidents, complex abnormal

behaviors and amnesia [8,29–31]. The mechanisms of Zolpidem

amnesia - specifically, inability to recall episodes that happened

while patients were under the influence of Zolpidem - are

currently poorly understood [32]. Furthermore, surprisingly little

is known about Zolpidem’s effects on neuronal activity in the

hippocampus, a structure that is crucial for the normal cognition

and episodic memory. While a number of studies investigated

effects of Zolpidem on neuronal activity in hippocampal slices [33–

40], to the best of our knowledge, there are no prior studies

investigating Zolpidem effects in hippocampal neurons in vivo, let

alone in freely behaving animals.

In this study, we used a miniature integrated fluorescence

microscope (nVista) to track somatic calcium dynamics of

hundreds of hippocampal neurons expressing the calcium

indicator GCaMP3 under CamKII promoter. We selected a dose

of Zolpidem (10 mg/kg) that closely reproduces sleep-inducing

effects in humans: decreased wake time and latency to sleep with

specific increases in non-rapid eye movement sleep (NREM)

(reviewed in [8,41–42]). After verifying that the imaging procedure

did not disrupt the sleep-inducing and sleep-promoting effects of

Zolpidem, we investigated effects of Zolpidem on calcium

dynamics of individual of CA1 principal hippocampal neurons

in freely behaving mice. We found that Zolpidem significantly

lowered the frequency of calcium transients in the hippocampus of

freely behaving mice. To investigate whether decreases in calcium

signaling following Zolpidem treatment could be explained by a

decrease in motor activity, we compared the frequencies of

calcium transients between the vehicle and drug conditions in the

epochs matched by the locomotive states. To further reduce

ambiguity in the interpretation of the observed drug effects, we

accounted for Zolpidem changes in the vigilance, cognitive and

sensory processing factors by studying neuronal activity during

physiological (vehicle) and drug-induced (Zolpidem) NREM. We

accomplished this step by simultaneous measuring of body

temperature, electroencephalogram (EEG), electromyogram

(EMG) and locomotor activity concurrently with imaging.

Methods

Viral Vector
The University of Pennsylvania Penn Vector Core custom

produced AAV2/5 vector expressing GCaMP3 (HHMI/Janelia

Farm) via the CaMKII promoter (AAV5.CaMKII.GCaMP3.3W-

PRE.hGH, titer 9.3e12 GC/ml). After imaging experiments, we

verified the levels of GCaMP3 expression in CA1 pyramidal

neurons (an example is shown in Fig. S1). In several separate

experiments, we used anti-PV (Alpha; clone 2E11; Vector

Laboratories Catalog # VP-P963), anti-GABA (Sigma Catalog

# A2052; and Sigma Catalog #A0310), GAD67 (Abcam Catalog

# ab26116) and anti-CAMK2 (Sigma Catalog # SAB4503244)

antibodies to verify GCaMP3 and CaMKII co-expression as well

as the absence of expression in the cells expressing some of the

common markers of inhibitory interneurons.

Drug preparation
Before each imaging session Zolpidem (Zolpidem Tartrate BP,

Mfg. by M/s. Aarti Drugs Ltd., Tarapur) was dissolved in

ultrapure water to 1 mg/ml. The mice were weighed before each

imaging session and given an oral gavage of the same volume of

vehicle (ultrapure water) and Zolpidem (10 mg/kg).

Animals
All animal experimental procedures were performed in accor-

dance with the Guide for the Care and Use of Laboratory Animals

adopted by the US National Institutes of Health (Janssen IACUC

protocol 100–311); the IACUC committee specifically approved

this study. Male C56BL/6 mice, aged 8–12 weeks at start, were

housed individually with enrichment under controlled conditions

with lights on at 6 am, 12:12 light/dark schedule. The mice

underwent two separate surgical procedures under Isoflurane (1.5–

2.5%) with analgesic treatment (Buprenex, 0.05 mg/kg sc). During

the first surgery, the viral vector was injected (900 nL) into CA1

(AP: 21.9 mm; ML: 1.4; DV: 1.64 mm from Bregma) (Franklin

and Paxinos, 2004). Upon full recovery (1–2 weeks later), an

optical guide tube was implanted over CA1 [5,7]. To prevent

mechanical compression of the CA1, a cylindrical column of

neocortical tissue (,1 mm3) directly above CA1was removed,

without disturbing the structure being imaged. During the second

surgical procedure, a subset of animals also received a subcuta-

neously implanted telemetric device (PhysioTel F20-EET; Data

Sciences International, St. Paul, MN) for polysomnographic

recordings [43–44]. In the animals equipped for telemetry, we

coupled the devices to two sets of stainless steel electrodes: one

implanted in the frontal and parietal cortex for the electroen-

cephalogram (EEG); the second in dorsal nuchal muscles for the

electromyogram (EMG). We assessed the quality of the viral

expression, the placement of the optical cannula (Fig. S1),

electrodes and overall health of the tissue by histological

examination after experiments were completed. The animals with

incorrect placements, levels of fluorescence or any signs of

phototoxic damage (reduced density of cell bodies in CA1,

darkening of the fluorescent tissue under the optical cannula, less

fluorescence in the cell bodies under the cannula than in the

surrounding CA1 tissue etc.) were excluded from the analysis.
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The mice were allowed to fully recover (4–6 weeks) before the

final preparation for the imaging experiments. First, under

Isoflurane (1–1.5%) sedation, the lens (GRINtech GmbH, 0.44

pitch length, 0.47 NA) was affixed into the optical guide tube [5,7]

using UV-curing adhesive (Norland, NOA 81). The microscope

(nVista; Inscopix, Palo Alto, CA) was used to assess a suitable

imaging site by observing the overall patterns of fluorescence,

blood vessels and other landmarks of the site suitable for imaging.

Once the GCaMP3 fluorescence in the imaging field was verified

under the camera’s LED source, the microscope’s baseplate was

permanently fixed to the skull using LED curing cement [7]. The

microscope’s baseplate affixed to the skull allowed for repeated

attachment of the microscope and reproducible imaging from the

same area of the CA1 region of the hippocampus. The microscope

was removed between imaging sessions and attached under a light

sedation before each imaging session.

Prior to the actual imaging experiment, the mice were

habituated for 3–6 days. The habituation sessions were identical

to the actual imaging sessions except that the vehicle was dosed

and a ‘‘dummy’’ scope (Inscopix, Palo Alto) that mimics the actual

microscope’s shape and weight was used.

Imaging session in open field arena
The timing of the imaging session is shown on Fig. 1A. At the

beginning of the session, the microscope was attached to the

baseplate under brief light anesthesia (,1 min, 0.5–1% Isoflur-

ane). After recovery from sedation (30–45 minutes), the mice were

placed in the open field arena and 5 minutes of baseline imaging

data were collected. The animals were then dosed with the vehicle,

and imaged during 45 minute period. To avoid potential

photobleaching, an ‘‘interrupted’’ imaging regime was used

whereby the imaging and, correspondingly, LED illumination

lasted no more than 10 minutes, with at least 5 minutes between

each imaging interval (Fig. 1A). After collecting 30 minutes of

post-vehicle data, the animals were dosed with Zolpidem (10 mg/

kg s.c.) and imaged over 45 minute period to collect 30 minutes of

post-Zolpidem data.

Imaging session with multimodal recordings
The multimodal recording sessions were the same as in the open

field with the following modifications: (1) the imaging was

performed while animals were freely behaving in the animal’s

home cage placed in a sleep recording chamber [43–45]; (2) the

post-vehicle and post-Zolpidem 3-hour long sessions were

conducted separately (with,one week between sessions) conduct-

ed with the ‘‘interrupted’’ regime with each imaging fragment

lasting 4 minutes with 2 minute non-imaging intervals between the

fragments; and (3) the 10 min baseline (pre-treatment) data was

collected while the mice explored a novel circular arena with

enrichment and treats. The latter was done to elicit maximal

cellular response and facilitate subsequent cellular extraction,

identification and alignment across the imaging sessions.

Sleep recording and analysis
To determine states of vigilance, body temperature, EEG and

EMG signals were recorded for 3 hour following vehicle and drug

administration and the signals were then digitized (100 Hz

sampling rate) using Dataquest A.R.T. software (Data Science

International). EEG/EMG recordings were binned into 10 sec

intervals and classified according to the vigilance state as

previously described [43–45]. To verify that the imaging

procedure did not disrupt normal and Zolpidem-induced sleep

patterns, a separate group of animals not equipped for the imaging

was used for the sleep pattern comparison (‘‘Telemetry only’’ vs

‘‘Telemetry+Imaging’’ animals, Table 1). Analysis of sleep-wake

parameters included (a) latency to NREM sleep (defined as the

time interval to the first six consecutive NREM epochs during 3

hour post-dosing measurement period); (b) latency to REM sleep

(the first two consecutive REM epochs during 3 hour post-dosing

measurement period), (c) duration of NREM and REM sleep

(minutes per 2 hours of post-dosing). The total wake time was

calculated by subtracting the duration of REM and NREM from

the total time of the sleep duration measurement period (120 min).

To assess the potential impact of combined imaging and telemetry

on an animal’s locomotor activity, the ambulatory displacements

were detected on the ‘‘Activity’’ channel and were subsequently

quantified in 10-sec intervals (‘‘Activity counts’’, Table 1; 2

animals were excluded from this analysis due to the questionable

quality of the signals on the ‘‘Activity’’ channel). A two-way mixed-

design ANOVA (implemented under ‘‘anovan’’ function in

Matlab) was used to establish the statistical significance of the

factors of drug conditions (Zolpidem vs. vehicle) and protocols

(‘‘Telemetry only’’ vs ‘‘Telemetry+Imaging’’); and a paired t-test

(ttest(X) function in Matlab) was used to compare each parameter

within a group.

For the analysis of neuronal activity during NREM, the epochs

were selected according to the following criteria: a 4 min bin of

uninterrupted unambiguous NREM which consisted of 24

uninterrupted 10-sec bins classified as ‘‘NREM’’ and was flanked

by at least 4 of consecutive 10-sec NREM bins. The alignment

between the imaging system and multimodal data collection was

done by recording, on a separate channel, the state of the imaging

system transmitted through an analog channel in nVista and

subsequently digitized at 100 Hz.

Behavioral recording and analysis
An overhead camera connected to an automated video tracking

system (VideoTrack; ViewPoint Behavior Technology) on a PC

computer recorded and digitized (30 Hz sampling rate) the x- and

y-position in a 50 6 50 cm arena. The system automatically

detected the large ambulatory movements (.7.2 cm/min), small

movements (,7.2 cm and .0.2 cm/min) and inactivity (,

0.2 cm/min). The velocity (measured as displacements, in cm,

over periods of time, in minutes) was calculated in 1-sec bins.

Alignment between the imaging and the video tracking systems

was done by triggering imaging through the VideoTrack software.

Processing and analysis of calcium imaging videos
A custom in-house Matlab script was used to preform image

analysis as we briefly describe here. Since the original high-

definition data provided finer spatial resolution than necessary for

analysis of cellular activity, a spatial down-sampling of 16x was

applied and the image cropped to visualize the area containing

optimal cellular signal activity. Correction for the slight lateral

displacement (motion artifact) was achieved by applying an image

registration (ImageJ plugin TurboReg implemented under the

MatLab interface) to align all movie frames to a single movie

target. To identify the individual cells, the registered images were

expressed as relative change in fluorescence, DF9(t)/F90 = (F9(t) –

F90)/F90, where F90 is the projected mean intensity for all frames.

Spatial filters corresponding to individual cells were identified

using a cell-sorting algorithm that applies principal and indepen-

dent component analyses [5–7,46]. Cells’ spatial filters were based

on Ca2+ activity over the entire session. Each cell’s thresholded

spatial filter was used to extract the individual cell’s Ca2+ activity

from the DF9(t)/F90 stack. The Ca2+ transients were identified by

searching each trace for local maxima that had peak amplitude

more than two s.d. from the baseline (defined as the median of the
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trace calculated across the entire session) for at least 0.5 sec at a

separation of 300 ms from adjacent Ca2+ transients.

Statistical analysis of neuronal data
The calcium transients event rate for each individual cell was

calculated across both treatment conditions (vehicle and Zolpi-

dem) to determine the effect of Zolpidem on individual cells and

population activity. To compare event rates across drug conditions

(vehicle vs Zolpidem), the Wilcoxon Signed Rank Test (WSR) was

used on the data pooled across cells and binned into 1-minute

intervals. To take into account the number of animals used in the

experiments, and the variations between animals, we also

Figure 1. Experimental session and imaging data analysis procedure. A: timeline of imaging sessions. We imaged in ‘‘interrupted regime’’
(‘‘On’’, red; ‘‘Off’’, blue) for 45 minutes in vehicle and Zolpidem periods to collect 30 min of neuronal data in each period. B: Spatial locations of
independent components (ICs) corresponding to the individual cells (‘‘IC Spatial Filters’’) identified by PCA/ICA cell sorting algorithm. C: Relative
fluorescent changes (DF9(t)/F90 = (F9(t) – F90)/F90, where F90 is the projected mean intensity for all frames) for five representative cells (ICs, highlighted
on panel B and illustrated by Video S1) are calculated and plotted across time. Ca2+ transients were identified by searching each trace for local
maxima that had peak amplitude more than two standard deviations (st. dev., y-axis) from the baseline (defined as the median of the trace calculated
across the entire session); an occurrence of a calcium transient is indicated as a tick mark.
doi:10.1371/journal.pone.0112068.g001

Table 1. Similar sleep-promoting effects of Zolpidem in ‘‘Telemetry+Imaging’’ and ‘‘Telemetry only’’ mice.

Telemetry only Telemetry+Imaging

NREM latency Vehicle 23.461.5 28.962.1

Zolpidem** 2.160.1 1.861.8

REM latency Vehicle 72.965.5 100.4611.4

Zolpidem 99.968.7 149.864.4

Wake duration Vehicle 46.262.9 57.7613.8

Zolpidem** 28.765.5 32.667.0

NREM duration Vehicle 68.860.9 59.962.2

Zolpidem** 88.561.0 87.461.4

REM duration Vehicle 5.060.7 2.560.8

Zolpidem 2.860.6 060

Activity counts Vehicle 8786136 7686104.6

Zolpidem** 368611 230648

Duration of Wake, NREM and REM sleep, and Activity counts were measured during the first 2 hour period after oral dosing of Zolpidem (10 mg/kg). Latency to NREM
and REM sleep were measured during the first 3 hour period. Measurements are expressed in minutes and represented as means 6 s.e.m. (n = 5 animals per condition).
*p,0.05 and **p,0.01; comparison assessed by two-way mixed-design ANOVA.
doi:10.1371/journal.pone.0112068.t001
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performed a one-tailed WSR tests on the averaged values obtained

for each animal thus using sample ‘‘n’’ as number of animals

rather than the number of cells. To compare neuronal activity

during active and inactive periods, 1-minute intervals containing

at least one large ambulatory movement (.7.2 cm/min displace-

ments) were designated as active, while 1-minute intervals during

which total displacements were less than 0.2 cm were designated

as inactive. To study Zolpidem effects on the level of individual

cells, the event rates (calculated in 2-minute bins) were compared

using Mann-Whitney-Wilcoxon (MWW) test. Initially, cells with a

significant change (p,0.05) were identified; these cells were then

subdivided into two groups depending on the direction of change

(increased or decreased event rate). To address the concern that

the observed drug effects on the level of individual cells are not

above the level expected by chance, we first calculated the

normalized drug index for each cell: (post-drug event rate - post-

vehicle event rate)/(post-drug event rate+post-vehicle event rate).

The expected (if Zolpidem had no effect) distribution of drug

indices was then constructed by re-sampling (with replacement)

post-vehicle bins within each cell (1000 shuffles, ‘‘bootstrp’’ Matlab

function). A cell was considered to have a significant effect if its

index value was outside the 99% confidence interval for the

expected distribution.

Results

Imaging procedure did not disrupt the sleep-promoting
effects of Zolpidem

To assess whether the imaging surgical preparations and

imaging procedures (anesthesia, microscope attachment, illumi-

nation, tethering etc.) disrupted the sleep-promoting effects of

Zolpidem, we conducted a study to compare the effects of

Zolpidem in a group of animals in which we conducted telemetry

(EEG/EMG and locomotor activity) recordings only (‘‘Telemetry

only’’) to another group in which telemetry was conducted at the

same time as calcium imaging (‘‘Telemetry+Imaging’’). When

orally dosed at the beginning of the light phase, Zolpidem (10 mg/

kg) was effective in inducing and prolonging sleep duration in both

groups of mice. As shown in Table 1, Zolpidem similarly

shortened the latency for NREM sleep in ‘‘Telemetry only’’ (2

91%) and ‘‘Telemetry+Imaging’’ (294%) groups as compared to

vehicle treatment (two-way mixed-design ANOVA; significant

drug effect: Zolpidem vs vehicle, p,1024; non-significant effect of

the protocol: ‘‘Telemetry only’’ vs. ‘‘Telemetry+Imaging’’,

p = 0.39; non-significant interaction, p = 0.34). In a comparable

manner, the time spent in wake was reduced in ‘‘Telemetry only’’

(238%) and ‘‘Telemetry+Imaging’’ (244%) groups (two-way

mixed ANOVA; significant drug effect: p,1024; non-significant

effect of the protocol: p = 0.09; non-significant interaction,

p = 0.33); whereas NREM sleep duration was increased in

‘‘Telemetry only’’ (+29%) and ‘‘Telemetry+Imaging’’ (+46%)

groups during the first 2 hours after dosing relative to vehicle

treatment (two-way mixed ANOVA; significant drug effect: p,

1024; non-significant effect of the protocol: p = 0.14; non-

significant interaction, p = 0.25). Zolpidem also reduced locomotor

activity in both groups (two-way mixed ANOVA performed on

activity counts; significant drug effect: p = 0.0096; non-significant

effect of the protocol: p = 0.4462; non-significant interaction,

p = 0.93). Changes in the REM sleep state were not significant

following zolpidem dosing vs. vehicle in both groups, although a

tendency toward an increase in REM latency and a decrease in

REM duration were observed.

Zolpidem decreased the frequency of calcium transients
in CA1

The timing of a typical experimental session used to collect

imaging videos of the fluorescent cellular signal after oral

administration of the vehicle (water) and Zolpidem (10 mg/kg) is

shown on Fig. 1A. The Videos S1 and S2 show example of an

imaging session following treatment with vehicle and Zolpidem.

From the recorded imaging videos, the location of each individual

cell was extracted (Methods, ‘‘Processing and analysis of calcium

imaging videos’’; Fig. 1B) and the individual calcium dynamics

assessed across the session (Fig. 1C). The distributions of detected

individual calcium transients (Methods, ‘‘Processing and analysis

of calcium imaging videos’’) were statistically compared between

vehicle and drug conditions (Methods, ‘‘Processing and analysis of

calcium imaging videos’’; an occurrence of a calcium transient is

indicated as a tick mark on a raster plots on Fig. 1C, ‘‘Events’’ and

Fig. 2A). The frequency of calcium transients detected following

Zolpidem administration was lower in comparison to vehicle

(Fig. 2A: a raster plot of a representative session; Fig. 2B:

distribution of calcium transients in vehicle and Zolpidem periods

in the example session; Fig. 2C: summary plot of all sessions). In

the data combined across 5 recording sessions, Zolpidem

decreased the frequency of calcium transients by 71% (from

0.7120 to 0.2087 events/min/cell, p,0.0001, Wilcoxon Signed

Rank Test).

Post-Zolpidem decrease in the frequency of calcium
transients was not a by-product of post-Zolpidem
decrease in motor activity

The animals’ locomotor activity was continuously monitored

during the imaging sessions. Quantification of the animals’

displacements over the course of the session was carried out in 1

second time bins. In confirmation of previous studies, Zolpidem

significantly lowered the animals’ locomotor activity (MWW test

on distribution of instances of displacements exceeding 0.2 cm/

min counted in 1-min bins; p,0.0001, n = 5 animals). Corre-

spondingly, there was a significant difference in frequencies of

calcium transients between active and inactive periods in vehicle

(active: 0.81726.0163; inactive: 0.628760.0206; WSR test, p,

.001) and Zolpidem conditions (active: 0.36956.0214; inactive:

0.19816.0146; mean average value given in units of events/min/

cell for each condition 6 s.e.m; correspondence between average

frequency of calcium transients and average speed is illustrated in

Fig. S2).

To account for the contribution of decreased locomotion to the

observed neuronal effects, we compared the frequency of calcium

transients (vehicle vs. Zolpidem) measured in 1-minute bins during

which the animals were inactive; inactivity bins were defined as

bins with total displacements of less than 0.2 cm. An example of a

typical imaging session demonstrating this approach is shown on

Fig. 3A. The animal’s speed is plotted as a function of time below

the corresponding raster plot of calcium transient events; the

identified inactive periods are indicated as green shading overlaid

on the raster plot. In this session, the rate of detected calcium

transients was counted only during inactive Zolpidem periods and

was significantly lower than during inactive vehicle periods (WSR

test, p,0.0001; Fig. 3B). The suppressive effect of Zolpidem on

the frequency of calcium transients was consistent across sessions

within the identified inactive periods, and this effect was highly

significant in the data combined across sessions (WSR test, p,

0.0001, n = 943 cells, Fig. 3C). On average, rate of detected

calcium transients dropped from 0.60 events/min/cell in post-

vehicle inactive periods to 0.20 events/min/cell in post-Zolpidem
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inactive periods (67% decrease). This result indicated that

Zolpidem decreased net neuronal activity in the hippocampus

beyond what is expected from decreased locomotion.

Individual hippocampal CA1 pyramidal cells differed in
their responses to Zolpidem

We assessed the changes in rate of calcium transients between

vehicle and Zolpidem imaging periods for each individual cell

(Methods, ‘‘Statistical analysis of neuronal data’’). Cells that

showed a significant Zolpidem effect (MWW test, p,0.05) were

subdivided into two groups depending on the direction of change

(increased or decreased event rate). The approach is illustrated on

the raster plot on Fig. 4A: in this representative session, the

majority of individual cells (shown in blue) decreased their activity

following Zolpidem administration relative to the vehicle, while

some of the cells either increased their activity (shown in red) or

had no significant change (shown in black, p.0.05, MWW test).

Fig. 4B illustrates spatial positions for the cells within each class.

This result was consistent across the sessions: the majority of

individual neurons significantly lowered the frequency of calcium

transients following Zolpidem administration (as exemplified by a

majority of points falling below the unity line on the scatter plot

shown on Fig. 4C): 65% (829 out of 1275) of individual neurons

significantly decreased activity, while 32% of neurons (405 out of

1275) did not show a significant change. A small neuronal subset

(,3%, 41 out of 1275; shown in red on Fig. 4 A–C) significantly

increased their activity following Zolpidem administration. To

assess whether the effect of significant increase was a result of a

type I statistical error (false positives), we performed the following

additional analysis. We first calculated a normalized drug index for

each cell: (post-drug event rate - post-vehicle event rate)/(post-

drug event rate+post-vehicle event rate). The expected (if the drug

had no effect) distribution of drug indices was constructed by re-

sampling (with replacement) vehicle bins within each cell (1000

shuffles, ‘‘bootstrp’’ Matlab function) (Fig. S3A). The distribution

of the constructed indices was centered on zero, as was expected if

there was no difference in calcium transients’ rate between

treatment conditions. The observed distribution of actual indices

Figure 2. Zolpidem decreased frequencies of calcium transients in CA1. A: Calcium transients (indicated by tick marks) detected in
individual cells (vertical axis) are plotted across time following vehicle (water, left) and Zolpidem (10 mg/kg, right) administration in a representative
animal. B: Histogram of calcium transients (‘‘Event Rate’’) in the representative animal. C: Average rate of calcium transients (s.e.m. error bar) in all
animals used in the study. Zolpidem decreased the frequency of calcium transients by 71% (from 0.7120 to 0.2087 events/min/cell, p,0.0001,
Wilcoxon Signed Rank Test).
doi:10.1371/journal.pone.0112068.g002

Figure 3. Decrease in locomotion was not sufficient to explain Zolpidem-induced decrease in neuronal activity. A: Raster plot of
calcium transients in individual cells (vertical axis) following vehicle (left) and Zolpidem (10 mg/kg, right) administration in an example animal with
identified inactive (displacements ,2.2 cm/min) periods (green shading). The corresponding speed (in cm/min) trace is plotted below the raster
plot. B: Comparison of average frequencies of calcium transients (number of events/minute/cell) during active periods (black bars) and inactive
periods (green bars) in the representative animal (s.e.m. error bar). C: Average rate of calcium transients (s.e.m. error bar) in all animals with identified
inactive periods following both vehicle (left) and Zolpidem (right) administration.
doi:10.1371/journal.pone.0112068.g003
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(Fig. S3B) was heavily shifted toward extreme negative values of

the index (‘‘21’’), indicative of much lower activity following

Zolpidem administration; however, the indices formed a contin-

uous range with a monotonic rightward decrease (toward ‘‘+1’’

values of the index) with some of the cells in our sample (18 out of

1275) having index values exceeding 99% confidence interval of

the expected distribution. This result confirmed that individual

pyramidal neurons in CA1 differed with respect to their response

to Zolpidem, forming a continuous range of the responses with the

predominant effect of decreased activity following drug treatment.

Zolpidem suppressed the frequency of calcium transients
during NREM sleep

To factor out contribution of differing physiological states on

the observed drug effects, we compared the frequency of calcium

transients between vehicle and Zolpidem imaging periods in the

epochs matched by an identified physiological state (NREM), the

duration of which was specifically increased by Zolpidem

(Table 1). Prior experiments indicated that 3 hour imaging session

would be necessary for the appropriate statistical comparison of

neuronal data during continuous unambiguous NREM between

Zolpidem and vehicle condition (when animals spent less time in

NREM). To minimize potential photobleaching, we conducted the

experiment in 2 separate 3-hour long sessions (Methods, ‘‘Imaging

with multimodal recordings’’). We tracked activity of the same

individual cells (n = 478) in both sessions: the vehicle session

(Fig. 5A, ‘‘Vehicle’’) and Zolpidem session (Fig. 5A, ‘‘Zolpidem’’).

To facilitate identification and alignment of individual cells across

sessions, we collected 10 minutes of pre-treatment baseline data

while animals were actively exploring a novel environment

(Fig. 5A, ‘‘Baseline’’). The frequency of calcium transients during

baseline periods was significantly different across sessions (1.33

events/minute/cell in Zolpidem session vs 1.29 in vehicle session;

WSR test, p,0.001), most likely due to the variations in the

animal’s exploratory activity or other behavioral factors.

The frequency of calcium transients during NREM was

substantially lower than during active exploration (baseline) in

both vehicle and Zolpidem conditions (WSR test, p,0.001;

Fig. 5B; average event rates during baseline and NREM are

shown as black and grey bars, respectively). During the vehicle

session, activity dropped from 1.29 to 0.15 events/minute/cell

(89% decrease; Fig. 5B, left). In the Zolpidem session, the

frequency of calcium transients dropped from 1.33 to 0.09

events/minute/cell (93% decrease; Fig. 5B, right). It is important

to note that while differences in the frequency of calcium transients

during the active wake (baseline periods) of the two different

sessions could reflect a difference in behavioral and cognitive

factors of active wake, during continuous unambiguous NREM

(Methods, ‘‘Sleep recording and analysis’’) contributions of

sensory, cognitive, emotional and locomotive states are minimal.

Nevertheless, the frequency of calcium transients during Zolpidem

NREM was significantly lower than during vehicle NREM (0.09

and 0.15 events/minute/cell, respectively, 40% change, p,0.004,

WSR test; Fig. 5B, gray bars). This finding further reinforces our

conclusion that Zolpidem suppressed calcium fluorescent signals in

memory-related structures to below normal physiological levels.

Discussion

Visualizing neuronal activity with high resolution has until now

been extremely challenging in freely behaving animals. Here, we

used large-scale calcium-imaging with a miniaturized fluorescence

microscope to study effects of a pharmacological agent in the

hippocampus of freely behaving mice. This technique allows

investigation of the effects of pharmacological agents in (a) deep,

evolutionary preserved homologous structures such as hippocam-

pus; (b) relevant brain circuits with largely preserved natural

connectivity within those circuits; (c) after systemic administration

of a drug; (d) while simultaneously observing drug’s effect on

animal’s behavior and physiology. While it is possible to achieve

(a)-(d) by other techniques such as multi-electrode array record-

ings, calcium imaging is advantageous for the drug discovery

settings because it has higher neuronal yield and allows

investigation of drug effects in genetically identified neuronal

populations [2–5].

Figure 4. Individual hippocampal CA1 pyramidal cells differed in their responses to Zolpidem. A: Representative raster plot of calcium
transients in individual cells (n = 195) that are color-coded depending on their response to Zolpidem (Mann-Whitney-Wilcoxon test, p,0.05 criterion
of significance): significant decrease (blue); significant increase (red), non-significant change (black). B: Locations of individual cells identified in the
same representative imaging session, layered atop a mean fluorescent image. C: Rate of calcium transients post-Zolpidem (‘‘Zolpidem Event Rate’’) vs
post-vehicle (‘‘Vehicle Event Rate’’); each dot is an individual cell (n = 1275). The majority of individual neurons (65%) significantly lowered neuronal
activity following Zolpidem administration; 32% of neurons did not show a significant change; and a small neuronal subset (,3%) showed a
significant increase.
doi:10.1371/journal.pone.0112068.g004
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We investigated the effects of Zolpidem, a commonly used

treatment for insomnia, on the calcium dynamics of neurons

expressing GCaMP3 calcium indicator in the hippocampus, a

brain structure that is critically involved in memory, cognition and

conscious experience (reviewed in [49–59]). We selected the dose

of Zolpidem (10 mg/kg) that in mice evokes sleep effects similar to

the effects of therapeutic doses in humans: decreased wake

duration, increased sleep duration with specific increase in

NREM, and reduced latencies to sleep with specific reduction in

NREM latency (reviewed in [8,9,42]). We verified that the

imaging procedure did not disrupt sleep-inducing and sleep-

promoting effects of Zolpidem (Table 1).

A novel, to the best of our knowledge, result in this study is that

Zolpidem (10 mg/kg, p.o.) decreased activity of hippocampal CA1

pyramidal neurons of freely behaving mice (Fig. 2C): the rate of

detected calcium transients after systemic administration of

Zolpidem dropped 3-fold relative to the vehicle. This result is in

line with a recent study that investigated the effects of a local

application of Zolpidem on neuronal activity in somatosensory

cortex of anesthetized mice [61]: the authors found that evoked

neuronal calcium activity decreased approximately 3-fold follow-

ing Zolpidem application (10 mM). Similarly, Zolpidem (1 mg/kg,

i.v.) administration led to a 3–4 fold decrease in firing rate of

medial septum neurons of anesthetized rats [62]. The alignment

between the effects observed in anesthetized and freely behaving

animals addresses the concern that the previously observed

Zolpidem effects could be a by-product of the interaction between

Zolpidem and anesthetics [60–61]. The tendency of Zolpidem to

suppress neuronal activity in vivo is in agreement with the findings

in hippocampal slices where Zolpidem was consistently found to

potentiate inhibitory currents [34–40,63]. It is generally assumed

that increased inhibitory currents detected in hippocampal slices

would translate into decreased activity of hippocampal cells in

behaving animals; our study provides direct evidence in support of

this hypothesis.

The suppression of calcium fluorescent signals following

Zolpidem administration exceeded levels expected from decreases

in locomotion (Fig. 3B–C). It was important to take this potential

confounding factor into account because (a) it is known that

neuronal activity in the hippocampus is related to the animal’s

locomotive state [64–67]; specifically, the probability of a neuron’s

discharge increases as a function of velocity [47]; and (b) Zolpidem

is known to lower locomotor activity in rodents [12,48,68–72] and

impair motor performance in humans [73–84]. Here, we

employed a simple and conceptually straightforward method to

factor out the contribution of locomotion by selecting time periods

during which freely behaving mice were inactive. This was

possible due to this technique’s high neuronal yield which allowed

enough statistical power to meaningfully compare neuronal data

collected even over the short periods of time. Our finding that

Zolpidem significantly lowered the frequency of calcium transients

relative to the vehicle during periods matched by locomotion

(Fig. 3A–C) indicated that the effect of Zolpidem observed in the

hippocampus is not a simple by-product of decreased locomotion

caused by pharmacologically induced changes elsewhere in the

brain, for example, motor cortex [85–86] or basal ganglia [87].

Instead, it is likely that the decreased locomotion can be in part a

consequence of Zolpidem’s suppressive action in the hippocampus.

This suggestion is in line with previous work [88], which

demonstrated that direct intra-hippocampal injection of Zolpidem

(10 mg/site) caused marked decrease of locomotion in rats.

It is important to characterize drug effects at the level of

individual neurons as studying exclusively net changes could lead

to misinterpretations of the pharmacological effects. For example,

a given post-drug change in net neuronal activity can be due to

some minor yet consistent changes across individual cells, or

because of the major changes in a minority of neurons.

Furthermore, pharmacological agents can differentially influence

activity of distinct neuronal subpopulations. In this case, no

changes in net neuronal activity can either mean that a drug

doesn’t have an effect or that a drug evokes opposite responses in

different neuronal populations. These cases can be easily

differentiated by studying calcium dynamics on a level of

genetically identified individual cells. To demonstrate this

approach, we characterized the effects of Zolpidem at the level

of individual pyramidal (excitatory) CA1 hippocampal neurons,

taking advantage of a selective promoter CaMKII. While the net

effect of Zolpidem on calcium fluorescent signaling was predom-

Figure 5. Neuronal activity during Zolpidem-induced NREM sleep was lower than neuronal activity during physiological NREM. A:
Raster plots of calcium transients in 478 individual cells (vertical axis) during pre-treatment active wake periods (‘‘Baseline’’) and post-treatment NREM
periods (‘‘NREM’’) in two imaging sessions (‘‘Vehicle’’ and ‘‘Zolpidem’’). B: Average frequencies of calcium transients (‘‘Event Rate’’: number of events/
minute/cell) during pre-treatment active wake (in both Vehicle and Zolpidem sessions, black bars), physiological NREM (‘‘Vehicle’’, grey bar) and
Zolpidem-induced NREM (‘‘Zolpidem’’, grey bar). The error bars are the s.e.m. for each condition across all cells. Zolpidem NREM neuronal activity was
significantly lower than vehicle NREM neuronal activity (0.09 and 0.15 events/minute/cell, respectively, 40% change, p,0.004, WSR test).
doi:10.1371/journal.pone.0112068.g005
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inantly suppressive, individual hippocampal pyramidal neurons in

CA1 differed with respect to their responses to Zolpidem (Fig. 4A–

C). We broadly classified individual cells into two categories

depending on whether the distributions of calcium transients in

post-vehicle and post-Zolpidem periods differed significantly. The

majority (68% of cells) showed significant change (MWW test, p,

0.05). We then further subdivided significant cells into 2 categories

depending on the direction of the change. The majority of neurons

with significant change (829 out of 870) decreased their activity

following Zolpidem administration; while a small subpopulation of

neurons (41 out of 870) significantly increased their activity.

Because the pharmacology of Zolpidem has been extensively

characterized [89–90], it is possible to explain the mechanism by

which Zolpidem decreases the activity of individual CA1

pyramidal neurons. Zolpidem is a positive allosteric agonist of

GABAA a1-containing receptors (reviewed in [8–10,91–95]) that

mediate influx of chloride ions and thus hyperpolarize neurons.

GABAA a1-containing receptors mediate the bulk of inhibitory

drive in mature mammalian brain (reviewed in [42,93,96–97]) and

are expressed at a high level in most of the neurons in CA1 region

of the rodent hippocampus [97–104]. Therefore, in the majority of

CA1 pyramidal neurons that express GABAA a1-containing

receptor, Zolpidem would potentiate inhibitory currents. That, in

turn, would result in the decreased activity, as directly observed in

our experiments. Correspondingly, the neurons that did not show

a significant change post-Zolpidem presumably lack a1 subunit

containing GABAA receptors. From the in vitro literature [104–

107], we estimated that ,30% of hippocampal CA1 pyramidal

cells lack a1 subunit containing GABAA receptors; this number

closely matches 32% of neurons with no significant Zolpidem

effect in our sample.

While Zolpidem predominantly lowered the frequency of

calcium transients, some neurons (,3%) responded with a marked

increase in their activity (rasters on Fig. 2 and Fig. 4), which

means that in some neurons a GABA agonist shifted the balance

toward excitation. Since this result appeared somewhat counter-

intuitive given pharmacological properties of Zolpidem, we

interrogated some of the possible explanations. After investigating

each animal separately, we confirmed the presence of this effect in

all animals. We also verified the placement of each optical cannula

over the CA1 region with an intact cellular layer. The cells with

increased activity following Zolpidem were randomly interspersed

across the entire field (Fig. 4B), and there was no apparent

clustering in the parts of the optical cannula most susceptible to the

inflammatory damage (cannula’s periphery) or phototoxic damage

(center of the cannula). We also ruled out the possibility that the

presence of individual ‘‘increasing’’ cells was the result of a type I

statistical error (false positives) by an additional analysis in which

we compared the observed distribution of the cellular responses to

the distribution expected if Zolpidem had no effect (Results,

‘‘Individual hippocampal CA1 pyramidal cells differed in their

responses to Zolpidem’’; Fig. S3). We suggest that the observed

increase in activity-related fluorescent signals, rather than being a

direct pharmacological action of Zolpidem on individual CA1

neurons that expressed Zolpidem-sensitive receptors, could be a

network phenomenon. For example, it could be a consequence of

the changed speed of signal propagation in a recurrent network

[108], or otherwise changed network dynamics that would shift

activity of some neurons toward a bursting regime that is more

detectable by the GCaMP3 sensor [7,46]. This can be tested

experimentally by using a calcium sensor that can reliably detect

individual spikes [109–110]. The most likely explanation, howev-

er, is that post-Zolpidem increased activity is a consequence of a

release from tonic inhibition that exists, although seems quite rare,

in CA1 pyramidal neurons [101,111–119]. Zolpidem could

suppress sensitive interneurons that provide tonic inhibition to

neighboring pyramidal neurons, which would result in an

increased activity. This idea can be tested in future calcium-

imaging studies by computing correlations between pyramidal-

interneuron pairs expressing differently colored calcium indicators.

One of the key points of this study was to introduce the

multimodal recording approach (simultaneous measurement of

body temperature, electroencephalographic, electromyographic

and locomotor activity concurrently with calcium imaging) to drug

discovery and to demonstrate that this approach allows for in-

depth investigation of the connections between changes in the

calcium signals and the physiological parameters commonly

associated with the drug action. We compared calcium dynamics

of individual hippocampal cells following vehicle or Zolpidem

administration during NREM sleep. We selected this period

because (a) Zolpidem specifically increases NREM, as was

observed in current study (Table 1) and previous studies [9,120–

123]; and (b) NREM is associated with natural locomotor,

behavioral and cognitive inactivity and sensory disconnection

from the environment (reviewed in [41–42]). It was important to

factor out the contribution of locomotor, behavioral, cognitive and

sensory changes from changes in post-Zolpidem hippocampal

calcium fluorescent signals because (a) hippocampal activity is

known to be influenced by all of these factors [47,49–59]; and (b)

these factors are known to be changed by Zolpidem (recently

reviewed in [28]).

The NREM sleep was associated with a low rate of detected

calcium transients in CA1 (Fig. 5A–B). This result was expected,

because one of the pronounced and diagnostic features of NREM

is the presence of the ‘‘down’’ states linked to reduced neuronal

activity in multiple brain regions including the hippocampus

(reviewed in [41,124–129]). The novel finding in this experiment

was that Zolpidem further suppressed hippocampal calcium

signals during NREM. Additional studies are needed to investigate

whether the changes in hippocampal neuronal activity during

post-Zolpidem NREM are connected to some subtle changes in

the EEG spectral characteristics [130–132].

This study shows that it is now feasible to investigate the effects

of pharmacological agents on activity of large number of

genetically identified neurons in relevant brain circuits in freely

behaving animals with concurrent measure of behavioral and

physiological parameters. By linking molecular mechanisms,

neural circuit dynamics and animal behavior, this approach has

the potential to deepen our understanding of normal and

abnormal brain function and how brain networks are impacted

by pharmacological agents. For example, the observed suppression

of hippocampal activity following Zolpidem administration

provides a direct experimental evidence for a simple mechanistic

explanation of adverse effects of Zolpidem on episodic memory

[13,16,28,73–74,133–140]: Zolpidem, when administered system-

ically in doses that promote sleep, prevents normal functioning of

the hippocampus, a structure critically involved in the episodic

memory, by lowering below physiological level activity of the

majority of hippocampal principal neurons that express GABA A

receptors. In addition to the early screening for the potential

cognitive side effects on the level of neuronal networks in behaving

animals, this approach may have much wider implications for the

neuroscience drug discovery process. Currently, the general

direction of the field is to find highly selective compounds that

interact with a single molecular target. The current early stage

process involves compound screening on the level of isolated

molecular targets in artificial systems with subsequent validation in

behavioral and functional assays in preclinical species. The major
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difficulty in the process is a very low efficiency and a weak

translation from the early stages to the later stages, most notably

from preclinical to clinical studies. This could be due to the

following factors: (a) an involvement of a given molecular target in

a given physiological or pathophysiological process is often partial

or just hypothetical; (b) the effects on the level of overexpressed

targets in artificial systems are often distinct from the effects in a

living organism of a preclinical animal; (c) the behavioral

expression of a given condition, especially in case of psychiatric

and mood disorders, could be different between preclinical

animals and humans despite analogous underlying neuronal

network physiology or pathology; and (d) it is possible that a

particular behavioral or physiological expression of a disorder

could only be reversed by acting on multiple molecular targets.

The latter could explain why some of the very effective compounds

against a given disorder lack selectivity and thus influence function

of multiple molecular targets. Not surprisingly, such compounds

were discovered mostly by serendipity [141] because the current

drug discovery process discourages discovery of such agents.

Studying drug action at the neuronal network level will favor

discovery of compounds that reverse pathological neuronal

network states regardless of particular molecular selectivity or

species-specific behavioral expressions. The approach used in this

study could be used for the early screening of the compounds at

the level of relevant neuronal networks. Combined with

concurrent monitoring of behavioral and physiological parame-

ters, this novel platform could become a valuable resource for

identifying and cataloging network signatures of different brain

disorders and their behavioral expressions in preclinical species.

We believe that this approach promises to bypass the current

limitations of drug screening process and has the potential to

contribute to the discovery of new breakthrough treatments for

CNS disorders.

Supporting Information

Figure S1 Histological examination of the tissue follow-
ing the imaging procedures. A: A representative example of

placement of the optical cannula over CA1 region of the

hippocampus (coronal slice, scale bar: 180 mm). Green: GCaMP3

fluorescence. Blue: DAPI staining. B: A representative example of

the GCaMP3 fluorescence (green) under the optical cannula (scale

bar: 88 mm).

(TIF)

Figure S2 Average rate of calcium transients in all
animals used in the study plotted versus average speed

of the animals in each condition (indicated by the shape
of the marker; vehicle: circles; Zolpidem: squares).
(TIF)

Figure S3 Distributions of normalized drug index:
(post-drug event rate - post-vehicle event rate)/(post-
drug event rate+post-vehicle event rate). A: The distribu-

tion of drug indices expected if Zolpidem had no effect was

constructed by re-sampling, with replacement, vehicle data bins

within each cells (1000 shuffles). B. The observed distribution of

drug indices calculated for each cell (n = 1275). Vertical line

indicates 99% confidence interval (3 s.d.) calculated from the

expected distribution.

(TIF)

Video S1 Representative videos of imaging sessions
with vehicle and Zolpidem illustrate Ca2+ transients
identification applied to five representative traces
shown on Fig. 1C. Ca2+ transients were identified by searching

each trace for local maxima that had peak amplitude more than

two standard deviations (st. dev., y-axis) from the baseline (defined

as the median of the trace calculated across the entire session); an

occurrence of a calcium transient is indicated as a tick mark.

(ZIP)

Video S2 Representative movies of imaging sessions
with vehicle and Zolpidem (in the absence of ambulatory
movements in both conditions). The two movies (shown side-

by-side; Vehicle on the left and Zolpidem on the right) display

relative change in fluorescence (DF9(t)/F90; shown on 5% scale

and sped-up 10 times) recorded in the same 6406570 mm2

imaging field.

(ZIP)
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