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Abstract Reduced susceptibility to infectious disease can increase the frequency of otherwise

deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with

a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic

protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei

rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control

study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis

susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold

dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report

unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates

with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic

carriage and undetectable parasitemia. These results implicate both forms of human African

trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease

variants.

DOI: 10.7554/eLife.25461.001

Introduction
Infectious disease is a major driving force of natural selection on human populations. Such evolution-

ary pressures can select for genetic variants that confer increased resistance to infectious agents, but

may also predispose to specific genetic disorders, as exemplified by Plasmodium selection for the

sickle-cell trait (Allison, 1954). Like sickle-cell disease, chronic kidney disease also affects millions

worldwide (Global Burden of Disease Study 2013 Collaborators, 2015), with a disproportionate

risk in populations of recent sub-Saharan African ancestry (National Institutes of Health and

National Institute of Diabetes and Digestive and Kidney Diseases, 2010; Norris and Agodoa,
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2002; McClellan et al., 1988). In African-Americans a large component of this disparity has been

attributed to two common genetic variants of APOL1 (MIM 603743), known as G1 and G2

(Genovese et al., 2010; Tzur et al., 2010). These variants are closely spaced in the C-terminal

domain of APOL1 but are located on separate haplotypes (Genovese et al., 2010) (Figure 1).

eLife digest African-Americans have a greater risk of developing chronic kidney disease than

Americans with European ancestry. Much of this increased risk is explained by two versions of a

gene called APOL1 that are common in people with African ancestry. These two versions of the

gene, known as G1 and G2, suddenly became much more common in people in sub-Saharan Africa

in the last 10,000 years. One theory for their rapid spread is that they might protect against a deadly

parasitic disease known as African sleeping sickness. This disease is caused by two related parasites

of a species known as Trypanosoma brucei, one of which is found in East Africa, while the other

affects West Africa.

Laboratory studies have shown that blood from individuals who carry the G1 and G2 variants is

better at killing the East African parasites. However, it is not clear if these gene versions help people

living in the rural communities, where African sleeping sickness is common, to fight off the disease.

Now, Cooper, Ilboudo et al. show that G1 and G2 do indeed influence how susceptible

individuals in these communities are to African sleeping sickness. Individuals with the G2 version

were five-times less likely to get the disease from the East African parasite. Neither version could

protect individuals from infection with the West African parasite, but infected individuals with the G1

version had fewer parasites in their blood and were less likely to become severely ill. The ability of

the G1 version to control the disease and prolong life could explain why this gene version has

become so common amongst people in West Africa.

Unexpectedly, the experiments also revealed that people with the G2 version were more likely to

become severely unwell when they were infected by the West African parasite. This indicates that

whether this gene variant is helpful or harmful depends on where an individual lives. The next step

following on from this work will be to investigate exactly how the G1 version reduces the severity of

the West African disease. This may aid the development of new drugs for African sleeping sickness

and kidney disease.

DOI: 10.7554/eLife.25461.002

Figure 1. Schematic of G1 and G2 polymorphisms in human apolipoprotein L1. Human apolipoprotein-L1 (APOL1) is a 398-amino acid protein

consisting of a cleavable N-terminal signal peptide, a pore-forming domain, a membrane-addressing domain, and a serum resistance-associated (SRA)-

interacting domain. The polymorphisms that characterize the G1 and G2 renal risk variants are located in the SRA-interacting domain, the target site for

binding of the SRA protein expressed by the human-infective T.b.rhodesiense parasite, which results in loss of APOL1 lytic function. The location of the

critical binding region (residues 370–392) for this interaction is indicated by a helical graphic. G1 consists of two missense SNPs rs73885319 (p.

Ser342Gly) and rs60910145 (p.Ile384Met) while the G2 polymorphism, rs71785313 (p.Asn388_Tyr389del), is found on an alternative APOL1 haplotype,

and represents an in-frame two amino acid deletion.

DOI: 10.7554/eLife.25461.003
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Individuals possessing a high-risk G1/G1, G2/G2 or G1/G2 genotype composed of two risk alleles

(approximately 13% of African-Americans [Friedman et al., 2011]), are strongly predisposed to a

wide spectrum of chronic kidney disorders that includes focal segmental glomerulosclerosis

(Genovese et al., 2010; Kopp et al., 2011), HIV-associated nephropathy (Kopp et al., 2011;

Kasembeli et al., 2015) and end-stage renal disease (Genovese et al., 2010; Tzur et al., 2010;

Freedman et al., 2014). APOL1 G1 and G2 are prevalent only in populations of recent African heri-

tage (Genovese et al., 2010; Kopp et al., 2011), with evidence for a selective sweep within the last

10,000 years (Genovese et al., 2010), indicative of strong positive selection. Human African trypano-

somiasis (HAT), a deadly parasitic disease endemic to sub-Saharan Africa, has been proposed as the

source of this positive selective pressure (Genovese et al., 2010). HAT is caused by two tsetse fly-

transmitted African trypanosomes, Trypanosoma brucei rhodesiense and T.b. gambiense, which are

responsible for the acute East African form and more chronic West Africa form of the disease,

respectively (Kennedy, 2013). Both parasites have been responsible for widespread fatal epidemics

in sub-Saharan Africa throughout recorded human history (Steverding, 2008) suggesting the poten-

tial to exert potent selection pressure on the human genome. A heterozygous advantage model has

been proposed for APOL1 G1 and G2 (Genovese et al., 2010) in which recessive susceptibility to

chronic kidney disease is balanced by dominant resistance to one or both forms of human African

trypanosomiasis.

Prior to the discovery of its association with kidney disease, APOL1 had already been recognised

for encoding the pore-forming serum protein Apolipoprotein L1, which inserts into trypanosome

membranes and effectively lyses the Trypanosoma species that cause disease in animals

(Vanhamme et al., 2003; Pérez-Morga et al., 2005; Molina-Portela et al., 2005; Thomson and Fin-

kelstein, 2015; Vanwalleghem et al., 2015). However, the two human-infective subspecies have

evolved independent mechanisms to resist APOL1-mediated lysis. In T.b. rhodesiense, this is the

result of an APOL1-binding protein (Xong et al., 1998; De Greef et al., 1989) whereas for T.b.

gambiense the mechanism of APOL1 resistance appears more complex and multifactorial

(Capewell et al., 2013; Uzureau et al., 2013; DeJesus et al., 2013; Kieft et al., 2010). It has been

hypothesised that APOL1 G1 and G2 variants could overcome one or more of these resistance

mechanisms to protect against HAT. Indeed, previous studies have shown that APOL1 G2 (and to a

lesser extent G1) plasma is lytic to East African T.b. rhodesiense parasites in vitro (Genovese et al.,

2010), but not West African T.b. gambiense (Genovese et al., 2010). Consequently, T.b. rhode-

siense is considered the most likely candidate for positive selection of both APOL1 variants in Afri-

can populations (Genovese et al., 2010). Notably, however, the G1 variant appears significantly less

effective at killing T.b. rhodesiense, and is found at very high frequency in West Africa

(Genovese et al., 2010; Kopp et al., 2011; Ko et al., 2013; Thomson et al., 2014), where only T.b.

gambiense is endemic (Simarro et al., 2010).

Furthermore, a class of asymptomatic individuals has been recently identified in T.b. gambiense

disease foci, who exhibit a long-term T.b. gambiense-specific serological response but low or unde-

tectable parasitemia indicative of a latent asymptomatic infection (Koffi et al., 2006;

Jamonneau et al., 2012; Bucheton et al., 2011; Ilboudo et al., 2011; Jamonneau et al., 2010;

Garcia et al., 2000). Parasites from such individuals appear genetically indistinguishable from those

of T.b. gambiense clinical cases (Kaboré et al., 2011), suggesting disease outcome may be medi-

ated by, as yet unidentified, host genetic factors. Field studies are therefore warranted to fully evalu-

ate the contribution of variants of the host protein APOL1 to HAT susceptibility.

Here, we present a retrospective association study to test the relationship between APOL1 G1

and G2 variants and susceptibility to the two different forms of human African trypanosomiasis, T.b.

rhodesiense in East Africa and T.b. gambiense in West Africa. In Uganda, an association analysis was

performed between T.b. rhodesiense-infected individuals and controls in a major disease focus. In

the principal T.b. gambiense focus in Guinea, the presence of both clinical patients and asymptom-

atic individuals permitted a two-stage analysis. Firstly, the association between APOL1 variants and

susceptibility to T.b. gambiense infection (infected versus controls), and secondly the association

with disease outcome following infection (clinical cases versus asymptomatic carriage). We report

that the association of APOL1 chronic kidney disease variants with HAT susceptibility are markedly

different for the two subspecies. As hypothesised, a dominant protective association was detected

for the G2 variant against T.b. rhodesiense infection. Conversely, we found that the APOL1 G1 vari-

ant was not associated with resistance to T.b. rhodesiense infection, but with protective
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asymptomatic carriage of T.b. gambiense. We consider the implications of these strikingly different

susceptibilities in the context of human co-evolution with African trypanosomes and the distribution,

selection and persistence of these kidney disease risk variants in sub-Saharan Africa.

Results

APOL1 variants and resistance/susceptibility to T.b. rhodesiense
To test the heterozygous advantage hypothesis proposed for these APOL1 variants against T.b. rho-

desiense infection (Genovese et al., 2010), 180 controls and 184 clinically confirmed T.b. rhode-

siense patients from a principle disease focus in central-eastern Uganda were genotyped for G1 and

G2 polymorphisms. The G1 haplotype comprises of two non-synonymous substitutions, rs73885319

and rs60910145 situated just 128 bp apart and in near-perfect linkage disequilibrium

(Genovese et al., 2010; Kopp et al., 2011). In this study, as reported by others (Kopp et al., 2011;

Behar et al., 2011), a small number of individuals were identified with only a partial G1 haplotype

(the kidney disease risk genotype at one of the G1 polymorphism positions but the non-risk geno-

type at the other) and were excluded from the G1 haplotype association analysis. The second

chronic kidney disease risk variant, G2 (rs71785313), is found on an alternative haplotype and repre-

sents a six base pair in-frame deletion.

Comparing genotype frequencies in confirmed T.b. rhodesiense-infected individuals with unin-

fected controls found no association between the G1 haplotype and T.b. rhodesiense infection

(p=0.50; Table 1). In contrast, we observed a significant dominant protective association for the G2

variant, with an odds ratio of 0.20 (95% CI: 0.07 to 0.48, p=0.0001; Table 1). This indicates a five-

fold reduced susceptibility to T.b. rhodesiense infection for individuals that possess a single copy of

the G2 variant, compatible with a model of heterozygous protection.

APOL1 variants and resistance/susceptibility to T.b. gambiense
Infection
To evaluate the impact of these polymorphisms in driving resistance/susceptibility to T.b. gambiense

infection, G1 and G2 polymorphisms were genotyped in 227 T.b. gambiense-infected individuals

and 104 controls from the mangrove focus in Guinea. When compared to control genotype frequen-

cies, neither variant demonstrated an association with susceptibility to T.b. gambiense infection

(p=0.47 [G1], p=0.50 [G2], Table 2).

Disease outcome
Infection with T.b. gambiense is associated with distinct clinical outcomes. T.b. gambiense-infected

individuals can be subdivided into clinical stage trypanosomiasis patients who are serology and

microscopy positive for trypanosomiasis (n = 167), and latent carriers (n = 60), who are defined as

strongly serology positive, but asymptomatic and aparasitemic by microscopic examination for a

period of at least two years. When comparing clinical cases and latent carriers, significant opposing

associations were observed for the two APOL1 variants with T.b. gambiense infection outcome

(Table 3). There was an association between the G1 variant and dominant protection against devel-

oping clinical stage trypanosomiasis (OR = 0.33, 95% CI: 0.17–0.62; p=0.0005). This indicates that T.

b. gambiense-infected individuals possessing a copy of the G1 APOL1 variant were three-fold more

likely to be latent asymptomatic carriers of T.b. gambiense. In contrast, the G2 variant was associ-

ated with a three-fold increased susceptibility to clinical stage trypanosomiasis (OR = 3.08, 95% CI:

1.45–7.06, p=0.0025), consistent with a risk of faster disease progression. This association was

strengthened still further (OR = 5.87, 95% CI: 2.16–20.01; p=0.0001) when individuals with a poten-

tially antagonistic compound heterozygous (G1/G2) genotype were excluded from the analysis

(Table 4).

Together these associations, summarised in Figure 2A, indicate that the G1 and G2 APOL1 var-

iants exhibit distinct subspecies-specific susceptibility profiles in relation to the two causative agents

of human African trypanosomiasis. The G1 variant is associated with asymptomatic carriage of T.b.

gambiense, but the predicted protection against T.b. rhodesiense infection (Genovese et al., 2010)

was not detected. For the G2 variant, opposing dominant associations were observed with the two
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different subspecies. This association is protective against T.b. rhodesiense infection, but with

increased susceptibility to a more severe disease outcome for T.b. gambiense.

Geographical distribution of APOL1 G1 and G2 variants
To visualize the geographic distribution of APOL1 variants in relation to HAT endemicity

(Figure 2B), data generated by this study were merged with previously reported allele frequencies

for 38 other sub-Saharan African populations, to produce a cohort of 5287 genotyped samples. Fre-

quency distributions for G1 and G2 were transformed into geographical contour maps using the

Kriging algorithm for data interpolation (Figure 2C and D). The allele frequencies from the Ugandan

population and the mangrove foci in Guinea appear consistent with the general geographical distri-

bution pattern for these variants in sub-Saharan Africa. Both variants are reported at higher preva-

lence in T.b. gambiense endemic West Africa, particularly G1, which reaches frequencies as high as

49% in the Ibo (Thomson et al., 2014) and Esan (Abecasis et al., 2012) tribes of Nigeria, decreasing

to complete absence in Northeast Africa (Tzur et al., 2010; Behar et al., 2011). Allele frequency is

moderately inversely correlated with longitude for both G1 (Pearson correlation: r = �0.526,

p=2.0 � 10�4, N = 40) and G2 (r = �0.593, p=5.7 � 10�5, N = 37) but not latitude (G1, p=0.33, G2,

Table 1. Association between APOL1 kidney disease risk variants and T.b. rhodesiense infection

Dominant model - Infection

APOL1 haplotype T.b.r infected Control
Association analysis*

T.b.r infected/Control

Number % Number % OR [95% CI] P

G0 Ancestral Haplotype
rs73885319 (A) + rs60910145 (T) + rs71785313 (TTATAA)

G0 184 100.0 179 99.4 N.C 0.49

Non-G0 0 0.0 1 0.6

Total 184 100.0 180 100.0

G1 Haplotype†

rs73885319 (A>G) + rs60910145 (T>G)

G1 9 4.9 12 6.7 0.73 [0.29 to 1.79] 0.50

Non-G1 173 95.1 168 93.3

Total 182 100.0 180 100.0

G2 Haplotype
rs71785313 (TTATAA>del6)

G2 6 3.3 26 14.4 0.20 [0.07 to 0.48] 0.0001

Non-G2 178 96.7 154 85.6

Total 184 100.0 180 100.0

*Two-tailed Fisher’s exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 haplotype),
†Individuals with only a partial G1 haplotype were excluded from the analysis. T.b.r: T.b. rhodesiense, OR: odds ratio, CI: confidence interval, N.C: not

calculable. All raw data for Table 1 can be found in Table 1—source data 1. The association analysis of the two individual component SNPs of the G1

haplotype can be found in Table 1—source data 2.

DOI: 10.7554/eLife.25461.004

Source data 1. APOL1 genotype data for T.b. rhodesiense-infected individuals and controls *Individuals excluded from the APOL1 G1 association analy-

sis. T.b.r: T.b. rhodesiense, G0: genotype compatible with the non-risk G0 allele for both rs73885319 and rs60910145, G1: genotype compatible with the

G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with the G1 CKD risk allele for rs60910145 and the non-risk G0 allele

for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319 and the non-risk G0 allele for rs60910145, G2: genotype compati-

ble with the G2 CKD risk allele for rs71785313.

DOI: 10.7554/eLife.25461.005

Source data 2. Association between individual APOL1 G1 kidney disease risk variants and T.b. rhodesiense infection Two-tailed Fisher’s exact test with
mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 SNP). CKD: chronic kidney disease, T.b.r: T.b. rho-

desiense, OR: odds ratio, CI: confidence interval. Raw data for Source data 2 can be found in Source data 1.

DOI: 10.7554/eLife.25461.006
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p=0.30), indicating a significant decreasing relative frequency for both APOL1 variants from West to

East across the continent.

Discussion
Here, we report the first association study between APOL1 G1 and G2 kidney disease risk variants

and T.b. rhodesiense and T.b. gambiense, revealing a more complex relationship with human African

trypanosomiasis susceptibility than was originally predicted. The implications of these findings in

relation to each of the human-infective parasite subspecies are considered in turn.

The zoonotic T.b. rhodesiense parasite has been responsible for a number of severe HAT out-

breaks in recent human history in East Africa that have claimed hundreds of thousands of lives

(Hide, 1999; Fèvre et al., 2004). Our data indicate that the APOL1 G2 variant was strongly associ-

ated with protection against T.b. rhodesiense infection in a Ugandan disease focus. The observed

five-fold reduced susceptibility for individuals possessing a single copy of the APOL1 G2 variant is

consistent with laboratory studies reporting in vitro lysis of T.b. rhodesiense for APOL1 G2 plasma

and recombinant protein (Genovese et al., 2010), and increased survival of APOL1 G2 transgenic

mice in a T.b. rhodesiense infection model (Thomson et al., 2014). T.b. rhodesiense parasites are

Table 2. Association between kidney disease risk variants and T.b. gambiense infection

Dominant model - Infection

APOL1 haplotype T.b.g infected Control
Association analysis*

T.b.g infected/Control

Number % Number % OR [95% CI] P

G0 Ancestral Haplotype
rs73885319 (A) + rs60910145 (T) + rs71785313 (TTATAA)

G0 196 86.3 89 85.6 1.07 [0.54 to 2.06] 0.84

Non-G0 31 13.7 15 14.4

Total 227 100.0 104 100.0

G1 Haplotype†

rs73885319 (A>G) + rs60910145 (T>G)

G1 73 33.5 30 29.4 1.21 [0.73 to 2.03] 0.47

Non-G1 145 66.5 72 70.6

Total 218 100.0 102 100.0

G2 Haplotype
rs71785313 (TTATAA>del6)

G2 68 30.0 35 33.7 0.84 [0.51 to 1.40] 0.50

Non-G2 159 70.0 69 66.3

Total 227 100.0 104 100.0

*Two-tailed Fisher’s exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 haplotype),
†Individuals with a partial G1 haplotype were excluded from the analysis. T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. All raw data for

Table 2 can be found in Table 2—source data 1. The association analysis of the two individual component SNPs of the G1 haplotype can be found in

Table 2—source data 2.

DOI: 10.7554/eLife.25461.007

Source data 1. APOL1 genotype data for T.b. gambiense-infected individuals and controls *Individuals excluded from the APOL1 G1 association analy-

sis. T.b.g: T.b. gambiense, G0: genotype compatible with the non-risk G0 allele for both rs73885319 and rs60910145, G1: genotype compatible with the

G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with the G1 CKD risk allele for rs60910145 and the non-risk G0 allele

for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319 and the non-risk G0 allele for rs60910145, G2: genotype compati-

ble with the G2 CKD risk allele for rs71785313.

DOI: 10.7554/eLife.25461.008

Source data 2. Association between individual APOL1 G1 kidney disease risk variants and T.b. gambiense infection Two-tailed Fisher’s exact test with
mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 SNP). CKD: chronic kidney disease, T.b.g: T.b. gam-

biense, OR: odds ratio, CI: confidence interval. Raw data for Source data 2 can be found in Source data 1.

DOI: 10.7554/eLife.25461.009

Cooper et al. eLife 2017;6:e25461. DOI: 10.7554/eLife.25461 6 of 18

Research article Genomics and Evolutionary Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.25461.007Table%202.Association%20between%20kidney%20disease%20risk%20variants%20and%20T.b.%20gambiense%20infection%2010.7554/eLife.25461.00710.7554/eLife.25461.008Table%202&x2014;source%20data%201.APOL1%20genotype%20data%20for%20T.b.%20gambiense-infected%20individuals%20and%20controls&x002A;Individuals%20excluded%20from%20the%20APOL1%20G1%20association%20analysis.%20T.b.g:%20T.b.%20gambiense,%20G0:%20genotype%20compatible%20with%20the%20non-risk%20G0%20allele%20for%20both%20rs73885319%20and%20rs60910145,%20G1:%20genotype%20compatible%20with%20the%20G1%20CKD%20risk%20allele%20for%20both%20rs73885319%20and%20rs60910145,%20G1M:%20genotype%20compatible%20with%20the%20G1%20CKD%20risk%20allele%20for%20rs60910145%20and%20the%20non-risk%20G0%20allele%20for%20rs73885319,%20G1G:%20genotype%20compatible%20with%20the%20G1%20CKD%20risk%20allele%20for%20rs73885319%20and%20the%20non-risk%20G0%20allele%20for%20rs60910145,%20G2:%20genotype%20compatible%20with%20the%20G2%20CKD%20risk%20allele%20for%20rs71785313.%2010.7554/eLife.25461.00810.7554/eLife.25461.009Table%202&x2014;source%20data%202.Association%20between%20individual%20APOL1%20G1%20kidney%20disease%20risk%20variants%20and%20T.b.%20gambiense%20infection%20Two-tailed%20Fisher&x0027;s%20exact%20test%20with%20mid-P%20method%20using%20a%20dominant%20genetic%20model%20(carriage%20of%201%20or%202%20copies%20of%20the%20designated%20APOL1%20SNP).CKD:%20chronic%20kidney%20disease,%20T.b.g:%20T.b.%20gambiense,%20OR:%20odds%20ratio,%20CI:%20confidence%20interval.%20Raw%20data%20for%20Table%202&x2014;source%20data%202%20can%20be%20found%20in%20Table%202&x2014;source%20data%201.%2010.7554/eLife.25461.009Dominant%20model%20-%20InfectionAPOL1%20haplotypeT.b.g%20infectedControlAssociation%20analysis&x002A;&x00A0;T.b.g%20infected/ControlNumber%Number%OR%20[95%%20CI]PG0%20Ancestral%20Haplotypers73885319%20(A)%20+%20rs60910145%20(T)%20+%20rs71785313%20(TTATAA)G019686.38985.61.07%20[0.54%20to%202.06]0.84Non-G03113.71514.4Total227100.0104100.0G1%20Haplotype&x2020;rs73885319%20(A%3EG)%20+%20rs60910145%20(T%3EG)G17333.53029.41.21%20[0.73%20to%202.03]0.47Non-G114566.57270.6Total218100.0102100.0G2%20Haplotypers71785313%20(TTATAA%3Edel6)G26830.03533.70.84%20[0.51%20to%201.40]0.50Non-G215970.06966.3Total227100.0104100.0&x002A;Two-tailed%20Fisher&x0027;s%20exact%20test%20with%20mid-P%20method%20using%20a%20dominant%20genetic%20model%20(carriage%20of%201%20or%202%20copies%20of%20the%20designated%20APOL1%20haplotype),&x2020;Individuals%20with%20a%20partial%20G1%20haplotype%20were%20excluded%20from%20the%20analysis.%20T.b.g:%20T.b.%20gambiense,%20OR:%20odds%20ratio,%20CI:%20confidence%20interval.%20All%20raw%20data%20for%20Table%202%20can%20be%20found%20in%20Table%202&x2014;source%20data%201.%20The%20association%20analysis%20of%20the%20two%20individual%20component%20SNPs%20of%20the%20G1%20haplotype%20can%20be%20found%20in%20Table%202&x2014;source%20data%202.
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/10.7554/eLife.25461


defined by the potential to express the serum-resistance-associated (SRA) protein (Xong et al.,

1998; De Greef and Hamers, 1994) which binds to ancestral APOL1 (G0), inhibiting its formation of

lethal pores in trypanosome membranes (Vanhamme et al., 2003; Pérez-Morga et al., 2005;

Molina-Portela et al., 2005; Thomson and Finkelstein, 2015; Vanwalleghem et al., 2015). The

two-amino acid deletion that characterises the G2 haplotype (rs71785313, [p.N388_Y389del]), is situ-

ated within a C-terminal region of APOL1 demonstrated to be essential for SRA binding

(Lecordier et al., 2009) (residues 370–392; Figure 1). Studies indicate that G2 shifts the position of

a critical lysine residue within the binding region that virtually abolishes the interaction with SRA

(Genovese et al., 2010; Thomson et al., 2014). This implicates evasion of the SRA virulence protein

as the probable mechanism by which G2 restores APOL1 lytic function and protects the host against

T.b. rhodesiense infection. The results of this case-control study add substantial support to the pro-

posed heterozygous advantage model of dominant protection against T.b. rhodesiense infection for

this recessive kidney disease risk variant.

For the G1 variant, no protective association against T.b. rhodesiense infection was detected.

This finding is somewhat at odds with the reported moderate in vitro T.b. rhodesiense lytic activity

for G1 donor plasma and recombinant protein (Genovese et al., 2010), and delayed parasitemia in

an APOL1 G1 mouse model (Thomson et al., 2014). Notably however, the trypanolytic effect for G1

Table 3. Association between kidney disease risk variants and T.b. gambiense infection outcome

Dominant model – infection outcome

APOL1 haplotype T.b.g Disease T.b.g Carriage
Association analysis*

T.b.g Disease/Carriage

Number % Number % OR [95% CI] P

G0 Ancestral Haplotype
rs73885319 (A) + rs60910145 (T) + rs71785313 (TTATAA)

G0 144 86.2 52 86.7 0.96 [0.38 to 2.25] 0.95

Non-G0 23 13.8 8 13.3

Total 167 100.0 60 100.0

G1 Haplotype†

rs73885319 (A>G) + rs60910145 (T>G)

G1 43 26.7 30 52.6 0.33 [0.17 to 0.62] 0.0005

Non-G1 118 73.3 27 47.4

Total 161 100.0 57 100.0

G2 Haplotype
rs71785313 (TTATAA>del6)

G2 59 35.3 9 15.0 3.08 [1.45 to 7.06] 0.0025

Non-G2 108 64.7 51 85.0

Total 167 100.0 60 100.0

*Two-tailed Fisher’s exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 haplotype),
†Individuals with a partial G1 haplotype were excluded from the analysis. T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence interval. Raw data for

Table 3 can be found in Table 3—source data 1. An association analysis of the two individual component SNPs of the G1 haplotype can be found in

Table 3—source data 2.

DOI: 10.7554/eLife.25461.010

Source data 1. APOL1 genotype data for T.b. gambiense clinical stage trypanosomiasis patients and latent carriers *Individuals excluded from the

APOL1 G1 association analysis. T.b.g: T.b. gambiense, G0: genotype compatible with the non-risk G0 allele for both rs73885319 and rs60910145, G1:

genotype compatible with the G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with the G1 CKD risk allele for

rs60910145 and the non-risk G0 allele for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319 and the non-risk G0 allele

for rs60910145, G2: genotype compatible with the G2 CKD risk allele for rs71785313.

DOI: 10.7554/eLife.25461.011

Source data 2. Association between individual APOL1 G1 kidney disease risk variants and T.b. gambiense infection outcome Two-tailed Fisher’s exact
test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 SNP). CKD: chronic kidney disease, T.b.g:

T.b. gambiense, OR: odds ratio, CI: confidence interval. Raw data for Source data 2 can be found in Source data 1

DOI: 10.7554/eLife.25461.012
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in both studies was significantly inferior to the G2 variant by up to several orders of magnitude. The

G1 haplotype is composed of two closely positioned missense mutations (rs73885319; [p.S342G]

and rs60910145; [p.I384M], Figure 1), of which the latter is also located in the crucial SRA-binding

region. However, the rs60910145 point mutation results in an isoleucine to methionine substitution

that only slightly weakens SRA-APOL1 interaction (Genovese et al., 2010) and this substitution

alone did not extend survival in a mouse model (Thomson et al., 2014). Together these data sug-

gest that the G1 variant is not able to confer substantial protection from T.b. rhodesiense infection.

However, our data do not preclude an effect of G1 on the time course or severity of T.b. rhode-

siense disease. Additionally, for both the G1 variant and the small number of G2-possessing individ-

uals that were infected with T.b. rhodesiense it is possible that dosage effects or inactivating

mutations may be present which have abrogated the trypanolytic ability of these APOL1 variants.

No stop codons or mutual non-synonymous variants were observed within the exomes of these indi-

viduals during sequence verification of the APOL1 G1 and G2 genotypes (Supplementary file 1),

but this possibility cannot be definitively excluded.

In contrast to T.b. rhodesiense, T.b. gambiense primarily infects humans, and is the pathogen

responsible for the majority of human disease (Simarro et al., 2010) and significant and widespread

epidemics of a slower progressing form of sleeping sickness in Central and West Africa. No lytic abil-

ity for either APOL1 variant was reported against T.b. gambiense tested by in vitro assays with

donor plasma or recombinant protein (Genovese et al., 2010). Consistent with this observation, in

Table 4. Conditional association between kidney disease risk variants and T.b. gambiense infection outcome excluding compound

heterozygotes

Dominant model – infection outcome

APOL1 haplotype T.b.g Disease T.b.g Carriage
Association analysis*

T.b.g Disease/Carriage

Number % Number % OR [95% CI] P

G1 Haplotype†,‡

rs73885319 (A>G) + rs60910145 (T>G)

G1 36 23.4 25 48.1 0.33 [0.17 to 0.64] 0.0012

Non-G1 118 76.6 27 51.9

Total 154 100.0 52 100.0

G2 Haplotype‡

rs71785313 (TTATAA>del6)

G2 50 31.6 4 7.3 5.87 [2.16 to 20.01] 0.0001

Non-G2 108 68.4 51 92.7

Total 158 100.0 55 100.0

*Two-tailed Fisher’s exact test with mid-P method using a dominant model (carriage of 1 or 2 copies of the designated APOL1 haplotype),
†Individuals with a partial G1 haplotype were excluded from the analysis.
‡Individuals with a compound heterozygote genotype (G1/G2) were excluded from the analysis. T.b.g: T.b. gambiense, OR: odds ratio, CI: confidence

interval. Raw data for Table 4 can be found in Table 4—source data 1. An association analysis of the two individual component SNPs of the G1 haplo-

type can be found in Table 4—source data 2.

DOI: 10.7554/eLife.25461.013

Source data 1. APOL1 genotype data for T.b. gambiense clinical stage trypanosomiasis patients and latent carriers, excluding compound heterozygotes
*Individuals excluded from the APOL1 G1 association analysis. T.b.g: T.b. gambiense, G0: genotype compatible with the non-risk G0 allele for both

rs73885319 and rs60910145, G1: genotype compatible with the G1 CKD risk allele for both rs73885319 and rs60910145, G1M: genotype compatible with

the G1 CKD risk allele for rs60910145 and the non-risk G0 allele for rs73885319, G1G: genotype compatible with the G1 CKD risk allele for rs73885319

and the non-risk G0 allele for rs60910145, G2: genotype compatible with the G2 CKD risk allele for rs71785313.

DOI: 10.7554/eLife.25461.014

Source data 2. Association between individual APOL1 G1 kidney disease risk variants and T.b. gambiense infection outcome, excluding compound het-
erozygotes Two-tailed Fisher’s exact test with mid-P method using a dominant genetic model (carriage of 1 or 2 copies of the designated APOL1 SNP).

Individuals with a compound heterozygote genotype (G1/G2) were excluded from the analysis. CKD: chronic kidney disease, T.b.g: T.b. gambiense,

OR: odds ratio, CI: confidence interval. Raw data for Source data 2 can be found in Source data 1

DOI: 10.7554/eLife.25461.015
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the Guinea focus neither variant demonstrated a resistance association with T.b. gambiense infec-

tion. Instead, as summarized in Figure 2A, contrasting associations were observed with infection

outcome. APOL1 G1 was associated with a predisposition to latent asymptomatic carriage, while

individuals possessing the G2 variant were more likely to progress to clinical disease. The association

between APOL1 variants and infection outcome for T.b. gambiense implicates this molecule as a crit-

ical modulating factor in disease control. APOL1 is a high-density lipoprotein-associated serum pro-

tein, the expression of which is up-regulated by pro-inflammatory stimuli including IFN-g

(Sana et al., 2005) and TNF-a (Monajemi et al., 2002). In accordance with this, APOL1 expression

is demonstrably increased during T.b. gambiense infection (Ilboudo et al., 2012). However, no asso-

ciation has been observed between APOL1 expression levels and blood parasite density or clinical

outcome of T.b. gambiense infection (Ilboudo et al., 2012). Instead, the results of our study indicate

that particular APOL1 variants, rather than modulation of global APOL1 protein level, contribute to

differential susceptibility to disease. How these variants influence T.b. gambiense is less perceptible

than for T.b. rhodesiense. The mechanism of T.b. gambiense APOL1 resistance does not involve

Figure 2. The geographical distribution of human African trypanosomiasis and APOL1 G1 and G2 allele frequencies across sub-Saharan Africa. (A) The

risk model for chronic kidney disease, T.b. rhodesiense infection, and T.b. gambiense disease outcome are summarized for the ancestral G0 APOL1

variant and heterozygous and homozygous carriers of the G1 and G2 variants. The direction of the risk association is indicated by arrow orientation and

box colour: orange (increased risk), blue (reduced risk) and grey (no association). (B) WHO defines 36 countries as endemic for HAT, caused by T.b.

gambiense in West Africa (blue) and T.b. rhodesiense in East Africa (green). Uganda is the only country endemic for both subspecies, although their

distribution does not currently overlap (red). (C) Spatial frequency map of the APOL1 G1 variant. (D) Spatial frequency map of the APOL1 G2 variant.

Spatial frequency maps were generated from merged published genotype data available for 40 populations (5287 individuals) in 21 countries

(Figure 2—source data 1). Colour gradients illustrating predicted allele frequencies across Africa were extrapolated from available data using the

Kriging algorithm in Surfer software version 8. The approximate locations of data points are indicated by filled black circles, a filled red triangle (Guinea

study), or an inverted filled red triangle (Uganda study) next to the relative allele frequency, in percentage.

DOI: 10.7554/eLife.25461.016

The following source data is available for figure 2:

Source data 1. Frequency of APOL1 G1 and G2 variants in African populations.

DOI: 10.7554/eLife.25461.017
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SRA, but three independent contributing components have been implicated: a sub-species-specific

protein, TgsGP (Capewell et al., 2013; Uzureau et al., 2013), which alters trypanosome membrane

rigidity (Uzureau et al., 2013); reduced uptake of APOL1 (DeJesus et al., 2013 ; Kieft et al.,

2010); and proposed faster degradation of APOL1 within the endocytic system of the parasite

(Uzureau et al., 2013; Alsford et al., 2014). It is possible that alterations to the APOL1 molecule

conferred by G1 and G2 polymorphisms affects one or more of these processes with opposing

downstream consequences. Furthermore, the strengthened risk association of G2 with clinical dis-

ease when individuals who possess both haplotypes (G1/G2 compound heterozygotes) were

excluded indicates a potential dominance for the protective G1 haplotype that might be able to mit-

igate the disease progressive effects of the G2 variant.

Despite its critical function in human innate resistance to most trypanosomes, the role of APOL1

in T.b. gambiense disease progression appears complex. Contrasting inflammatory cytokine profiles

reported between individuals with clinical stage disease and latent carriers (Ilboudo et al., 2014)

suggests that an intricate multi-gene interplay between host immune factors, APOL1, and the para-

site ultimately determines disease outcome for this subspecies.

For the G1 variant, the relationship with T.b. gambiense appears more akin to the well- estab-

lished association between Plasmodium and the sickle haemoglobin S (HbS) polymorphism (Alli-

son, 1954). In this classic example of heterozygous advantage, the heterozygous HbS genotype

does not protect from Plasmodium infection per se but reduces the risk of severe malaria once

infected (Allison, 1954; Taylor et al., 2012). This advantage has selected and maintained preva-

lence of the HbS polymorphism in malaria-endemic sub-Saharan Africa, despite the high penetrance

of life-threatening sickle cell disease in homozygotes (Allison, 1954; Piel et al., 2010). In T.b. gam-

biense, possession of a G1 allele is associated with the capacity to sustain the asymptomatic latent

period of what is normally a fatal disease. This moderation of disease severity could plausibly confer

greater survival and reproductive opportunities for individuals possessing the G1 variant than for

their G0- or G2-carrying counterparts, who typically progress more rapidly to severe disease

(G2 > G0 > G1). Such a selection advantage may explain the high allele frequency of G1 recorded in

T.b. gambiense-endemic West Africa (up to 49% (Thomson et al., 2014; Abecasis et al., 2012);

Figure 2C), which in some populations exceeds even the maximum global HbS alleles frequencies

(Piel et al., 2010). This is consistent with a strong positive selective force on G1 (Genovese et al.,

2010), and conceivably, a less powerful opposing deleterious pressure from kidney disease in homo-

zygotes, which is typically of late onset, and incompletely penetrant (Kruzel-Davila et al., 2016).

Population genetics studies of T. brucei indicates that both human-infective sub-species likely

arose independently and relatively recently from the animal pathogen T.b. brucei (Tait et al., 1985;

Gibson et al., 2002; Balmer et al., 2011; Weir et al., 2016). Molecular clock analysis dates the

emergence of T.b. gambiense as a human pathogen in West Africa from a single progenitor approxi-

mately 1,000–10,000 years ago (Weir et al., 2016). During this time a pivotal lifestyle transition was

occurring with the development of agriculture and larger, more densely populated permanent set-

tlements that provided favorable conditions for the emergence of many animal-derived human

pathogens (Harper and Armelagos, 2010; Wolfe et al., 2007). This also coincides with the timeline

for a robust selective sweep on G1 detected in the Nigerian Yoruba population (Genovese et al.,

2010), at the geographical hotspot for this allele (Figure 2C) in West Africa. A plausible scenario is

that within the last 10,000 years an animal-infective T.b. brucei predecessor of T.b. gambiense

evolved the essential human serum resistance gene TgsGP (Capewell et al., 2013), facilitating its

transmission to humans in the ancestral Bantu population of the Nigeria-Cameroon region. Over

time, as T.b. gambiense has undergone progressive adaptation into a predominantly human patho-

gen (Wolfe et al., 2007), selection for the human APOL1 G1 variant may have occurred in turn,

which was able to mitigate the lethal progression of disease and promote long-term asymptomatic

carriage. The T.b. gambiense-protective APOL1 G1 haplotype could then have spread with human

migration and introgression into other sub-Saharan populations during the Bantu expansions

(Tishkoff et al., 2009), or along commercial routes within the last 4000 years, to reach its current

distribution across sub-Saharan Africa (Figure 2C).

For APOL1 G2, the increased risk of clinical T.b. gambiense disease contrasts with the strong pro-

tective association observed for this variant against T.b. rhodesiense. Puzzlingly, as for G1, some of

the highest frequencies of G2 are also found in T.b. gambiense-endemic West Africa (Figure 2D),

raising speculation about the evolutionary history of these two variants. Studies of genetic diversity
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at the APOL1 locus are consistent with a older (2,000–7,000 years), less intensively selected allele

(Genovese et al., 2010; Pinto et al., 2016) for G2, and a more recent, rapid sweep for the G1 allele

in West Africa (Genovese et al., 2010; Pinto et al., 2016; Limou et al., 2015). One possible inter-

pretation of the available data is that T.b. rhodesiense preceded T.b. gambiense in West Africa and

was responsible for driving positive selection of the G2 variant in the Nigeria-Cameroon region. Ris-

ing frequencies of this protective variant (or other unrelated epidemiological factors) could have

then forced an eastward shift in T.b. rhodesiense endemicity to an approximation of its current distri-

bution in East and Southern Africa. Subsequently, when T.b. gambiense emerged in West Africa, the

relative fitness of the APOL1 G2 allele in the exposed population would have been diminished, pro-

viding an opportunity for the robust selective sweep of an alternate APOL1 variant, G1, which was

able to reduce the disease severity of this new pathogen.

While this is an attractive theory, there is little epidemiological support for a shift in the endemic-

ity of T.b. rhodesiense, which has only been detected in East Africa and has no recorded history in

West Africa (Gibson et al., 2002; Radwanska et al., 2002; Balyeidhusa et al., 2012; Picozzi et al.,

2005). Moreover, isolates of T.b. rhodesiense from across East Africa show a strong genetic relation-

ship with sympatric T.b. brucei strains, compatible with a predominantly East African origin

(Balmer et al., 2011; Godfrey et al., 1990; MacLeod et al., 2001). An alternative model is that

selection in favour of the G2 variant may have originated from a different source in West Africa, and

it is only more recently, as the G2 variant spread eastwards with the Bantu expansion

(Tishkoff et al., 2009), that it has fortuitously proved advantageous against T.b. rhodesiense.

Indeed, beyond its proven capacity for trypanolysis, APOL1 was shown to limit Leishmania major

infections in mice (Samanovic et al., 2009) and suppress HIV-replication in macrophages

(Taylor et al., 2014), hinting at a much broader role for APOL1 in innate immunity to infectious

disease.

The association between APOL1 chronic kidney disease risk variants and human African trypano-

somiasis reveals a more complex picture of selection and human evolution than was originally

hypothesized. Despite their close genetic proximity APOL1 G1 and G2 polymorphisms confer very

different, and even opposing, dominant associations with human African trypanosomiasis susceptibil-

ity, yet appear convergent in their deleterious recessive contribution to kidney pathology. While the

origins of the G2 allele remain speculative, a model of dominant protection against T.b. rhodesiense

infection is supported. For G1, the strong West African allele distribution bias and evidence for

recent, rapid, positive selection, suggest an alternative evolutionary ancestry for this allele, which we

propose involves protection from the lethal consequences of the T.b. gambiense parasite.

Materials and methods

Ethics statement
Participants were identified through healthcare providers, community engagement and active field

surveillance in association with the national control programmes. Written informed consent for sam-

ple collection, analysis and publication of anonymised data was obtained from all participants by

trained local healthcare workers. Subjects or their legal guardian gave consent as a signature or a

thumbprint after receiving standardised information in English, French or their local language, as

preferred, and were free to withdraw from the study at any time. Efforts were made to ensure the

engagement of all local stake holders and approval was obtained from local leaders in each study

area where appropriate. Ethical approvals for the study were obtained from within the TrypanoGEN

Project following H3Africa Consortium guidelines for informed consent (H3Africa Consortium,

2013), from Comité Consultatif de Déontologie et d’Ethique (CCDE) at the Institut de recherche

pour le développement (IRD; 10/06/2013) for the Guinea study, and from the Uganda National

Council for Science and Technology (UNCST; 21/03/2013) for the Uganda study. Research proce-

dures were also approved by the University of Glasgow MVLS Ethics Committee for Non-Clinical

Research Involving Human Subjects (Reference no. 200120043).
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Sample collection
Uganda
A T.b. rhodesiense cohort of 184 blood samples was collected from patients presenting to local hos-

pitals during an epidemic in the neighbouring districts of Soroti and Kaberamaido in Central Eastern

Uganda, along with 180 controls, between 2002 and 2012. The majority of the population is from

the Kumam ethnic group. In all cases, T.b. rhodesiense infection was confirmed by microscopic

detection of trypanosomes in wet blood films, Giemsa stained thick blood films or in the buffy coat

fraction after microhaematocrit centrifugation. Blood was collected by venepuncture from consent-

ing participants, and preserved as blood spots on FTA filter cards (Whatman, NJ, USA) with air-dry-

ing. For PCR amplification, discs of 2 mm diameter were cut from each blood spot using a Harris

Micro-punch (Whatman) and prepared according to the instructions provided by the manufacturer.

Guinea
Samples were collected from a group of three closely positioned active T.b. gambiense HAT foci

(Dubreka, Boffa and Forecariah) located in the mangrove area of coastal Guinea (Camara et al.,

2005). The majority of the population is from the Soussou ethnic group. All subjects included in this

study were identified during medical surveys performed between 2007 and 2011 by the National

Control Program according to standard procedures described elsewhere (Ilboudo et al., 2011). For

each study participant, 100 mL of plasma and 500 mL of buffy coat were taken. All samples were fro-

zen in the field at �20˚C. The highly specific T. b. gambiense immune trypanolysis (TL) test was per-

formed on plasma samples as previously described (Jamonneau et al., 2010). We included 331

individuals in three phenotypic categories: (i) HAT patients (n = 167): card agglutination test for try-

panosomiasis (CATT) positive and trypanosomes detected by the mini Anion Exchange Centrifuga-

tion technique (mAECT) followed by microscopy and / or examination of cervical lymph node

aspirates by microscopy when adenopathies were present, (ii) Latent carriers (n = 60) CATT plasma

titre 1/8 or higher; TL positive, no trypanosomes detected by mean of mAECT and / or examination

of cervical lymph node aspirates during a two-year follow-up; (iii) Uninfected endemic controls

(n = 104), CATT negative, TL negative, mAECT negative. DNA was extracted from blood collected

in the field with the DNeasy Tissue kit (Qiagen, Germany) according to the instructions provided by

the manufacturer.

APOL1 genotyping
Uganda
The APOL1 genotype of each individual at the G1 and G2 loci was determined using PCR–restriction

fragment length polymorphism (RFLP) analysis. G1 comprises two non-synonymous substitutions,

rs73885319 (c.1024A>G [p.Ser342Gly]) and rs60910145 (c.1152T>G [p.Ile384Met]) in near-perfect

linkage disequilibrium. The second variant, G2, is found on an alternative haplotype and represents

a two amino acid in-frame deletion (c.1164_1169del [p.Asn388_Tyr389del]). Prepared FTA card discs

were used as template in a PCR amplifying a 458 bp product containing the three known variant

sites (primers: APOL1 F1, 50- AGACGAGCCAGAGCCAATCTTC-30 and APOL1_R2, 50- CACCA

TTGCACTCCAACTTGGC �30). PCR reactions were prepared in a volume of 25 mL using conditions

previously described (Cooper et al., 2008) with a final primer concentration of 10 mM and 1 unit of

Taq polymerase (ThermoFisher Scientific, MA, USA). Amplification was performed using 35 cycles of

95˚C for 50 s, 67˚C for 50 s, and 70˚C for 1 min. Following PCR amplification, an independent RFLP

assay was performed for each of the three polymorphisms. For SNP rs73885319 (G1S342G), the A>G

substitution results in the loss of a HindIII site, for SNP rs60910145 (G1I384M) the T>G substitution

creates an NspI site, and for rs71785313, the G2 6 bp deletion results in the loss of an MluCI site.

For each reaction, 2 mL of PCR product was digested with 10 units of enzyme and the products sepa-

rated by electrophoresis on a 2% agarose gel. Data for each SNP (rs73885319, rs60910145, and

rs71785313) were combined to generate the APOL1 genotype for each individual. All individuals

that were identified as containing G1 or G2 polymorphisms by RFLP, along with a similar number of

randomly selected G0 homozygous individuals were verified by PCR amplification and Sanger

sequencing (MWG-Biotech AG, Germany) of APOL1 protein coding exons 3–7. Sequences were

evaluated using CLC genomics software (RRID:SCR_011853) for genetic variants relative to NCBI
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Genome reference build 38.7 (RRID:SCR_006553; Supplementary file 1). Details of the PCR and

sequencing primers are provided in Supplementary file 2.

Guinea
The G1S342G (rs73885319) polymorphism was detected by PCR-RFLP. PCR was carried out in a total

volume of 30 mL containing 100 ng of DNA, 10 mM of dNTP, 10 mM of each primer (APOL1 319_1F:

5’-CAGCATCCTGGAAATGAGC-3’; APOL1 319_1R: 5’-GCCCTGTGGTCACAGTTCTT-3’) and 1 unit

of Taq polymerase (MP Biomedical, CA, USA). The PCR conditions were: 95˚C for 5 min followed by

35 cycles at 95˚C for 30 s, 59˚C for 30 s, 72˚C for 45 s and one cycle of extension, 72˚C for 5 min.

The PCR products were then digested by fast digest HindIII (ThermoFisher Scientific) and digested

fragments separated on 2% agarose gel electrophoresis. The G1I384M (rs60910145) polymorphism

was genotyped by the Genome and Transcriptome Platform of Bordeaux using the Sequenom Mas-

sArray iplex method. Genotypes were identified with the MassARRay Typer 4.0 Analyzer software.

The G2 (rs71785313) indel was detected on a Li-Cor sequencer. The PCR primers were the same as

for G1S342G (rs73885319) but the forward primer had a M13 tail (M13 = 5’-CACGACGTTGTAAAAC-

GAC-3’). PCRs were carried out in a total volume of 20 mL containing 25 ng of DNA, 10 mM of

dNTP, 10 mM of each primer, 10 mM of dye (M13IR700) and 1 unit of Taq polymerase (MP Biomedi-

cal). The PCR conditions were: 95˚C for 5 min followed by 35 cycles at 95˚C for 30 s, 59˚C for 30 s,

72˚C for 45 s and one cycle of extension, 72˚C for 5 min. The PCR products were then visualized on

the Li-Core sequencer for the G2 indel detection. Data for each SNP (rs73885319, rs60910145, and

rs71785313) were combined to generate the APOL1 genotype for each individual.

Statistical analyses
Statistical analyses of association between APOL1 genotypes and human African trypanosomiasis in

this case-control study were performed by contingency table analyses using Fisher’s exact test with

mid-P method. Statistical tests were computed using Open-epi. Calculation of the minimum detect-

able odds ratios was performed for the study sample size in Uganda (<0.144, >2.662 [G1], < 0.350,

>2.116 [G2]) and Guinea (<0.448, >2.008 [G1], <0.471, >1.971[G2]) using Sampsize software with

the parameters of 80% power, 5% alpha risk and a two-sided test.

Spatial frequency map of G1 and G2 allele frequency and human
African trypanosomiasis distribution
To visualize the geographical distribution of APOL1 G1 and G2 polymorphisms in sub-Saharan

Africa, a contour map was generated by collating data from this study with previously published

datasets to produce a cohort of 5287 individuals from across 40 African populations. Published data-

sets with a low sample size (n � 19) were excluded. G1S342G (rs73885319) was used as a proxy for

G1, where G1 frequency data were unavailable (rs73885319 and rs60910145 are in almost complete

positive linkage disequilibrium) (Genovese et al., 2010; Kopp et al., 2011). The contour map was

drawn using Surfer 8.0 (Golden Software Inc., Golden, Colorado) applying the Kriging algorithm for

data interpolation. Interpolation may be inaccurate where there are few data points. G1 and G2

allele frequencies were analysed for an association with the geographical coordinates (absolute lati-

tude and longitude) using Pearson’s correlation test (GraphPad Prism version 6.0, RRID:SCR_

002798). The map of T.b. rhodesiense and T.b. gambiense endemicity was drawn from the Human

African trypanosomiasis endemicity classification of the Global Health Observatory data repository

(World Health Organization, 2015)
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. Supplementary file 1. Sequence variants identified in protein-coding exons of the APOL1 gene in

T.b.r cases and controls. Sequence variants relative to human genome reference (NCBI Genome

browser build 38, RRID:SCR_006553) were identified in exon sequences of individuals identified with

a G1 or G2 genotype, and a representative number of G0 individuals. S: synonymous SNP, NS: non-

synonymous SNP, T.b.r: T.b. rhodesiense. The chromosome 22 position is indicated based on NCBI

Genome reference build 38.7 and reference SNP ID if present, is indicated as described by dbSNP

(RRID:SCR_002338). The SNP genotype of each individual is described by the appropriate IUPAC

nucleotide code. Rs71785313 (G2) genotypes are described by the presence (TTATAA) or absence

(del6) of the six base-pair sequence that is deleted in the G2 variant. Due to limited sample availabil-

ity, sequence data could not be obtained for two G0/G2 individuals (LIL039 and CT059).
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. Supplementary file 2. Primer information for PCR amplification and sequencing of APOL1 protein-

coding exons
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Büscher P, Bucheton B. 2012. Untreated human infections by Trypanosoma brucei gambiense are not 100%
fatal. PLoS Neglected Tropical Diseases 6:e1691. doi: 10.1371/journal.pntd.0001691, PMID: 22720107
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