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Abstract

Purpose To understand cell cycle controls in the 8-Cell
human blastomere.

Methods Data from whole human genome (43,377 elements)
microarray analyses of RNAs from normal 8-Cell human
embryos were compiled with published microarrays of RNAs
from human fibroblasts, before and after induced pluripo-
tency, and embryonic stem cells. A sub database of 3,803
genes identified by high throughput RNA knock-down
studies, plus genes that oscillate in human cells, was analyzed.
Results Thirty-five genes over-detected at least 7-fold
specifically on the 8-Cell arrays were enriched for cell
cycle drivers and for proteins that stabilize chromosome
cohesion and spindle attachment and limit DNA and
centrosome replication to once per cycle.

Conclusions These results indicate that 8-cell human
blastomere cleavage is guided by cyclic over-expression

Capsule Over-expression of cell cycle drivers and lack of checkpoints
render 8-Cell human blastomeres susceptible to genetic and chromo-
somal mishaps.
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of key proteins, rather than canonical checkpoints, leading
to rapidly increasing gene copy number and a susceptibility
to chromosome and cytokinesis mishaps, well-noted char-
acteristics of preimplantation human embryos.
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Introduction

The human blastomere at the 8-cell stage of embryo
development is a unique, totipotent cell. Despite the funda-
mental importance to human reproduction, little is known
about cellular controls on gene expression and chromosome
duplication in 8-Cell stage human blastomeres. Understanding
cell cycle regulation in the 8-Cell is urgently needed to
improve outcomes of assisted reproduction and provide
insights into the cellular machinery used by the egg to
reprogram nuclei from differentiated to totipotent. This
information may markedly improve the efficiency of reprog-
ramming unfertilized oocytes and somatic cells to patient-
specific stem cells for research and therapy.

We recently reported that RB, the key Gl cell cycle
checkpoint, and WEEI, a key G2 cell cycle checkpoint,
were silent on microarrays of two pools of normal
appearing 8-Cell stage human embryos, whereas MYC
and circadian oscillators CLOCK, CRY and PER were
markedly elevated [1]. Rb maintains cell cycle arrest in G1
by binding the E2F transcription factors needed for
progression through G1 and the initiation of S phase. To
overcome the Rb blockade, growth factors stimulate
expression of CyclinD, which binds Cdk4/6 and phosphor-
ylates Rb in a couple of locations, causing the release of
E2F transcription factors that stimulate expression of
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Cyclin E, which binds Cdk2 and phosphorylates Rb again,
rendering it inactive. Loss of functional Rb, the first tumor
suppressor gene discovered, is a characteristic of many
human cancers [2], suggesting that understanding cell cycle
regulation in the 8-Cell may also provide unique insights into
malignant transformation. Mouse fibroblasts depleted of Rb
become growth factor-independent [3], as are early cleavage
stage blastomeres [4, 5], which suggests the silence of RB,
also reported for early cleaving mouse embryos [6], may be
characteristic of totipotent embryo cells, reflecting the lack of
a need for cell growth because of their large size. Like other
mammals, early human embryo cell cycles are cleavage
divisions that halve the volume of daughter blastomeres.
Approximately six cleavage divisions, to the 64-cell stage, are
needed to reduce the size of the 120 micron diameter human
egg to the 10 to 20 micron diameter of normal somatic cells
and embryonic stem cells (discussed in [7]).

Consistent with the absence of Rb, CCNE was markedly
elevated on the microarrays of the 8-Cells [1]. In addition to
activating Cdk2, Cyclin E has Cdk2-independent functions,
including regulating centrosome duplication [8]. CDK2
knock-out mice are viable, presumably because Cyclin E
can also bind Cdk1, but CCNE knock-out mice die in utero
[9]. Cyclin E promotes cell division, and over-expression
promotes aneuploidy, as has been observed for numerous
human malignancies, although the mechanisms by which
Cyclin E induces tumorigenesis remain elusive [10]. The
silence of Weel, the G2 checkpoint kinase that blocks cell
division by inhibiting CyclinB/Cdkl [11], suggests that
Cyclin E driven aneuploidy may go unchallenged at the G2/
M transition in the 8-Cell embryo. This may help explain the
heteroploidy observed in early human and non-human primate
embryo blastomeres [12—14]. But given the fundamental
importance to development of accurate chromosome dupli-
cation and allocation to daughter blastomeres, the absence of
G1 and G2 checkpoints was a surprise. The over-expression
of circadian oscillators in the 8-Cells [1] suggests they may
help regulate the blastomere cell cycle, as has been
demonstrated for many cell types, including mouse liver
and muscle [15], rat fibroblasts [16] and human bone
marrow [17]. By regulating WEE1 expression through its
E-Box elements, mouse liver cell oscillators ensure mitosis is
coupled to their circadian cycle [18].

The silence of WEE1 on the 8-Cell microarrays indicates
this is not, however, a mechanism used by blastomeres.
Moreover, despite recent evidence that circadian oscillators
are over-expressed in the 8 Cells, and expression of Per is
stimulated at fertilization of zebra fish eggs, heralding the
onset of circadian oscillations in zebrafish embryos [19], cell
division occurs at intervals much shorter than 24 h in early
embryo cells, including human. In vivo developed mouse
blastocysts reach 250 cells, eight cell doublings, by the time
of implantation 5 days after fertilization, an average cell
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cycle time of 15 h, not 24 [4, 20]. This is accomplished by
cell cycle times of 8 tol12 h for the 4- to 16-cell stages, with
earlier and later stages closer to 24 h, suggesting some stages
are circadian intervals, but others undergo two or three
cleavage divisions in one circadian interval. Similar data are
not available for human embryos developing in vivo, but in
vitro development to at least the 8-cell stage is also less than
24 h per cell cycle, especially for those embryos thought to
be the most likely to produce offspring [21].

If the absence of G1 and G2 checkpoints accounts for
rapid cell cycles in the human blastomeres, what safeguards
are in place to ensure the integrity of chromosomal
duplication and allocation to daughter blastomeres? Is it
possible that to allow the production of sufficient embryonic
proteins to signal the mother to maintain a receptive uterus,
gene copy number is more important in early embryo
development than accurate chromosome allocation to
daughter cells? Evidence suggests that only one or two of
the first 16 cells of the mouse morula give rise to the inner cell
mass (ICM), which will become the embryo; the remainder of
the cells become trophoblast which gives rise to placenta.
Perhaps accurate chromosome allocation first becomes
essential to development in the ICM, suggesting that cell
cycle checkpoints first appear in ICM cells, perhaps concom-
itant with the need for growth factors to increase cell size, and
that the cell death commonly observed in human blastocysts
developed in vivo or in vitro [22, 23] reflects the elimination
of defective cells, as noted for frog embryos at the
midblastula transition [24].

To better understand the cell cycle in the 8-Cell human
embryo, we compiled a gene data set from published high
throughput strategies not feasible with human embryos that
correlate cell morphology and DNA content with expression
of cell cycle and cycling genes [25-27]. The compiled gene
list corresponds to 3,803 gene elements in our database
(8CFES) of whole human genome microarrays of four cell
types: 8-Cell embryos, fibroblasts before and after induced
pluripotency (iPS cells) and two lines of human embryonic
stem (hES) cells (Supplemental Table 1S). We then took ad-
vantage of two recent reports of MYC transcriptome [28, 29]
to assess the role of the over-expression of MYC in the 8-
Cells. We report here the results of this analysis which add se-
veral gene elements to cell cycle regulation, and reveal unique
gene expression characteristics of the 8-Cell human blastomere.

Methods and materials

Embryos were donated by couples undergoing infertility
treatment at Alexandra Hospital in Athens Greece, as
described [1, 30]. The study protocol was reviewed and
approved by the ethics advisory board and human subjects
research committees of Alexandra Hospital and Bedford



J Assist Reprod Genet (2010) 27:265-276

267

Research Foundation. Briefly, three embryos were selected
for transfer 48 h following egg collection. Supernumary
embryos were cultured an additional 24 h, and normal
appearing, unfragmented, 8-Cell embryos were transferred
to microfuge tubes in 2 ul of culture medium and flash
frozen in liquid nitrogen for RNA extraction. A total of ten
8-Cell stage embryos from nine couples, divided into two
pools of five each were used for microarray analyses. Seven
of the nine couples achieved a pregnancy.

RNAs were isolated and amplified for fluorescent probe
labeling and hybridization to Agilent whole genome micro-
arrays as described [1]. Briefly, RNAs were isolated with
Arcturus PicoPure according to manufacturer’s instructions,
examined for ratios of 18S and 28S RNAs with an Agilent
Bioanalyzer to assess RNA integrity, and polyadenylated
RNAs were amplified to microgram quantities according to
a previously reported protocol [31] shown to be linear.
Microarray hybridization was done by MoGene, St. Louis,
MO, and the raw hybridization intensities normalized by
Agilent Feature Extraction Software. The hybridization
results were verified for standard RT-PCR housekeeping
genes as described [1], and combined into a Filemaker Pro
database with microarray data posted at GEO (NCBI) for
fibroblast RNAs before and after induced pluripotency [32]
and two human embryonic stem cell lines, H9 and HESO1
[33], aligned by Agilent feature number [1]. Normalized
array data for each gene element were statistically com-
pared to develop guidelines for over- and under-detection
[1]. The ratio between the two pools of 8Cell embryos of
fluorescence values for each gene element was 1.0+3.0
[1]. For purposes of this report, two standard deviations
(£7-fold) of the mean ratios of gene element fluorescent
detection among the arrays was taken as the threshold for
designation of over- or under-detection, as described [1].

Gene lists were submitted to DAVID (david.abcc.nciferf.
gov) and Reactome (www.reactome.org) for function and
ontology analyses, and hand annotated for accuracy.
Because of the silence of canonical checkpoint genes, such
as RB and WEEI, and the over-detection of unusual
cyclins, such as Cyclin Al, standard pathway analysis tools
were not relied upon.

Results and discussion

A comprehensive list of genes important to cell division
was compiled from three published studies of high through-
put analyses of cultured cells not possible with human
embryos. U20S cells, a well studied osteosarcoma cell line,
were cultured with small interfering RNA (siRNA) targeting
34,373 human genes [27]. Automated single-cell fluores-
cence microscopy gathered data for each siRNA: cell
number; percentage of cells in G1, S and G2/M; percentage

of cells with >8N hyperploidy; and percentage of cells with
cytokinetic defects. Depletion of 1,152 gene transcripts
strongly affected cell-cycle progression. HeLa cells were
cultured with endoribonuclease-prepared short interfering
RNAs (esiRNAs) targeting 17,828 genes, followed by
propidium iodide staining and flow cytometry analysis of
DNA content [26]. Seven parameters were extracted from
the DNA content analysis: G1, S, G2/M, 8N (polyploid), 4—
8N (aneuploid), percent dead cells, plus mitotic index and
cell size. This approach identified 1,351 genes involved in
the HeLa cell cycle. RNAs were isolated for microarray
analysis at 2 h intervals following synchronization of early
passage human foreskin fibroblasts [25]; 480 cycling genes
were identified.

The 3,803 gene elements in 8CFES (Supplemental
Table S1) that corresponded to all the genes identified by
the three studies DAVID-mapped to 2,377 genes, only 256
of which were designated GO term “cell cycle.” Differential
expression of the genes identified in each study is described
in more detail in supplementary material (Tables S1-S3).
Only 122 gene elements identified by the U20S cell knock-
down studies were also identified by one of the other
studies, only 186 gene elements identified by the HeLa
cell studies corresponded to elements in one of the other two
studies, and only 136 of the cycling fibroblast genes
corresponded to genes identified in the U20S or HeLa
cells. This striking lack of agreement among the three
studies undoubtedly reflects experimental differences, but
may more importantly emphasize the cell-type specificity of
cell cycle control and the functional redundancy of many
genes.

Genes in U20S and HeLa identified by RNA knock-down
and cycled in fibroblasts

Only nineteen genes were identified by all three studies
(Table S3), which meant they registered a phenotype in
both U20S and HeLa [26, 27] and their expression also
cycled in the primary fibroblasts [25]. Seventeen were
DAVID-annotated cell cycle (Table 1), and 12 were
reported to be Myc targets [28, 29], which did not predict
elevated levels of detection on the 8-Cell arrays. Interest-
ingly, none brought about a cell cycle block in G1 and only
two (CDC2 and PLK1) brought about a block in G2. This
supports the cell-type specificity of gene expression needed
for progression through G1 and G2.

Knock-down of eight of the cycling genes blocked HelLa
and U20S in S phase, including WEEIL, which was a
surprise because although it is known that Weel phosphor-
ylation of Cdk can arrest DNA-damaged cells in both S and
G2, a role for Weel in normal progression through S phase
has not been described. Three of the eight genes were over-
detected in 8-Cells and hES cells relative to fibroblasts
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Table 1 Detection levels of genes on 8CFES arrays

Cell cycle stage Gene name icC °M Microarray fluorescence units Entrez gene ID

8Cell (Ave) Fibro iPS hES (Ave)

Detected in U20S and HeLa and cycle in primary fibroblasts

S CDC6 y X 8,735 281 3,165 6,673 990
S CHAF1A y 15,120 1,162 7,100 12,999 10036
S RRM2 y X 18,568 1,063 2,986 3,072 6241
S SLBP X 31,828 6,272 4,242 5,342 7884
S WEEI y X 61 180 652 1,223 7465
G2 CDC2 y 8,742 910 3,930 5,789 983
G2 PLK1 y 42,907 1,973 8,069 14,937 5347
M AURKB y 10,493 136 956 882 9212
M CDCAS y X 36,169 2,787 6,010 9,599 55143
M ESPL1 y X 5912 476 2,562 3,227 9700
M FBXO5 y X 10,661 367 1,064 2,620 26271
M SFRS3 X 35,161 23,423 42,175 68,725 6428
M TPX2 y 21,321 1,505 3,037 5,854 22974
Detected in U20S and HeLa
Gl CUL2 y 3,696 385 308 573 8453
Gl KCNH5 5,949 2 3 19 27133
S,G1 RKHD2 X 7,737 34 127 120 51320
M CYB561D1 13,547 368 254 4,617 284613
M INCENP y X 8,945 241 622 1,812 3619
M PLXNAI 242 6,425 4,546 5,157 5361
M,Gl CRKRS X 3,645 64 96 248 51755
M,Gl WIPI1 156 17,639 1,211 2,071 55062
Detected in U20S and cycle in primary fibroblasts
Gl BUBLI y X 7,848 443 3,955 5,369 699
S GINS2 y 31,973 963 5,092 7,624 51659
S KIFC1 y X 13,939 119 700 1,772 3833
G2 CABYR 10,963 399 1,040 1,162 26256
G2 CDKNIB y 37 773 595 680 1027
M BARDI y X 8,486 515 1,836 2,453 580
M CDC25B y 28,304 4,449 538 1,061 994
M PRKD2 9,218 597 859 2,278 25865
M REEP4 4,258 449 281 621 80346
Detected in HeLa and cycle in primary fibroblasts
Gl CCNEL y X 102,960 1,596 8,037 13,034 898
Gl HJURP 11,644 357 1,430 2,133 55355
Gl NEK2 y X 2,792 245 595 665 4751
Gl RBBP6 y 22,492 72 226 260 5930
BUBIB y X 17,028 439 3,941 6,268 701
LMNB2 X 221 937 1,681 5,232 84823
NPAT y 2,058 66 206 375 4863
PCNA y X 84,348 5,278 11,990 17,444 5111
G2 DTL y 5,010 250 1,614 3,345 51514
G2 HIFO y 10,711 943 344 1,098 3005
G2 TIPIN y X 7,815 1,060 3,315 4,746 54962
M AURKA y 46,306 1,522 3,234 5,797 6790
M CCNA2 y 31,573 344 1,538 2,710 890
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Table 1 (continued)

Cell cycle stage Gene name iCcC M Microarray fluorescence units Entrez gene ID
8Cell (Ave) Fibro iPS hES (Ave)

M CDC20 y X 29,105 688 4,203 5,406 991
M CENPE y 7,700 755 1,972 3,390 1062
M CIT y 356 3,871 1,749 4,732 11113
M KIF23 y 22,920 1,600 4,376 5,526 9493
M ORCIL y X 2,007 66 812 1,326 4998

Cycle in primary fibroblasts
S GMNN y X 62,273 2,432 9,468 19,070 51053
G2 UBE2C y X 144,929 2,903 12,472 28,375 11065
M CCNB1 y X 156,398 4,004 13,791 19,417 891
M CKSIB y X 87,120 5,491 20,061 33,098 1163
M PTTGI y X 579,305 15,479 31,030 41,398 9232
M SKP2 y X 26,057 159 1,139 1,873 6502

#Known cell cycle gene
® Mye target (27,28)

(Table 1): CDC6, an essential DNA replication licensing
factor; CHAF1A, chromatin assembly factor 1, part of a
nuclear complex that assembles histones onto newly
replicated DNA; and RRM2, ribonucleotide reductase 2, a
well known rate-limiting enzyme for DNA replication. The
two genes whose knock-down blocked G2 in both HeLa and
U20S, CDC2 (CDKI1, cyclin dependent kinase), and PLK1
(pololike kinase 1), were both over-detected on the 8-Cell and
hES gene arrays relative to fibroblasts. Both Cdc2 and Plkl
have numerous roles in cell cycle progression [34, 35].

Six cycling genes were needed for mitosis in both cell
types, one of which, AURKB, was >10-fold over-detected
on the 8-Cell arrays relative to all other cell types (Table 1).
Aurora kinase B is a chromosomal passenger protein whose
expression for normal cytokinesis is tightly controlled:
over-expression or under-expression leads to centrosome
amplification, defects in spindle formation, and multi-
nucleation [36]. Four of the six cycling mitosis genes were
over-detected on both 8-Cell and hES arrays relative to
fibroblasts: CDCAS8 (borealin), ESPL1 (separase), FBX05
(Emil) and TPX2. Borealin is a chromosomal passenger
protein required for stability of the bipolar mitotic spindle
[37] and recently reported to be essential for cleavage from
the 2-cell to 4-cell stage of mouse embryos [38]; separase
cleaves cohesin to allow the separation of sister chromatids
[39] and cleaves the linker between mother and daughter
centrioles to license centriole duplication [40]; Emil
represses APC/C®™™ in G2 [36], thus blocking the
degradation of Cyclin A, -B and geminin, and allowing
both the formation of new DNA replication initiation sites
and the prevention of re-replication of DNA before mitosis.
Emil is essential for mouse embryo development beyond

the blastocyst stage [41] and for normal development in
zebrafish [42]. Failure to degrade Emil in prophase leads to
“mitotic catastrophe”, including centrosome overduplication
[41]. Tpx2 is expressed exclusively at the G1/S transition
and throughout G2 and activates Aurora kinase A on
centrosomes to assemble mitotic spindles [43, 44].

Cell cycle genes identified by RNA knock-down in U20S
and HeLa

Fifty three gene elements were identified as inhibiting cell
cycle progression in both the U20S and HeLa cells, but
were not identified as cycling by the primary fibroblast
study. Only 12 DAVID-mapped to cell cycle or DNA
metabolism, suggesting the discovery of many new genes
important for cell cycle progression that may not have
redundant functions and that should be GO designated cell
cycle. Interestingly, several were not detected above
background levels in 8CFES (Tables S1-S3). Twenty were
reported targets of Myc [39, 40]. Eleven genes arrested G1,
10 arrested S phase, 10 arrested G2, and 22 arrested
mitosis.

KCNHS5 (Eag2), one of the knocked-down genes that
arrested both cell types in G1, was markedly over-detected
on the 8-Cell arrays (Table 1, and 2), but nearly silent on all
other 8CFES arrays. Eag2 is an outwardly rectifying
voltage-gated potassium channel recently shown to bind
to alpha and beta-tubulin [45] suggesting it may play an
important role in the cytoskeleton of the large 8-cell
blastomeres. Knock-down of RKHD2 (MEX3C), the
human homolog of the C. elegans Mex-3 gene, arrested
U20S in Gl and HeLa cells in S phase. One allele of
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Table 2 Functional categories of cell cycle genes

Gene name Expression Entrez gene ID Known CC Myc target
8C Over 8C,hES Over 8C Under
Cyclin, cyclin-dependent kinase (cdk), cdk-inhibitor
CCNE1 X 898 y X
CDC25B X 994 y
CCNAI1 X 8900 y
CCNA2 X 890 y
CCNBI X 891 y X
CCNB3 85417 y
CCND1 X 595 y X
CDC2 X 983 X
CDC2L1 X 984 y
CDKNIA, -B X 1026 y
CRKRS X 51755
CDK6 X 1021 y X
Kinase, kinase inhibitor, phosphatase
AURKA,-B X 6790, 9212 y X
AURKC X 6795 y
BUBI,-1B X 699, 701 y X
CKS1B 1163 y
MAPKA4(ERK3) X 5596
NEK2 4751 y
PPMID X 8493 y X
PLK1 5347 y
PRKD2 X 25865
SKP2 X 6502 y X
WEEI X 7465 y X
Transcription, translation
E2F3 X 1871 y X
MYC X 4609 y
RB X 5925 y
RBBP4 X 5928 y X
RBBP6 X 5930
RBM14 X 10432 y X
RKHD2 X 51320 X
DNA replication, chromosome duplication, cohesin
CDCAS(borealin) X 55143 y X
CDC6 X 990 y X
CHAF1A X 10036 y
CDC45L X 8318 y
CDT1 X 81620 y X
DTL X 51514 y
ESPLI1(separase) X 9700 y X
GINS2,-3 X 51659, 64785 y
GINS4 X 84296 y
GMNN X 51053 y X
HI1FO X 3005 y
HJURP X 55355
NPAT X 4863 y
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Table 2 (continued)
Gene name Expression Entrez gene ID Known CC Myc target
8C Over 8C,hES Over 8C Under
ORCIL X 4998 y X
PCNA X 5111 y X
POLS 11044 y X
PTTG1,-3 X 9232, 26255 y
PTTG2 X 10744 y
RFC3 X 5983 y
RRM2 X 6241 y X
TERF1 X 7013 y
TIPIN X 54962 y
STAG3,-3L3 X 10734, 442578 y X
Centrosome, centriole, securin, spindle
CENPE 1062 y
CDC20 991 y X
DLG7 X 9787 y
INCENP 3619 y X
TPX2 X 22974 y
Ion channel, structural protein, other
AVPI1 X 60370 y X
BARDI X 580 y X
CABYR X 26256
FBXO5(EMI1) X 26271 y X
KCNHS5 X 27133
KIF23 X 9493 y
KIFCl1 y X
LMNB2 X 84823 X
CUL2,-5 X 8453, 8065 y
CIT X 11113 y
REEP4 X 80346

RKHD2 was also markedly over-detected on the 8Cell
arrays (Table 1) which is especially interesting because in
combination with CUL2 (encodes the ubiquitin ligase also
over-detected on the 8-Cell arrays), it has important roles in
anterior-posterior cell partitioning in C. elegans embryos
[46]. Only CUL2, not RKHD2 nor KCNHS5, DAVID-
mapped to cell cycle.

Knockdown of a cytochrome B-like gene (CYB561D1)
and a CDC2-related kinase, CRKRS (CRK?7), the exact
functions of which are unknown, blocked mitosis in both
U20S and HeLa and did not DAVID-map to cell cycle.
CYB561D1 was detected at higher levels on the 8-Cell and
hES cell arrays than either the fibroblast or iPS cell arrays
(Table S3), whereas CRKRS was detected at higher levels
on the 8-Cell arrays than all other cell types (Table 1).

Not surprising, knock-down of INCENP, inner centro-
mere passenger protein, blocked mitosis in both U20S and

HeLa, but it was surprisingly over-detected in 8-Cells
relative to the other cell types, especially fibroblasts and
iPS cells. In mammalian cells, 2 broad groups of
centromere-interacting proteins have been described: con-
stitutively binding centromere proteins and ‘passenger,’ or
transiently interacting, proteins. The constitutive proteins
are encoded by CENPA, -B, -C1 and -PD, none of which
were identified by the RNA knock-down studies
(Table S1). The term ‘passenger proteins’ encompasses a
broad collection of proteins that localize to the centromere
during specific stages of the cell cycle [47, 48]. These
include CENPE and -F, cytoplasmic dyneins (e.g. DYN-
CILI2, DYNLLI, DYNLRBI, Table S1) and INCENP. The
passenger proteins display a broad localization along
chromosomes in the early stages of mitosis but gradually
become concentrated at centromeres as the cell cycle
progresses into mid-metaphase. During telophase, the
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proteins are located within the midbody in the intercellular
bridge, where they are discarded after cytokinesis. INCENP
and CENPE knockout mice die at peri-implantation stage
[49].

Cell cycle genes identified by RNA knock-down in U20S
cells and cycle in fibroblasts

Eighteen genes were detected by knock-down in U20S and
also cycled in primary fibroblasts (Tables SI and S3), of
which 12 had previously been designated GO term cell
cycle. Four blocked G1, two blocked S phase, four arrested
G2, and eight blocked mitosis. Eleven are known cell cycle
genes and seven are Myc targets.

Knock-down of BUBIlbrought about a G1 arrest in the
U20S cells, a surprise because this gene encodes a kinase
involved in spindle checkpoint activation, suggesting it
plays a role in M phase. Mutations in this kinase, over-
detected in 8-Cells, iPS cells and hES cells relative to
fibroblasts, have been associated with aneuploidy and
several forms of cancer [50].

One of the cycling genes in this group whose knock-
down blocked U20S cells in S phase, GINS2, part of the
DNA replication initiation complex, was over-detected on
8-Cells and hES cells, and one, KIFC1, a kinesin family
member central to chromosome congression [51], was
markedly over-detected on the 8-Cell arrays (Table 1).
Only one of the knocked-down genes in this group that
blocked U20S cells in G2 was over-expressed in the 8-
Cells, CABYR, a calcium-binding protein, which did not
DAVID-map to cell cycle. Originally thought to be testis
specific, and a marker for testis cancer, several non-testis
variants of this gene have been described [52]. CDKNI1B
(p27) was under-detected specifically on the 8-Cell arrays,
thus removing another potential cell cycle block.

Of the 8 cycling genes in this group whose knock-down
blocked mitosis, two were over-detected in 8Cells and hES
cells, BARDI and PRKD2, and two were over-detected
specifically in 8Cells, CDC25B and REEP4. Bardl is
important to centrosome duplication and mitotic spindle
assembly [53], and essential for mouse embryo develop-
ment [54]; PRKD2 is a serine/threonine protein kinase
about which little is known. CDC25B activates the cyclin
dependent kinase CDC2 (CDK1) and is required for entry
into mitosis; REEP4 is a membrane receptor accessory
protein about which little is known.

Cell cycle genes identified by RNA knock-down in HelLa
cells and cycle in fibroblasts

Fifty six genes were identified in the HeLa cells that also

cycled in the synchronized primary fibroblasts (Tables S1
and S3), 32 of which DAVID-mapped to cell cycle, and 17
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of which were identified as Myc targets. Fifteen blocked
G1, 16 blocked S phase, five blocked G2, and 19 blocked
mitosis.

Of the 15 cycling genes that blocked G1 progression in
Hela when knocked-down, two were over-detected on the
8-Cell arrays, CCNE1 and RBBP6, and two, HIURP and
NEK2 were over-detected on both 8-Cells and hES cells.
RBBP6 (retinoblastoma binding protein 6) is a multifunc-
tional protein known to have Rb-independent activities
[55]. The over-expression of HJURP, Holliday junction-
recognizing protein, suggests the 8-Cells and hES cells may
invoke a response to DNA double-strand breaks first
described for cancer cells that prevents apoptosis in
response to DNA damage and continues cell cycling [56].
Recent work suggests HIURP stabilizes Cenp A, the anchor
protein for centrosome formation, and is therefore impor-
tant for normal cytokinesis [57, 58]. NEK2 encodes a
kinetochore-associated protein kinase that stabilizes chro-
mosome attachment to spindle microtubules [59].

Of the 16 knocked-down genes that blocked HeLa in S
phase, three were over-detected on the 8-Cell and hES cell
arrays relative to fibroblasts, BUB1B, NPAT and PCNA,
and one was markedly under-detected, LMNB2. BublB
(BubR1) is a critical member of the spindle assembly
checkpoint [60]. NPAT is an essential member of the p220
(NPAT)/HiNF-P pathway, controlled by CyclinE/Cdk2,
which activates histone H4 gene expression, essential to
accurate packaging of newly synthesized DNA into
chromatin [61]. PCNA, proliferating cell nuclear antigen,
is a member of the DNA sliding clamp family, forming a
trimeric, head to tail ring around helical DNA. It is a
processivity factor for DNA polymerase delta, and also has
other functions in cell cycle control [62, 63].

The under-expression of LMNB2 specifically in the 8-
Cells is intriguing. The lamins, A/C, Bl and B2, are
intermediate filament proteins that make up the nuclear
matrix next to the inner nuclear membrane. During mitosis,
the lamina matrix is reversibly disassembled as the lamin
proteins are phosphorylated. Structural assessment of
various combinations of lamins A/C, B1 and B2 indicated
polymers with B2 were “weaker” than those with B1 [64].
LmnBl mRNA was detected on the 8CFES arrays at
approximately the same level as the iPS and hES cells, all
at higher levels than the fibroblasts. This suggests that the
8Cell nuclear lamina matrix may be comprised principally
of LmnB1. The LMNB2 gene sequence is also a known
origin of replication site, and given the rapid cell cycles of
early embryos, the gene may be bound by DNA replication
initiation factors nearly without interruption [65].

Of the five cycling knocked-down genes that blocked
HeLa in G2, two were over-detected on the 8Cell and hES
arrays: DTL, the Cdtl-targeting component of one of the
ubiquitin ligases (CUL4-DDB1) responsible for degrada-
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tion of Cdtl during S phase to prevent re-replication of
DNA [66], and TIPIN, encodes a replication fork binding
partner of Timeless [67]. HIFO, an oocyte-specific replace-
ment linker histone [68], was over-detected specifically on
the 8-Cell array.

Of the 19 knocked-down genes that blocked HeLa in
mitosis, one was over-detected on the 8-Cell arrays,
AURKA, and five were over-detected on the 8-Cell and
hES arrays: CCNA2, CDC20, CENPE, KIF23, and
ORCIL, and one was markedly under-detected on the 8-
Cell arrays, CIT, a citron kinase essential for normal
cytokinesis in neuronal progenitor cells [69]. Aurora kinase
A is involved in centrosome and spindle assembly and
activates PIk1 at the G2/M transition [70]. Over activation
of either, or both, is linked to cancer development [70].
Ccd20 is a regulatory subunit of anaphase promoting
complex, APC/C, and may play a more important role in
early embryo cells [71] than in somatic cells [72]; CenpE,
centrosome protein E, and KIF23, are both kinesin-like
motor proteins that play a role in chromosome movement
[51, 73]; and Orcll is the largest subunit of the Orcl
complex essential for the initiation of DNA replication and
recently shown to also play a key role in controlling
centriole and centrosome copy number in human cells [74].

Interestingly, several well described cell cycle genes
shown to cycle in the primary fibroblasts were not detected
by the knock-down strategies, including GMNN and
CKS1B, and UBE2C over-detected on both the 8-Cell and
hES arrays, and CCNB1, PTTG1 (securin) and SKP2, over-
detected specifically on the 8-Cell arrays. Geminin prevents
re-replication of DNA during S phase [75]; CksIB is a
kinase that blocks the inhibition of Cdks by p27
(CDKNI1B) [76]. UBE2C encodes a ubiquitin-conjugating
enzyme that specializes in targeting cyclins, especially Gl
cyclins, for proteolysis [77]; Cyclin Bl stimulates Cdkl
during G2, and has multiple roles in the G2 to M transition
[78]; securin is best known for inhibition of separase
(Espll), the enzyme that allows the separation of sister
chromatids, for most of the cell cycle [79]; Skp2 is a well-
studied component of a ubiquitin ligase that targets Cyclin
E and p27 for proteolysis [80].

Conclusions

Using public databases of gene ontologies, combined with a
gene assembly derived from high-throughput RNA knock-
down and cell synchronization studies, we have identified
35 cell cycle genes over-detected on whole human genome
microarrays of 8-cell stage blastomeres, 31 genes over-
detected on both 8-Cell and hES microarrays, and ten genes
under-detected on 8-Cell arrays (Table 2). This is by no
means a comprehensive list of genes important to the cell

cycle of totipotent and pluripotent cells because of the
significant number of genes with unknown function, the
relatively conservative (£7-fold) criteria for classification of
over- or under-detection, and the lack of verification that
the microarray results reflect protein expression. It does,
however, lay groundwork essential for the design of the
targeted experiments possible with the small numbers of
human embryos available for research.

Whether or not the genes are known targets of Myc (14
of the 35 genes over-detected on the 8-Cell arrays, 18 of the
31 over-detected on both the 8-Cell and hES arrays, and
five of the ten genes under-detected on the 8-Cells) did not
predict level of detection on the microarrays despite the
relatively high level of detection of MYC on the 8-Cell
arrays. This may relate to the observation that association
with multiple transcription factors in addition to Myc
correlated with high level of expression in embryonic stem
cells [29].

The 8-Cell blastomere is only one or two cell cycles
away from initial commitment to either outer trophoblast
cells, or inner cell mass cells. That commitment carries with
it a new dependence upon growth factors, such as fibroblast
growth factor and insulin, for both cell lineages [8§1-83], in
keeping with the detection of RB1 on the hES cell
microarrays [1] and in mouse blastocysts [6]. Most of the
daughter cells of the 8-Cell blastomere will commit to
trophoblast, only a few to inner cell mass. Trophoblast stem
cells will in turn undergo commitment to placenta,
including initiating cycles of endoreduplication of the
genome without cytokinesis, characteristic of placental
cells [84].

The functions of 16 of the 35 genes over-detected on the
8-Cell arrays: AURKC, AVPIl, CABYR, CCNAI,
CCNB3, CDC2L1, CRKRS, CUL2, KIFC1, RBBP6,
RKHD2, PTTG2, -3, REEP4, STAG3, -3L3, are poorly
understood and urgently in need of additional study. The
functions in the 8-Cell blastomeres of the 19 better studied
genes over-detected on the 8-Cell arrays: CCNE]L,
CDC25B, CCNBI1, AURKA, -B, MAPK4, SKP2, MYC,
NPAT, POLS, PTTG1, RRM2, DLG7, INCENP, KCNHS5,
PPM1D, GINS4, H1F0, and KIFC1 are also not known
with certainty, although some predictions are possible.

The lack of Rb and Weel is similar to the absence of cell
cycle checkpoints in frog embryos [24], relieves the 8-Cells
from growth factor dependence for the G1 to S transition,
and is consistent with the over-expression of CCNE1 and
CCNAL, -2 factors essential for the G1 to S transition. RB1
was also silent, and Weel at threshold level of detection, on
the microarrays of ovulated metaphase II human oocytes
[31], indicating that unlike mouse embryos [6], these two
genes are not among those that undergo degradation the
first few days after fertilization of human eggs [85]. If
checkpoint control in early human embryos is analogous to
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frog embryo development, RB and WEE1 may be turned
on at the blastocyst stage, as evidenced by their detection
on the hES cell microarrays [1], and those cells with
abnormal karyotype or errors in DNA replication may
undergo programmed cell death [22-24].

Three other genes over-detected on the 8-Cells that were
either not detected, or detected at very low levels in the
human oocytes [31] are INCENP, KCNH5 and CCNAI,
indicating these genes must also be upregulated following
fertilization. In contrast, CCNE1, PTTG, and STAG3 were
readily detected on the oocyte arrays, suggesting maternal
messages could be still detected in the 8-Cells.

Frog embryo survival depends on becoming motile as
quickly as possible after fertilization. Human embryo
survival depends on sending immediate, sufficient and
increasing molecular signals to the mother that development is
progressing, or menses ensues. One obvious mechanism for
accomplishing these goals is rapid duplication of gene copies
early in development, which is more easily accomplished if
cell cycle checkpoints are silent, and cell cycle drivers are
over-expressed. But subsequent development requires faithful
duplication and allocation of chromosomes, so how does the
early embryo accomplish both?

Clues from the microarray data suggest G1 and S phase
progression are augmented by ample Cyclin E, Cyclin Al,
-2 and key DNA replication factors, such as ribonucleotide
reductase and DNA polymerase S, thought to push strand
synthesis through cohesin sites, Npat, important for
chromatin organization, and Hjurp, thought to block cell
cycle arrest by DNA strand breaks. Robust expression of
geminin and its protector, Emil, may prevent DNA re-
replication errors. G2 to M phase is rushed by ample
expression of Cyclin A and Cyclin B, Cdc25B, and
elements important to timely proteolysis, Ube2C and
Skp2, to allow the transition to metaphase. Attempts to
ensure the integrity of chromosome allocation to daughter
blastomeres include over-expression of chromosome glue,
including Incenp and Stag proteins, as well as Pttg proteins
to block separase (Espll) activity and prevent pre-mature
chromosome separation. Especially noteworthy on the 8-cell
arrays are the high levels of detection of the Aurora kinase
family, A, B and C, major players in centrosome duplication
and formation of the mitotic spindle, as well as kinesins,
KIFCI and KIF23.

Taken together, the lack of well described cell cycle
checkpoints in the presence of robust expression of cell
cycle drivers and their controls in the 8-Cell blastomeres,
suggest more dependence upon accurate cycling of gene
expression, perhaps regulated by circadian oscillators [1],
for faithful daughter cell formation than on the checkpoints
imposed by growth factor dependency of later stage cells.
This would have the advantage of rapid gene duplication,
but the disadvantage of cleavage mishaps resulting from

@ Springer

even slightly out of phase or inappropriate abundance of
gene expression. The phenomenon of identical twinning
indicates that only half of early cleavage cells are needed
for viable offspring, suggesting at least half of the
blastomeres could be genetically defective without dire
consequences. Studies of the relative expression in individual
normal and abnormal human embryos of the genes identified
by this analysis of 8-Cell blastomere gene expression will
reveal which cycling elements are the most critical for
development.
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