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Abstract
Pigeons are classic model animals to study perceptual category learning. To achieve a deeper understanding of the cognitive 
mechanisms of categorization, a careful consideration of the employed stimulus material and a thorough analysis of the choice 
behavior is mandatory. In the present study, we combined the use of “virtual phylogenesis”, an evolutionary algorithm to 
generate artificial yet naturalistic stimuli termed digital embryos and a machine learning approach on the pigeons’ pecking 
responses to gain insight into the underlying categorization strategies of the animals. In a forced-choice procedure, pigeons 
learned to categorize these stimuli and transferred their knowledge successfully to novel exemplars. We used peck tracking 
to identify where on the stimulus the animals pecked and further investigated whether this behavior was indicative of the 
pigeon’s choice. Going beyond the classical analysis of the binary choice, we were able to predict the presented stimulus 
class based on pecking location using a k-nearest neighbor classifier, indicating that pecks are related to features of interest. 
By analyzing error trials with this approach, we further identified potential strategies of the pigeons to discriminate between 
stimulus classes. These strategies remained stable during category transfer, but differed between individuals indicating that 
categorization learning is not limited to a single learning strategy.
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Introduction

Categorization can be defined as the ability to classify stim-
uli by responding equivalently to members of the same class, 
unequally to members of different classes, and to transfer 
this knowledge to novel instances of these categories (Cohen 
and Lefebvre 2017; Keller and Schoenfeld 1950). In com-
parative research, pigeons are a valuable model organism 
to study category learning as they have been shown to be 
able to categorize extremely complex naturalistic visual 
stimuli. For examples, they can reliably categorize pho-
tographs with humans vs. those without (Aust and Huber 

2001, 2002; Herrnstein and Loveland 1964), words vs. non-
words (Scarf et al. 2016), benign vs. cancerous histological 
samples (Levenson et al. 2015), and pictures of healthy and 
diseased heart muscle (Navarro et al. 2020). However, espe-
cially for complex naturalistic stimuli, the question remains 
on which stimulus features this well-documented categoriza-
tion ability is based. In the present study, we use artificial 
naturalistic stimuli and analyze the pigeon’s pecking behav-
ior using machine learning to gain insights into the process 
of perceptual categorization.

Different approaches have been employed to isolate diag-
nostic features of stimuli that drive perceptual categorization 
learning. One approach controls the feature content using 
carefully constructed artificial stimuli to investigate catego-
rization mechanisms (e.g. Jitsumori 1996). These kind of 
experiments showed that color, size, shape and their combined 
configural cues all seem to be behaviorally relevant (Was-
serman and Biederman 2012). However, due to the narrow 
detail in artificial, geometric stimuli, the problem of limited 
generalizability to natural visual classes remains (Lazareva 
and Wasserman, 2017). Other attempts use complex natural 
stimuli (e.g. Fersen and Lea 1990) at the expense of being 
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able to clearly demonstrate the exact features the animals were 
responding to (Aust and Huber 2001). The reason is possibly 
that in natural categories different reward predicting features 
co-occur and many of such features may contribute to the 
class assignment. Thus, the precise identification of picto-
rial features exerting control over behavior is astonishingly 
difficult (e.g., Aust and Huber 2002). Here, we use “digital 
embryos” to study perceptual categorization (see Fig. 1). Dig-
ital embryos are stimuli developed from a single parent object 
that was successively morphed through iterations into their 
final shapes. These stimuli have been utilized as a versatile 
tool for categorization learning research (Hauffen et al. 2012; 
Hegdé et al. 2008; Kromrey et al. 2010; Tabrik et al. 2021). 
The growth of these similar but distinct objects is realized by 
an evolutionary algorithm called “virtual phylogenesis” (VP). 
VP can create any number of classes and class members with 
varying degrees of complexity and difficulty in discrimina-
tion. Such biologically inspired algorithms have proven to be 
useful tools in comparative cognition research, allowing the 
analysis of animal behavior beyond the binary choice of cor-
rect or incorrect responses (Bond and Kamil 2006; Cook and 
Qadri 2013). Thus, the virtual evolution of digital embryos 
mimics natural objects that possess features that are readily 
controlled by the experimenter.

To identify informative diagnostic variables of a specific 
category that pigeons might utilize in a categorization task 

we used peck tracking (Allan 1993; Dittrich et al. 2010; Jit-
sumori and Yoshihara 1997). Dittrich et al. (2010) could 
show that pigeons working on a people present/people 
absent categorization task preferentially pecked on the heads 
of the depicted persons and were subsequently impaired in 
their performance when they had to run the task with the 
heads of the humans removed from the photographs. Simi-
larly, Castro and Wasserman (2014, 2017) demonstrated that 
pigeons track category-relevant features and respond less to 
details that only weakly coincide with the presence of the 
relevant stimulus.

By combining VP evolved stimuli and peck tracking, 
the central purpose of our study is the detailed analysis of 
individual pecking behavior in response to digital embryo 
stimuli using machine learning. We trained a classifier to 
identify the relationship between a behavioral outcome, i.e. 
either correct or incorrect choice, and the underlying peck-
ing pattern. By training the classifier on correct trials, we 
aim to identify whether pecking locations were predictive 
of the presented category. Training the classifier on incor-
rect trials further gives insights into the underlying learning 
strategy of individual animals.

In our experiments, we trained pigeons to distinguish 
between two different classes of digital embryos in a single 
interval forced-choice task. First, the animals went through a 
category learning procedure and second, conducted a transfer 
test with new stimuli of the same class. Peck tracking using 
touch-screen technology allowed us to gain insight into local 
attentional mechanisms and categorization strategies. Our 
hypotheses of the following experiments were: (1) pigeons, 
in line with humans and monkeys, can discriminate between 
the two classes of digital embryos. (2) Categorical informa-
tion can be transferred to new exemplars of a given category. 
This can be viewed as a proof of open-ended categorization, a 
level beyond rote categorization (Herrnstein 1990). (3) Using 
machine learning, we can successfully predict the presented 
stimulus class only based on pecking location ultimately pro-
viding insight into the features used for discrimination as well 
as the underlying strategy of each individual animal.

Methods

Subjects

Eight unsexed adult homing pigeons (Columba livia) 
obtained from local breeders served as subjects. The 
pigeons were housed in individual wire-mesh cages with 
a 12-h light–dark cycle beginning at 8:00 a.m. They had 
free access to water and were food deprived, maintained at 
approximately 80–90% of their free feeding body weight and 
fed accordingly with a mixture of different grains. The sub-
jects were treated in accordance with the German guidelines 

Fig. 1   Example trial of the categorization task. Each trial began with 
a short high tone. First, the initialization key was presented for up to 
4 s and could be terminated once pecked. Then, one digital embryo 
stimulus was presented (depicted is a digital embryo out of class X) 
and had to be pecked at least 5 times. It could not be terminated for 
a fixed time interval of 4 s. Subsequently, two choice keys were pre-
sented alongside the stimulus for 4  s. One peck on either key indi-
cated the pigeon’s choice and was either immediately rewarded with 
2 s access to grain or punished with lights turned off and a low pun-
ishment tone for 2  s. For half of the pigeons, the right choice key 
represented class X and the left choice key represented class Y (vice 
versa for the other half of the pigeons). The next trial followed after a 
6 s inter-trial interval
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for the care and use of animals in science. All procedures 
were approved by a national ethics committee of the State 
of North Rhine-Westphalia, Germany. All experimental 
conduct was in agreement with the European Communities 
Council Directive 86/609/EEC concerning the care and use 
of animals for experimental purposes.

Apparatus

The experiment was conducted in a custom-built operant 
chamber (35 × 35 × 35 cm) with a touch-screen monitor 
(model ET1515L with APR technology, Elo Touch Solu-
tions Inc., Milpitas, CA, USA), on which three horizontally 
aligned areas were defined as pecking keys (cf. Fig. 1; cen-
tral pecking key 5 × 5 cm, lateral pecking keys 3.5 × 5 cm 
with a 1 cm gap in between pecking keys; 17 cm above the 
chamber floor).

The touch screen was used to present the stimuli, record 
pecks and location coordinates for each peck. The stimuli 
measured 4 × 4 cm and were presented within the central 
pecking key, surrounded by a 0.5 cm gray border. The lateral 
pecking keys measured 2.5 × 4 cm, surrounded by a 0.5 cm 
gray border that blended with the gray background of the 
touch-screen. In both cases, pecking this gray border was 
registered as a valid peck. This buffer was included because 
there is no distinct physical pecking key on touch screens 
and pigeons sometimes peck on the edge of a stimulus dis-
play. The grey border enables these pecks to be included. 
A centrally located food hopper delivered mixed grains as 
reward. Experimental hardware was controlled with custom-
written Matlab code using the Biopsychology-Toolbox (Rose 
et al. 2008).

Stimuli

Two classes of digital embryos, arbitrarily termed X and Y, 
were generated using the software Digital Embryo Work-
shop (Brady and Kersten 2003; Hauffen et al. 2012). These 
classes were created using a process called “virtual phylo-
genesis” an algorithm that mimics biological evolution by 
creating multiple virtual taxonomic classes of 3D objects 
that have been termed “digital embryos”. This process starts 
with an icosahedron (a polyhedron with 20 faces) as the par-
ent object. Over several virtual generations multiple separate 
classes “evolve”, each of which shares identifying within-
class characteristics. 50 digital embryos of each class were 
initially created. Using a pixelwise correlation between the 
stimuli, we selected 30 stimuli per class with the lowest cor-
relation coefficients to members of the other class resulting 
in clearly distinguishable stimulus classes. Our selection of 
exemplars ensured that the created stimuli could not be cat-
egorized based on their size nor based on the amount of the 
surrounding black area (see supplementary Fig. 1). Example 

embryos from different generations including class X and Y 
are depicted in Fig. 2 and full sets of stimuli are depicted in 
supplementary Figs. 2 and 3. In our study, class X and class 
Y consisted of 30 members each, 20 of which were randomly 
chosen for category training and 10 used for transfer tests.

Behavioral task

Pigeons were trained in daily sessions (5 days a week) on a 
single interval forced-choice task (Fig. 1). The start of each 
trial was indicated by a short high-frequency tone (500 Hz; 
Logitech, Model S-120). Pigeons first had to peck at least 
once on an initialization key in a 4 s time window to com-
mence the trial. Then, one digital embryo stimulus was pre-
sented for a fixed time interval of 4 s. During this period, 
the pigeons were required to peck at least five times on the 
stimulus. If they did not, the trial was aborted. If the bird 
had pecked five times during the 4 s interval, two choice 
keys were presented alongside the stimulus. Subsequently, 
pigeons had to make a choice, i.e. peck once on either the 
left or right choice key within a 4 s time window. The stim-
ulus–response association was balanced across pigeons. 
When a choice was made, the display disappeared. For cor-
rect choices, the animals had 2 s access to food and the feed-
ing light was turned on. For incorrect choices, the ambient 
chamber lights were turned off for 2 s accompanied by a 
low frequency tone (80 Hz). The next trial followed after a 
6 s inter-trial interval (ITI). For experimental reasons, the 
paradigm had to be divided into two phases.

Fig. 2   Digital embryo classes. Digital embryos were created with a 
process called “virtual phylogenesis” that mimics biological evolu-
tion. Starting with an icosahedron, different generations (G0–G2) are 
created, resulting in embryo classes X and Y
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Embryo learning phase

During an initial training phase, pigeons learned to peck on 
all three pecking keys in a standard autoshaping procedure. 
Subsequently, they learned to peck the central key first, and 
then one choice key second, to obtain a food reward. Dur-
ing category training, all stimuli (20 class X, 20 class Y) 
were presented 5–10 times in a pseudo-randomized order. 
Eighty percent of trials were forced-choice trials, i.e. only 
the correct choice key was visible. The remaining 20% of 
the trials were free-choice trials. This means both choice 
keys were visible, could be pecked on, and errors could be 
made. Forced-choice trials were gradually reduced to zero 
once pigeons correctly categorized the stimuli in more than 
80% of the free-choice trials in two consecutive sessions. 
Additionally, the probability of food reward was gradually 
reduced from 100 to 60% to ensure stable behavioral per-
formance in longer sessions. The programmed level of rein-
forcement for the following phase was always set to 60% (see 
supplementary table 1).

Transfer test phase

In the transfer test phase, pigeons’ choices to transfer stim-
uli, i.e. new whole embryo exemplars of class X and Y and 
choices to known stimuli, i.e. embryo exemplars learned 
during training, were tested. The stimulus sequence con-
sisted of 20 known whole embryos of each class, which were 
repeatedly shown 4 times (80 class X + 80 class Y = 160). 
These trials are labeled known-stimulus trials. Further, the 
sequence included the presentation of 10 new embryos (10 
class X + 10 class Y = 20). These trials are labeled transfer-
stimulus trials. Each individual session comprised up to two 
of these blocks, with a reward probability ranging between 
43 and 72% (mean 57%) depending on the individual per-
formance of the animal.

In a first transfer test phase, animals received no feed-
back for behavioral responses in transfer-stimulus trials, 
thus, reward or punishment was omitted irrespective of 
the animals’ responses. In this manner, transfer stimuli 
could be tested without reward contingencies influencing 
the pigeons’ decision. Unfortunately, under these condi-
tions, four pigeons refused to peck altogether. Therefore, 
we repeated the transfer phase during which all pigeons 
received non-differential reinforcement for transfer trials, 
i.e. food reward irrespective of correct or incorrect choice 
(van Hamme et al. 1992). This motivated the animals to 
attend to the task without differentially reinforcing one 
response over another in test conditions. We will only 
report the results from the reinforced transfer test in the 
main results as the behavioral performance during the non-
reinforced and reinforced transfer were virtually identical 

for the four pigeons who responded in both transfer tests 
(data from non-reinforced transfer can be found in the sup-
plementary results).

Data analysis

Pigeons’ pecking and choice behavior was stored and 
subsequently analyzed in MATLAB Version 2020a. We 
calculated the percentage of correct choices collapsed 
for both classes X and Y for each animal individually. 
This was done for known and transfer stimuli across both 
experimental phases. We then calculated one-sample t 
tests to identify if performance was different from chance 
level (50% as the choice was binary). To identify if per-
formance on transfer trials differed from performance on 
known-stimuli trials, a paired t test was conducted. The 
same procedure was repeated for stimuli of class X and 
Y separately. Furthermore, we used precise peck tracking 
to gain insight into the pigeons’ center of attention. Using 
touch-screen technology x- and y-coordinates of each peck 
in the stimulus/border area were stored and analyzed for 
each stimulus presentation in both known- and transfer-
stimulus trials. If the pigeon pecked outside the stimulus/
border area, data on these pecks was discarded. Pecks on 
all stimuli of class X and Y, respectively, were collapsed 
and displayed in heat-maps separately for each pigeon 
to visualize each animal’s center of attention. To create 
heatmaps, the image was sectioned into 15 × 15 equally 
sized squares (Fig.  3). Each single square covered an 
area of 0.11 cm2 of the stimulus display. Pecks located in 
each square were summed and because the total number 
of pecks differed between pigeons, the relative number 
of pecks (relPecks = (100/allPecks) * pecks/square) is 
depicted in the heatmaps.

To analyze the peck distribution of pigeons, we summed 
the number of pecks in each square of the stimulus display. 
Beginning with the square in which most of the pecks were 
located, we calculated the cumulated sum by adding the 
next square in a descending order. For each square, we then 
computed how many pecks with regard to the total number 
of pecks were associated with each of the 225 squares. If 
the animals pecked in a focused manner, few squares would 
receive high values in this analysis. If the animals pecked in 
a more dispersed manner, the pecks would be more distrib-
uted across a larger number of squares. To quantify whether 
pecks in correct and error trials differed for each individual 
animal, we compared the cumulative distributions of relative 
pecks per square for both stimulus classes between correct 
and error trials using a Kolgomorov–Smirnov test. Since 
we calculated this difference for each animal individually, 
we corrected our significance threshold using Bonferroni’s 
method resulting in an adjusted α = 0.05/8 or α = 0.00625.
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Classifier analysis

To identify if peck locations were behaviorally relevant for 
each individual animal, we used a k-nearest neighbor (kNN) 
classifier algorithm to predict the presented stimulus class 
based on the pecking location. The fitcknn function in MAT-
LAB was used for implementation of the algorithm. The 
classifier analysis was performed in known- and transfer-
stimuli trials. For all correctly responded trials, we randomly 
sampled n = 250 pecking events from the behavioral session 
and trained the algorithm as follows: the x- and y-coordi-
nates of each peck were associated with the associated label 

(0 for class X trials, 1 for class Y trials). A classification was 
then computed using k = 15 nearest neighbors according to 
the recommendation to use an uneven number of neighbors 
as well as k = sqrt(n) of training events for good classifi-
cation accuracy and low computational expenses (Lall and 
Sharma 1996).

In a next step, 250 randomly chosen pecking events from 
correct trials (different from the training events) were labeled 
according to the kNN classifier based on their pecking loca-
tion. Accuracy of the classifier was measured by quantifying 
the success rate of correctly classifying the presented stimu-
lus class. Classification was performed across ten iterations 

Fig. 3   Rationale of the heatmap analysis exemplified for pigeon 578. 
In row A, the peck distribution for correctly responded stimulus pres-
entations is shown separately for stimulus class X and Y. To create 
heatmaps, the stimulus display was divided in sections of 15 × 15 
squares and pecks were counted in each section. Heatmaps were 
created based on relative pecks to compare individual animals. The 
subtraction of both heatmaps reveals the different locations of pecks 
for each stimulus class. The precise location of each peck is used by 
the classifier to separate both classes resulting in the correct–correct 
(CC) classification. Row B shows the peck distribution for incorrectly 

responded stimulus presentations. The subtraction of both heatmaps 
reveals the different locations of pecks for each stimulus class in error 
trials. The precise location of each peck is used by the classifier to 
separate both classes resulting in the error–error (EE) classification. 
Row C depicts the subtraction of correct and incorrect heatmaps for 
each class separately resulting in the correct–error (CE) classification. 
The depicted analysis is exemplary based on the responses of pigeon 
578 (the symbol above the identifier number indicates this individual 
pigeon throughout all figures). Response profiles of each individual 
pigeon are given in supplementary Figs. 4–10
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each feeding random pecking events as training trials and 
predicting another subset of test trials to cross-validate the 
input and output of the algorithm and identify the variance in 
accuracy. To quantify if the results from the classifier were 
statistically significant from a chance-based estimate, we 
repeated ten iterations of the classifier, but fed the algorithm 
with shuffled input where class labels and x- and y-coordi-
nates were permutated randomly. A dependent t test between 
the results from the empirical and shuffled data was then 
performed. Results for the t tests were corrected using the 
Bonferroni method since they were conducted individually 
for eight pigeons. The adjusted threshold for significance 
was therefore lowered to α = 0.05/8 or α = 0.00625. Since 
this analysis trained and tested the algorithm with pecking 
events from correct trials, we will refer to this classification 
as correct–correct or CC classification.

If sufficient pecking events occurred after which the ani-
mals made erroneous choices (> 500 events), we also quanti-
fied if pecking locations from correct trials were predictive 
of error trials to identify whether pecking in correct trials 
and error trials was consistent or differed from one another. 
For that purpose, the aforementioned analysis was repeated, 
but test pecks for the algorithm were chosen from errone-
ous trials rather than correct trials. This analysis will subse-
quently be referred to as correct–error or CE classification. 
Furthermore, if sufficient pecking events from error trials 
occurred, we also predicted the class label using error trials 
as both training and test events. Aim of this analysis was to 
quantify the internal consistency in pecking during error tri-
als, i.e. if the stimulus class in error trials can be predicted 

based on pecking location in error trials. This analysis will 
be dubbed error–error or EE classification.

Results

Embryo learning phase

The embryo learning phase took between 29 and 49 sessions 
to meet criteria and move on to the next phase (for experi-
mental details see supplementary table 1). All eight pigeons 
performed two consecutive sessions at 80% correct of the 
free-choice trials before moving to the next phase. After 
reaching the initial learning criterion, a step-wise reduction 
of forced-choice trials as well as of reward probability fol-
lowed to move to the transfer test phase.

Transfer test phase

All eight pigeons were successfully tested on known- and 
transfer-stimuli during the test session when transfer tri-
als were rewarded non-differentially. Overall, performance 
in known-stimuli and transfer-stimuli trials was very high 
(Mean 91.81%, SD 3.26%; Mean 91.36%, SD 3.80%, 
respectively, see Fig. 4) and was significantly different 
from chance [t(7) = 4260.45, p < 0.001, Cohen’s d = 12.83; 
t(7) = 3.654.37, p < 0.001, Cohen’s d = 10.89, respectively]. 
There was no difference in performance between known- 
and transfer-stimuli trials [t(7) = 0.61, p =  > 0.250, Cohen’s 
d = 0.45]. Individually, the two stimulus classes, both 

Fig. 4   Behavioral results. Violin plot of behavioral performance for 
known and transfer trials overall and broken down by embryo class. 
Digital embryos could be categorized in each experimental condition 
under non-differential reward conditions. There was no difference 
between the performance to the known embryos and the transfer to 

new instances of embryo classes X and Y in any of both conditions. 
The symbols represent the performance of each individual pigeon and 
apply throughout all figures. Boxplots represent the lower quartile 
(Q1), the median and the upper quartile (Q3). Whiskers represent Q1 
− 1.5 * interquartile range (IQR) and Q3 + 1.5 * IQR
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class X (known-stimuli trials mean 92.89%, SD 3.23%; 
transfer-stimuli trials mean 92.58%, SD 3.03%) and class 
Y (known-stimuli trials mean 91.26%, SD 3.98%; trans-
fer-stimuli trials mean 90.13%, SD 6.55%), showed above 
chance-level performance (all ps < 0.001). There was no 
difference between stimuli of class X and Y in both known- 
[t(7) = 0.97, p > 0.250, Cohen’s d = 0.32] and transfer-stimuli 
trials [t(7) = 1.02, p =  > 0.250, Cohen’s d = 0.42]. Behavioral 
results of the four pigeons who completed the transfer test 
in the absence of reward are presented in the supplementary 
results.

Peck tracking

We used a k-nearest neighbor classifier to identify whether 
the presented stimulus class can be predicted based on the 
pecking location. To this end, the classifier was trained with 
randomly chosen pecking events across behavioral sessions 
in which pecking events were labeled according to the pre-
sented stimulus class in a given trial. Another subset of trials 
was then used to determine the predictive accuracy of the 
classifier based on pecking location alone (see “Methods”). 
This was done for each animal separately. Results of all 
analyses for the four pigeons that successfully performed 
the non-reinforced transfer are presented in the supplemen-
tary data.

Our aim was to investigate whether the class label can be 
predicted in correct–correct or CC classification in which 
both training and test trials were constituted by correct trials. 
All eight animals could be investigated for a CC classifica-
tion in known-stimuli and transfer-stimuli trials. For known-
stimuli trials, we found that the classifier could significantly 
predict the stimulus class based on pecking location for 
seven out of eight pigeons (P578: 82.08%, P580: 80.84%, 
P582: 70.56%, P583: 64.24%, P592: 77.84%, P593: 64.64%, 
P599: 77.80%, all ps < 0.001; for the classification accuracy 
based on shuffled input data see supplementary Fig. 11). 
Only results for pigeon P579 did not differ significantly from 
chance [52.40%, t(9) = 1.22, p > 0.250, Cohen’s d = 0.29, see 

Fig. 5] as the animal indifferently pecked on one side of the 
stimulus irrespective of the presented stimulus class.

Animals preferred different embryo features indicated by 
their idiosyncratic pecking locations for the two stimulus 
classes (Fig. 6).

Since individual pecks often came from the same trial, 
we validated our analysis only using single pecks from a 
particular trial to rule out that our results were influenced 
by possible dependencies of pecks within a trial. To this 
end, we only chose one random peck event from each trial 
as a valid event from which we randomly drew 250 train-
ing and 250 test pecks for classification. Results were vir-
tually indistinguishable from our previous approach using 
all pecking events indicating that this approach was valid 
and not influenced by peck dependencies within the trial 
(P578: 81.28%, P579: 51.88%, P580: 80.92%, P582: 69.96%, 
P583: 63.84%, P592: 76.48%, P593: 67.12%, P599: 79.68%, 
see supplementary Fig. 12). For that reason, all following 
analyses were computed including all pecks from all trials 
to increase the number of available data points.

In a secondary analysis, we were also interested whether 
the first peck was already sufficient for stimulus classification 
as has been demonstrated by Cook et al. (2005) in a spatial 
choice task. Interestingly, using only the first peck for clas-
sification resulted in overall worse classification accuracy 
compared to the following pecks (see Fig. 7). For almost 
all pigeons, classification accuracy increased with consecu-
tive pecks on the sample stimulus indicating that features of 
interest were not immediately pecked on after stimulus onset.

For transfer-stimuli trials (Fig. 5), we found identical 
results compared to known-stimuli trials (P578: 82.09%, 
P579 = 53.48%, P580: 83.68%, P582: 65.52%, P583: 
64.96%, P592: 76.12%, P593: 63.16%, P599: 76.20%, all 
ps < 0.001). There was no difference in classification accu-
racy from known-stimuli trials in CC accuracy for any 
pigeon.

For all eight animals, there were sufficient errors allow-
ing for a correct–error or CE classification in known-stimuli 
trials in which the classifier was trained with correct trials 

Fig. 5   CC classification 
results. Digital embryos could 
be classified for seven out of 
eight animals tested. Classifier 
responses for the known stimuli 
are shown in dark gray and the 
classifier results for the transfer 
stimuli are depicted in light 
gray. Boxplots represent the 
lower quartile (Q1), the median 
and the upper quartile (Q3). 
Whiskers represent Q1 − 1.5 * 
IQR and Q3 + 1.5 * IQR
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and tested on error trials. Here, two pigeons demonstrated 
similar pecking patterns in correct and error trials as the 
classifier yielded above chance results in a CE classification 
(P582: 62.36%, P599: 61.16%, all ps < 0.001, Fig. 8A, for 
the classification accuracy based on shuffled input data see 
supplementary Fig. 13). Pecking in error trials was more 
dispersed compared to correct trials resulting in a reduced 

accuracy for CE compared to CC classification for both 
pigeons (all ps < 0.001). This finding was, however, not 
exclusive for animals that pecked on similar locations during 
correct and error trials. Seven out of eight pigeons demon-
strated significant differences when comparing the cumula-
tive distributions of pecking (pooled across class X and Y) 
across the stimulus squares between correct and error trials 

Fig. 6   Heatmap analysis for all individual pigeons. Only pecks from correct trials for the two stimulus classes (left: X, right: Y) are shown. 
Additional analyses as presented in Fig. 3 are given in the supplementary figures
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(578: D = 0.12, p = 0.003, 579: D = 0.19, p < 0.001, 580: 
D = 0.47, p < 0.001, 582: D = 0.35, p < 0.001, 583: D = 0.35, 
p < 0.001, 592: D = 0.19, p < 0.001, 599: D = 0.49, p < 0.001, 
see supplementary Fig. 14). Results for class X and Y indi-
vidually can be found in supplementary Table 2.

For pigeons P578 and P592, we found that CE classifica-
tion was significantly below chance (P578: 38.12%, P592: 
38.96%, both ps < 0.001). This type of pecking behavior 
indicates that the pigeons showed the “wrong” behavior for 
the respective stimulus class (e.g. they pecked on class Y 
features during class X trials and vice versa). Thus, they 

recognized the stimulus classes, but mixed up their identity 
in error trials.

The last three pigeons demonstrated no significant differ-
ence from chance in the CE classification (P579: 49.16%, 
P583: 49.00%, P593: 52.24%, all ps > 0.174) indicating that 
there was no relationship between correct and error trial 
pecking locations. For two pigeons, sufficient errors were 
made in transfer-stimuli trials enabling further analysis. 
For P578, we again found a significantly lower classifica-
tion accuracy compared to chance [29.64%, t(9) = 12.64, 
p < 0.001, Cohen’s d = 3.97, Fig. 8B]. For pigeon P593, there 

Fig. 7   Single peck analysis. The classifier response for the known 
stimuli is depicted for each animal and for each of the five consecu-
tive pecks. For the majority of the animals, the classification accuracy 

increases for consecutive pecks. Boxplots represent the lower quartile 
(Q1), the median and the upper quartile (Q3). Whiskers represent Q1 
− 1.5 * IQR and Q3 + 1.5 * IQR

Fig. 8   CE (correct–error) classification results of the second experi-
mental stage. A shows CE classification for the known stimuli. B 
depicts the CE classification for the transfer stimuli. Dark red colors 
indicate that the pigeons showed the “wrong” behavior for the respec-
tive stimulus class and thus a confusion between the categories X 
and Y. Light red colors indicate that the animals showed the “right” 

behavior for the respective stimulus class resulting in a confusion 
within a given category in the CE classification. Boxplots represent 
the lower quartile (Q1), the median and the upper quartile (Q3). 
Whiskers represent Q1 − 1.5 * IQR and Q3 + 1.5 * IQR (color figure 
online)
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was no association between correct and error trial pecking 
locations [52.70%, t(9) = 1.55, p = 0.156, Cohen’s d = 0.49]. 
Both pigeons, thus, showed consistent patterns in known-
stimuli and transfer-stimuli trials.

Error–error or EE classification in which the classifier 
was both trained and tested on pecking events during erro-
neous trials could be performed for all animals in known-
stimuli trials. Aim of the analysis was to quantify the inter-
nal consistency in pecking during error trials. It was above 
chance for five of the eight animals (P580: 63.16%, P582: 
61.64%, P583: 74.44%, P592: 57.52%, P599: 72.96%, all 
ps < 0.004) indicating that pecking locations in error tri-
als were to a certain degree consistent rather than random. 
A consistent response pattern in error trials was predomi-
nantly found in birds in which the C–E classification also 
yielded above or below chance level results, validating our 
interpretation of the pecking behavior during error trials. 
For pigeons P578, 579 and P593, no significant difference 
from chance could be found (all ps > 0.025). For pigeons 
P578 and P593, there were sufficient error events in transfer-
stimuli trials to allow for EE classification. Interestingly, 
classification accuracy was above chance for pigeon P578 
[67.6%, t(9) = 5.95, p < 0.001] in known-stimuli trials. For 
pigeon 593, it remained at chance level [53.92%, t(9) = 1.29, 
p = 0.228].

Discussion

In the present study, we investigated perceptual categoriza-
tion learning in pigeons using “digital embryos” as visual 
stimuli. The process of “virtual phylogenesis” can generate 
any number of these artificial stimuli and categories while 
maintaining natural stimulus characteristics. We hypoth-
esized that pigeons can both (1) learn to categorize digital 
embryos of different stimulus classes as well as (2) trans-
fer their knowledge onto novel exemplars of these classes. 
Our results clearly demonstrate that all animals were able 
to discriminate between classes X and classes Y and could 
transfer this knowledge to never before encountered stimuli 
of the same class. Finally, we hypothesized that (3) peck-
ing behavior is indicative of the pigeon’s attention towards 
critical stimulus features and that we could therefore pre-
dict the presented stimulus class solely based on pecking 
locations. Indeed, we could decode the presented stimulus 
class for the majority of the pigeons (7 out of 8) using a 
k-nearest neighbor approach. Classification accuracy was 
highly comparable between training and transfer trials. How-
ever, classification accuracy was not uniform across animals 
with some pigeons showcasing high accuracy classification 
results whereas other pigeons showed lower classification 
accuracy that was nonetheless significantly different from 
chance level.

Peck tracking using touch-screen technology serves simi-
lar purposes as eye tracking in primate studies. Pigeons track 
relevant aspects of complex visual displays in discrimina-
tion tasks by pecking on them (Castro and Wasserman 2014, 
2017; Dittrich et al. 2010). Thus, the systematic analysis 
of the pecking behavior can give insight into attentional 
mechanisms. On the descriptive level, we found that most 
animals favored different features of the digital embryos 
as there was little overlap among animals regarding the 
most pecked area for stimulus classes if pecking is used as 
a proxy for attention (Fig. 6). This strongly suggests that 
pigeons rely on local stimulus features, in line with the well 
documented “local precedence effect” in pigeons (Cavoto 
and Cook 2001; Cerella 1980). In addition, Yamazaki et al. 
(2007) found that pigeons can categorize highly scrambled 
pictures of humans based on small local features, thereby 
neglecting the overall stimulus configuration. In a compara-
tive approach, Aust and Braunöder (2015) conducted both 
an exemplar and rule-based categorization task in pigeons 
and humans and found that pigeons rely on local features 
whereas humans have no strict preference for local or global 
information to solve the tasks. However, a variety of studies 
also found global strategy-based categorization in pigeons, 
indicating that they are capable of using both strategies (e.g., 
Goto et al. 2004; Yamazaki et al. 2007). Possible explana-
tions for this discrepancy might be due to differences in 
experimental procedures and related task-demands. Goto 
et al. (2004) found that pigeons prefer global strategies if 
local information is densely packed in the stimulus mate-
rial. Dense packing of elements has been demonstrated to 
promote global preference effects in humans (Dukette and 
Stiles 2001). Since our stimuli did not feature dense stimulus 
elements, a local approach was likely to be expected. How-
ever, due to the small size of our stimulus display, the result-
ing peck distribution might obscure the exact controlling 
stimulus features and thus not represent a direct reflection 
of the focus of the pigeons’ attention. Further studies using 
larger stimulus displays are needed to directly pinpoint the 
controlling stimulus features the animals use.

While a descriptive analysis of pecking location can pro-
vide insight into the use of local or global preferences, it can-
not illuminate on the underlying learning strategy to solve 
the task. Our classifier analysis might indicate different strat-
egies of the animals with regards to how many categories 
were likely learned during the categorization process. Since 
our task employed a force choice procedure, the categoriza-
tion could theoretically be solved by only learning about 
one stimulus class. For example, if only class X had been 
learned, the animal simply needed to identify if the stimulus 
is of class X or not X to determine the upcoming choice. 
In the CC classification, such a learning pattern might cor-
respond to an intermediate classification accuracy (roughly 
between 60 and 70%) as the animals demonstrated a clear 
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pecking pattern for one stimulus class in correct trials, but a 
rather unfocused pecking pattern for the other stimulus class. 
If both stimulus classes received specific pecks onto relevant 
class features, classification accuracy should jump to levels 
around 80% since the classifier was trained with information 
about class X and Y rather than a single class. The clas-
sifier performance for four of our pigeons (578, 580, 592, 
599) ranged around 80% and thus, they might have learned 
about both stimulus classes. This might also be reflected 
in the above chance classification accuracy in the EE clas-
sification in most of these birds. Three pigeons (582, 583, 
593) might have payed attention to features of one stimulus 
class as the classification accuracy ranged between 60 and 
70%. However, to ultimately decide between these different 
strategies, additional experiments featuring larger stimuli 
are required. Interestingly, one pigeon pecked on the left 
side of all stimuli, regardless of the presented stimulus class 
(see supplementary Fig. 4), but still performed the task at a 
very high level. Pigeons are known to have a superiority for 
object discrimination using their right eye/left hemisphere 
and it is conceivable that this contributed to this lateralized 
behavior (Güntürkün 1985; Yamazaki et al. 2007). Most 
importantly, this observation shows that there is no abso-
lute necessity to peck onto informative features to eventually 
perceive and process them. Since this was, however, only 
one animal, it seems to be the exception rather than the rule.

We furthermore used the classifier to inform about 
why errors occur in specific animals by training it with 
correct trials and testing it on error trials (CE classifi-
cation). We found that for three animals (580, 582, 599) 
during the transfer test phase, CE classification simply 
dropped the classification accuracy, but it remained sig-
nificantly above chance (~ 60%). These animals showed 
the “right” behavior for the respective stimulus class (e.g. 
they pecked on class X features during class X trials) and 
pecked onto similar features in error trials as in correct 
trials. However, pecking on these features was less focused 
(see supplementary Fig. 14) probably indicating a lack 
of attention (Dittrich et al. 2010). It has been shown in 
behavioral experiments that the choice performance of 
pigeons increases with prolonged stimulus presentation 
times. These results in conjunction with behavioral and 
electrophysiological properties of neurons in the nido-
pallium caudolaterale suggest that pigeons integrate 
sensory information over time (Lengersdorf et al. 2014; 
Wittek et al. 2021). Thus, the animals might have failed 
accumulating sufficient evidence to determine the cor-
rect class membership to terminate in a correct response 
instead leading to a failure in categorization. Two animals 
demonstrated inversed pecking patterns whenever they 
made an error as indicated by a below chance classifica-
tion (~ 35%). Thus, they showed the “wrong” behavior for 
the respective stimulus class (e.g. they pecked on class Y 

features during class X trials and vice versa). In this spe-
cific case, the animals mix-up the two classes. Obviously, 
these kind of errors occurred only in animals that learned 
about both categories according to the CC classification. 
Finally, three animals showed no difference from chance-
level performance in CE classification indicating that they 
pecked randomly during error trials possibly reflecting the 
failure to recognize any class-specific features.

Our results fit well into the contemporary view of catego-
rization learning in pigeons (Güntürkün et al. 2018; Soto and 
Wasserman 2010). Pigeons used several, different stimulus 
features to solve the categorization task. Individual differ-
ences in the selection of local stimulus features, as present 
in our pigeons, are in line with previous reports that used 
peck tracking to indicate the areas of attention in complex 
stimulus displays. Jitsumori and Yoshihara (1997) reported 
different strategies in individual pigeons when categorizing 
angry and happy facial expressions. Some pigeons attended 
more to the area of the eyes, some more to the mouth.

Peck location data indicating that individual pigeons 
focusing on different parts of the stimulus (Fig. 6; e.g. 
P582, P592, P599) tell us that multiple features are evalu-
ated within a single subject. However, the features that indi-
vidual pigeons pecked on were subject-specific. These cat-
egory specific stimulus features might be discernable from 
neuronal population responses in visual associative areas 
in the pigeon brain (Azizi et al. 2019; Koenen et al. 2016). 
In addition, Castro and Wasserman (2017) found in their 
experiments that with increasing choice accuracy, pecks 
directed onto relevant features of the categories increased. 
Thus, during learning the amount of attention to reward pre-
dicting cues increased and was clearly signaled by the peck-
ing behavior of the animals. Based on reward contingen-
cies associated with the resulting responses, the feature that 
was the best predictor of reward becomes the feature that 
predominantly, but not exclusively controlled the pigeon’s 
behavior (Castro et al. 2020). This kind of feature selec-
tion does not seem to be based on feature configuration but 
rather on the additive integration of individual features or 
common elements (Jitsumori and Yoshihara 1997; Soto and 
Wasserman 2010). This process strictly follows predictions 
of influential learning theories (e.g., Rescorla and Wagner 
1972) and can be explained by a dopamine-mediated reduc-
tion of associated prediction errors (Schultz 1998) that have 
also been demonstrated analogously in the pigeon brain 
(Packheiser et al. 2021). Thus, the consistent behavioral 
performance of individual pigeons in categorizing digital 
embryos might be based on common stimulus elements and 
their reward prediction acquired during perceptual catego-
rization learning.

Taken together, our study provides insights about both the 
center of attention in pigeons during categorization as well 
as the underlying learning strategy using a machine learning 
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approach. Pigeons successfully transferred class knowledge to 
members of each embryo “family” or class that they hav not 
seen before, using multiple strategies to do so. Generally, most 
animals used a local approach with the exception of one ani-
mal that did not peck on relevant features at all. Interestingly, 
there has been a strong record of asymmetrical lateralization 
in birds proclaiming that the left hemisphere is dominant 
in local feature extraction whereas the right hemisphere is 
dominant in processing global feature extraction (Yamazaki 
et al. 2007; Güntürkün et al. 2020). It would be interesting to 
investigate in future studies if the behavioral strategy could 
be altered by simple eye-occlusion procedures to bias the pro-
cessing of a particular hemisphere in birds. Regarding the 
learning strategy, a number of animals used the dichotomous 
nature of the task by likely only learning about one category. 
It would be highly interesting to investigate the corresponding 
neural correlates of these different strategies and to see how 
relevant visual associative layers such as the NFL (Koenen 
et al. 2016) and MVL (Azizi et al. 2019) encode stimulus 
classes with respect to the chosen categorization strategy.
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