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Tumor-infiltrating B cells can play an important role in anti-tumor responses but their
presence is not well understood. In this study, we extracted the B cell receptor repertoires
from 9522 tumor and adjacent non-tumor samples across 28 tumor types in the Cancer
Genome Atlas project and performed diversity and network analysis. We identified
differences in diversity and network statistics across tumor types and subtypes and
observed a trend towards increased clonality in primary tumors compared to adjacent
non-tumor tissues. We also found significant associations between the repertoire features
and mutation load, tumor stage, and age. Our V-gene usage analysis identified similar V-
gene usage patterns in colorectal and endometrial cancers. Lastly, we evaluated the
prognostic value of the repertoire features and identified significant associations with
survival in seven tumor types. This study warrants further research into better
understanding the role of tumor-infiltrating B cells across a wide range of tumor types.

Keywords: B cell repertoire, immune repertoire, tumor microenvironment, tumor infiltration, TCGA
1 INTRODUCTION

While B cells are well-established as an integral part of the adaptive immune system, only recently
studies began to elucidate their role in cancer (1, 2). The number of studies on tumor-infiltrating B
cells is vastly eclipsed by the number of studies on tumor-infiltrating T cells, the latter of which have
largely been the focus of researchers and play a central role in modern immunotherapies such as
checkpoint inhibitors. However, B cells hold great potential for the development of new
immunotherapies and as biomarkers for immunotherapy response.

A main function of B cells is to recognize specific antigens with the immunoglobulins (Ig), or B
cell receptors (BCR), on their cell surface. These Ig are made up of two heavy chains (IGH) and two
light chains, the kappa (k) chains (IGK) or the lambda (l) chains (IGL). Ig are generated through a
process called somatic recombination where variable (V), diversity (D), and joining (J) gene
segments are randomly combined to create a diverse collection of antigen receptors which can
recognize a wide range of antigens. Additionally, B cells undergo a process called somatic
hypermutation (SHM) upon antigen binding which introduces additional mutations into the
variable regions of the Ig genes, further diversifying the receptors.

The collection of diverse B cell receptors within an individual, or the B cell repertoire, can be
interrogated using high-throughput technologies. B-cell receptor sequencing (BCR-seq) is
commonly used to study the B cell repertoire as it offers greater sensitivity compared to
org January 2022 | Volume 12 | Article 7901191
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unselected RNA-seq by targeting the BCR region rather than the
entire transcriptome. However, the amount of publicly available
RNA-seq datasets is much greater than the number of BCR-seq
datasets. Tools such as MiXCR (3), ImReP (4), and TRUST4 (5)
have been developed to extract BCR reads from bulk RNA-seq
data and align them to the V, D, and J gene segments, allowing
for the characterization of the immune repertoire from
sequencing data. These tools have been especially useful in
mining publicly available datasets to extract insight into the
adaptive immune system (6, 7).

The Cancer Genome Atlas (TCGA) is the largest publicly
available dataset of molecularly characterized human tumors (8).
The data generated by the TCGA includes clinical, transcriptomic,
methylation, mutation, copy number, and proteomics data. This
dataset has greatly advanced our understanding of tumor biology
and has led to improvements in cancer diagnosis, treatment, and
prevention (9–12). More recently, studies have leveraged the TCGA
dataset to investigate the role of the immune system in cancer (7).
However, the previous analysis of the B cell repertoires tends to be
limited in scope and lacks tumor subtype stratification. For example,
Thorsson et al. only analyzed the impact of TCR diversity on
prognostic associations and their BCR analysis was restricted to
comparing BCR diversity across tumor types and the immune
subtypes identified in the paper.

Characterization of the tumor microenvironment is vital
for understanding cancer biology and developing new
immunotherapies as well as predicting which patients will respond
to immunotherapies. B cells, in particular, can play an important role
in the antitumor immune response. They can produce antibodies
which can drive antibody-dependent cellular cytotoxicity and
phagocytosis of tumor cells (13) and they can also present antigens
to T cells and may be involved in the formation of tumor-associated
tertiary lymphoid structures (14, 15). However, the presence of
tumor-infiltrating B cells has also been associated with poor
outcome in renal cell carcinoma (16), bladder cancer (17), prostate
cancer (18), suggesting that B cells play a complex role in the tumor
microenvironment. Further studies are needed to better understand
how tumor-infiltrating B cells behave in different tumor contexts.

We extracted the B cell repertoires from 28 tumor types in the
TCGAdataset fornearly 10,000 samples andperformeddiversity and
network analysis to investigate the immunological differences and
commonalities across tumor typesandsubtypes, andbetween tumors
and adjacent non-tumor tissue. We then compared these B cell
repertoire features to host, clinical, andmolecular features and found
significant associations with age, tumor stage, and mutation load,
respectively. In our V-gene analysis, we found similar V-gene usage
patterns incolorectal andendometrial cancers. Lastly,we investigated
the prognostic value of each repertoire feature and found significant
associations with survival in a subset of tumor types.
2 METHODS

2.1 Data Acquisition
We used the GDC Data Transfer Tool (https://gdc.cancer.gov/
access-data/gdc-data-transfer-tool) to download every available
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TCGA RNA-Seq FASTQ file from the GDC Legacy Archive
(https://portal.gdc.cancer.gov/legacy-archive/search/f). We then
used MiXCR to extract the reads that align to the VDJ region of
the IGH, IGK, IGL, TRA, TRB, TRD, and TRG chains using the
MiXCR pipeline for processing RNA-seq and non-targeted
genomic data (https://mixcr.readthedocs.io/en/master/rnaseq.
html). We filtered out reads with missing CDR3 sequences. We
used the R package GenomicDataCommons (19) to annotate the
samples with their TCGA barcodes and extracted the sample
type from the TCGA barcode. We then filtered for primary
tumor samples and adjacent non-tumor samples for all the
tumor types except for SKCM, where we included metastatic
samples as well. If there were multiple vials from the same tumor
sample, we selected the first vial (e.g. -01A).

We downloaded the TCGA clinical data from the TCGA Pan-
Cancer Atlas Hub hosted by the UCSC Xena platform (https://
pancanatlas.xenahubs.net). We downloaded the leukocyte
fraction data and mutation load data from the PanCanAtlas
Publications page on GDC for The Immune Landscape of Cancer
(https://gdc.cancer.gov/about-data/publications/panimmune).
We used the R package TCGAbiolinks (20) to download the
TCGA subtype data and we used the “Subtype_Selected” column
for the subtype information if there were multiple
subtype classifications.

2.2 Expression and Diversity Analysis
We calculated BCR expression by dividing the number of reads
that align to each IGH, IGK, or IGL chain by the total number of
reads in each sample. We defined clones as groups of reads that
share the same V and J genes, the same CDR3 length, and at least
90% shared nucleotide identity. As it is not possible to perform
paired heavy and light chain analysis with bulk RNA-seq data, we
analyzed the IGH, IGK, and IGL chains separately for the clonal
analysis. To quantify the clonal diversity, we calculated Shannon
entropy (H) using the following formula:

H = −o
N

i=1
pi log2 pi

N is the number of unique clones in the sample and pi is the
proportion of clone i in the sample. Shannon entropy can range
from 0, for samples with only one clone, to log2N, for samples
with a uniform distribution of clones. We then calculated the
evenness of each sample using Pielou’s evenness index, which is:

J =
H

Hmax

where H is the Shannon entropy and Hmax is the maximum
possible value for H. Evenness is constrained between 0 and 1
and a higher evenness value indicates a more even distribution
of clones.

2.3 Network Analysis
We generated networks for each sample using a previously
published method (21, 22). Each vertex in the network is a
unique BCR sequence and the size of the vertex corresponds to
the number of reads with that sequence. Edges are drawn
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between vertexes with the same V and J genes, the same CDR3
length, and at least 90% sequence similarity (our clone
definition). We used the R package igraph to generate network
plots for each sample.

We used the Gini index to quantify different repertoire
network parameters. The Gini index measures the inequality in
a frequency distribution and it ranges from 0, which indicates
complete equality, to 1, which indicates complete inequality. We
quantified clonal expansion by calculating the Gini index using
the distribution of vertex sizes for each sample (vertex Gini
index). This measures the unevenness in the number of unique
BCR sequences and having a higher vertex Gini index indicates
more clonal expansion in a sample. We quantified clonal
diversification by calculating the Gini index using the
distribution of the number of vertexes in each cluster (cluster
Gini index). Having a higher cluster Gini index indicates a
sample with expanded cluster sizes.

For the downsampling analysis, we randomly sampled 500
reads each for IGH, IGK, and IGL and then calculated the vertex
Gini index and the cluster Gini index using these subsamples.
We repeated this procedure 10 times and then took the mean for
the final analysis presented in the paper.

2.4 V-Gene Analysis
To analyze V-gene usage, we first filtered out samples with fewer
than 100 clones. We then calculated V-gene usage as the percent
of clones in each sample which uses a particular V-gene. We used
PCA to reduce the dimensionality of the data and we visualized
the samples in PC1 and PC2 to identify clusters of interest. Next,
we applied an elastic net model to identify the genes that are
associated with these clusters of interest. We used 5-fold cross
validation to test different alpha values (0.1-0.9) and selected the
alpha value with the lowest mean cross validated error for the
final elastic net model.

2.5 Statistical Analysis
We used R version 4.3 to perform the statistical analysis and
generate the figures in this paper. For the association analysis
between B cell repertoire features and clinical and tumor
features, we used Spearman’s correlation for continuous
variables and the Wilcoxon rank-sum test for categorical
variables. We used the R package survival to perform the Cox
regression analysis and we used the R package survminer to
generate the Kaplan-Meier plots. For analysis involving multiple
B cell repertoire features for each tumor type, we adjusted for
multiple comparisons within tumor types using the Benjamini-
Hochberg procedure.
3 RESULTS

3.1 Study Overview
We analyzed the B cell repertoires across the TCGA tumor
samples corresponding to 28 tumor types with a total of 8854
tumor and 688 adjacent non-tumor samples (Figure 1A and
Supplementary Table 1). We used MiXCR (3) to extract BCR
Frontiers in Immunology | www.frontiersin.org 3
sequences from RNA-seq data and align the sequences to the
VDJ region of the IGH, IGK and IGL. As a quality control check,
we verified that the number of immune repertoire reads
extracted by MiXCR did not have a strong correlation with the
total sequencing depth of each sample across tumor types (mean
r = 0.148 (SD = 0.088) for tumor samples, mean r = 0.179 (SD =
0.232) for adjacent non-tumor samples, Supplementary Figures
S1A, B). We defined expression of IGH, IGK, and IGL as the
number of reads aligned to each chain divided by the total
number of sequenced reads in each sample. Figure 1B and
Supplementary Table 1 shows the sequencing summary of
BCR reads for all tumor types.

Many of the tumor types that have the highest IGH, IGK, and
IGL expression such as lung squamous cell carcinoma (LUAD),
lung adenocarcinoma (LUAD), head and neck squamous cell
carcinoma (HNSC), and skin cutaneous melanoma (SKCM)
(Figure 1B), are also the tumor types that have mutational
burden as well as high leukocyte fractions (Supplementary
Figure 1C), which was estimated by Thorsson et al. using
methylation data (7), and are most responsive to checkpoint
inhibitors (7). Likewise, the tumor types with the lowest
expression of IGH, IGK, and IGL, such as uveal melanoma
(UVM) and adrenocortical carcinoma (ACC), tend to have low
leukocyte fractions and poor responses to immunotherapies
(23, 24).

We also found that the expression derived from IGK are more
abundant than IGH and IGL across nearly all of the tumor types
(Figure 1B). This is similar to a previous study which analyzed Ig
repertoires across 53 human tissues and found that CDR3
sequences account for 54% of the entire B-cell population on
average (4).

3.2 Shannon Entropy and Evenness of
BCR Repertoires Differ Across Tumor
Types and Tend to Be Higher in Adjacent
Non-Tumor Samples
We defined clones as groups of reads that have the same V and J
gene, the same CDR3 length, and at least 90% nucleotide
similarity as in previous publications (21, 25). In order to
quantify the diversity of Ig clones within each sample, we
calculated the Shannon entropy within each Ig chain. Shannon
entropy reflects both the number of clones as well as the
frequency of the clones in each sample. We found that LUAD
and LUSC have the highest Shannon entropy compared to the
other tumor types (Figure 2A), which was unsurprising given the
overall high Ig expression in these two tumor types. ACC, LGG,
and UVM had the lowest Shannon entropy, which likely reflects
the low expression of Ig in these tumor types. Overall, Shannon
entropy was positively correlated with expression across all
tumor types in the IGH, IGK, and IGL chains (Supplementary
Figure 2). Interestingly, the correlation between Shannon
entropy and expression was higher in IGH compared to IGK
and IGL across tumor types. For example, the correlation
(Spearman’s rho) between entropy and expression in LUAD is
0.69 for IGH but 0.27 and 0.35 for IGK and IGL, respectively.
This suggests that there may be more uneven distributions of
January 2022 | Volume 12 | Article 790119
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clones in IGK and IGL compared to IGH, which is reflected in
IGK and IGL having lower Shannon entropy despite having
higher expression than IGH.

We also observed that the tumor types that have higher diversity
(LUAD, LUSC, BRCA, HNSC, KIRC, PAAD, READ, SKCM and
TGCT) have a lower correlation with their expression values.

We then compared the Shannon entropy of primary tumor
samples to adjacent non-tumor samples to better understand the
tumor microenvironment. We analyzed the 14 tumor types
(BLCA, BRCA, COAD, HNSC, KICH, KIRC, KIRP, LIHC,
LUAD, LUSC, PAAD, READ, THCA, UCEC) that had at least
10 adjacent non-tumor samples and found that Shannon entropy
was significantly higher in adjacent non-tumor samples compared
to tumor samples in 4/14 (BRCA, COAD, LIHC, READ) tumor
types for IGH, 6/14 (BRCA, COAD, HNSC, LIHC, LUSC, READ)
tumor types for IGK, and 6/14 (BRCA, COAD, HNSC, LIHC,
LUSC, READ) tumor types for IGL (Figure 2B). This trend could
reflect a higher number of clones or a more even distribution of
clones in the adjacent non-tumor samples compared to the tumor
samples for these tumor types. Conversely, Shannon entropy was
higher in tumor samples compared to adjacent non-tumor
samples in only 2/14 (KIRC, LUAD) tumor types for IGH, none
for IGK, and 1/14 for IGL (KIRC).

We then calculated Pielou’s evenness index for each chain
type, which reflects the evenness of the clone distributions within
each sample (Figure 2C). This evenness index is calculated by
dividing Shannon entropy by the maximum possible Shannon
entropy index, essentially normalizing the Shannon entropy
index by the number of unique clones in each sample. GBM,
PCPG, and KICH have the highest evenness in all three chains
while SKCM and TGCT have the lowest evenness compared to
the other tumor types.
Frontiers in Immunology | www.frontiersin.org 4
Next, we compared evenness between primary tumors and
adjacent non-tumor samples across the Ig chains (Figure 2D).
We found that evenness was significantly higher in adjacent non-
tumor samples compared to tumors in 7/14 (BRCA, COAD,
HNSC, KIRC, LIHC, LUAD, LUSC) tumor types for IGH, 5/14
(BRCA, HNSC, KIRC, LUAD, LUSC) for IGK, and 4/14 (BRCA,
HNSC, KIRC, LUAD) for IGL. While evenness was consistently
higher in adjacent non-tumor samples for IGH, we observed
higher evenness in tumor samples compared to non-tumors in
IGK and IGL for COAD.

3.3 Network Analysis Reveals Differences
in Clonal Expansion and Diversification
Across Tumor Types and Between Tumor
and Adjacent Non-Tumor Samples
We generated networks for each sample using a previously
published method (21, 22, 26) (Figure 3A). Each vertex in the
network is a unique Ig sequence and the size of the vertex
corresponds to the number of reads with that sequence. Edges
connect vertexes that have the same V and J genes, the same CDR3
length, and at least 90% sequence similarity, and clusters are
groups of connected vertexes. Clonal expansion of unique Ig
sequences can be measured by calculating the Gini index of the
vertex sizes. A high vertex Gini index indicates clonal expansion of
unique Ig sequence(s) and a low Gini index indicates a more even
distribution of vertex sizes. Clonal diversification can be measured
by calculating the Gini index of the cluster sizes, which are the
number of vertexes in each cluster. This measurement reflects the
amount of diversification of B cell clones from SHM. A high
cluster Gini index indicates a sample with unequal cluster sizes,
which suggests that some clones are highly diversified, and a low
cluster Gini index indicates a sample with even sized clusters.
A

B

FIGURE 1 | Study overview. (A) BCR reads were extracted from TCGA RNA-seq data across 28 tumor types using MiXCR and we called clones based on
sequences having the same V and J gene, the same CDR3 length, and at least 90% sequence similarity. We then performed diversity analysis, network analysis,
association analysis, survival analysis, and V gene usage analysis to investigate differences in the B cell immune repertoire across tumor types and between tumor
and adjacent non-tumor samples. (B) Boxplots showing the log10 expression of IGH, IGK, and IGL. Expression is defined as the number of reads for each chain
divided by the total number of reads in the sample. The box plot depicts the median as well as the upper and lower quartiles, and the whiskers depict 1.5 times the
interquartile range.
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We calculated the vertex and cluster Gini indexes on each
sample’s network across the tumor types (Figure 3B). LUAD,
LUSC, TGCT, and SKCM had the highest mean vertex Gini
indexes across the Ig chains, indicating higher levels of clonal
expansion in these tumor types. LUAD, LUSC, and TGCT also
had the highest mean cluster Gini indexes across the Ig chains,
suggesting high levels of clonal diversification in these tumor
types. Interestingly, the cluster Gini indexes are lower in IGH
compared to IGK and IGL across the tumor types, suggesting
that IGH has lower clonal diversification. We also observed that
ACC, GBM, LGG, and KICH have consistently lower Gini vertex
and cluster indexes and little difference between the IGH, IGK
and IGL chains, suggesting that the B cell repertoire may not be
particularly active in these tumor types.
Frontiers in Immunology | www.frontiersin.org 5
We then compared the vertex and cluster Gini indexes between
tumor samples and adjacent non-tumor samples for the tumor
types with at least 10 adjacent non-tumor samples (Figure 3C). The
vertex Gini index was significantly higher in tumor samples in 6/14
tumor types for IGH, 5/14 for IGK, and 5/14 for IGL, and none of
the tumor types had significantly higher vertex Gini indexes in the
adjacent non-tumor samples compared to the tumor samples. This
suggests that the tumor samples generally have higher clonal
expansion compared to the adjacent non-tumor samples.
Similarly, the cluster Gini indexes was higher in tumor samples
compared to adjacent non-tumor samples in 5/14 tumor types for
IGH. However, adjacent non-tumor samples had higher cluster Gini
indexes in 5/14 tumor types for IGK and 5/14 tumor types for IGL.
This suggests that there is a trend towards higher clonal
A
B

D

C

FIGURE 2 | Entropy and evenness analysis across tumor types and between tumor and adjacent non-tumor samples. (A) The heatmap depicts the mean Shannon
entropy value for each tumor type in each chain. (B) The boxplots show the Shannon entropy indexes for tumors (green) and adjacent non-tumor samples (blue) for
the 14 tumor types with at least 10 adjacent non-tumor samples. Statistical significance was calculated using the Wilcoxon rank-sum test. Significant p-values are
indicated by symbols above the box plots with one star corresponding to p-value < = 0.05, two stars corresponding to p-value < = 0.01, three stars corresponding to
p-value < = 0.001, and four stars corresponding to p-value < = 0.0001. (C) The heatmap shows the mean Pielou’s evenness index for each tumor type in each chain.
(D) The boxplots show the evenness index for tumors (green) and adjacent non-tumor samples (blue) and statistical significance was calculated as described above.
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diversification in tumor samples for IGH and a trend towards
higher clonal diversification in adjacent non-tumor samples for IGK
and IGL.

We generated plots for each sample and for each chain to
visualize the networks. Example plots for BRCA tumor sample
and an BRCA adjacent non-tumor sample are shown in
Figure 3D with data for the IGK chain. The BRCA tumor
sample has a higher vertex Gini index and more clonal
expansion of individual reads, which can be seen in the large
vertexes in the plot. The BRCA adjacent non-tumor sample has a
higher cluster Gini index, which can be seen in the increased
connectivity of some of the clusters in the plot.
Frontiers in Immunology | www.frontiersin.org 6
Since the Gini indexes may be affected by differences in
sequencing depth, we carried out a downsampling analysis similar
to previous studies to confirm that our network analysis results are
not driven by sequencing depth variability (21, 27, 28). We
downsampled to 500 IGH, IGK, and IGL reads respectively and
recalculated the vertex and cluster Gini indexes for each chain.
Samples were removed if they did not have at least 500 reads in each
chain, which removed a significant number of samples with low
infiltration (Supplementary Figure 3A). The original analysis and
the downsampled analysis were highly correlated for both vertex (r =
0.72-0.75) and cluster (r = 0.56-0.81) Gini indexes (Supplementary
Figure 3B). The downsampled analysis comparing tumor and
A

B

D

C

FIGURE 3 | Network analysis across tumor types and between tumor and adjacent non-tumor samples. (A) Schematic describing how the networks were
generated for each sample. The vertex Gini index and the cluster Gini index were used to quantify clonal expansion and clonal diversification. (B) A heatmap showing
the mean vertex Gini index and cluster Gini index across tumor types in each chain. (C) A heatmap showing the log2 fold ratio between the mean vertex/cluster Gini
index in tumor samples and the mean vertex/cluster Gini index in the adjacent non-tumor samples. Red indicates a higher mean value in tumors and blue indicates a
higher mean value in adjacent non-tumor samples. Significance was computing using the Wilcoxon rank-sum test and the asterisks indicate an FDR < 0.05. (D)
Network plots for a BRCA primary tumor sample on the left and a BRCA adjacent non-tumor sample on the right. Vertexes depict unique BCR sequences and sizes
indicate the number of reads. Edges are drawn between vertexes that have the same V and J genes, the same CDR3 length, and at least 90% sequence similarity.
January 2022 | Volume 12 | Article 790119
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adjacent non-tumor samples also held the same general trends as the
original analysis (Supplementary Figure 3C).

3.4 Case Study: Diversity and Network
Analysis Across BRCA Subtypes
While our previous analysis made comparisons between tumor
types, cancer is an incredibly heterogenous disease and each tumor
type can often be divided into subtypes with different molecular
characteristics and prognosis. We were interested in investigating
the differences between tumor subtypes and we performed
subtype-specific analysis for the following 19 tumor types with
subtype information curated by TCGAbiolinks (20): ACC (29),
BLCA (30), BRCA (31), COAD (32), GBM (33), HNSC (34),
Frontiers in Immunology | www.frontiersin.org 7
KICH (35), KIRC (36), KIRP (37), LGG (33), LIHC (38), LUAD
(39), LUSC (40), PAAD (41), PCPG (42), PRAD (43), SKCM (44),
THCA (45), UCEC (46). While 15/19 tumor types had significant
differences between their subtypes (Supplementary Figure 4), we
present the results for BRCA in the main text.

Previous studies have shown that breast cancer can be divided
into subtypes with different treatment responses and outcomes
based (47, 48). These subtypes include: luminal A, luminal B,
HER2-enriched, basal, and normal-like. Luminal A and normal-
like breast cancers tend to have higher entropy compared to the
other subtypes across the chain types (Figure 4A). The basal and
HER2-enriched subtypes have lower evenness compared to the
luminal A, luminal B, and normal-like subtypes across the chain
A

B

D

C

FIGURE 4 | Differences in B cell repertoire features across breast cancer subtypes. (A) Boxplots depict the Shannon entropy index in each BRCA subtype for IGH, IGK,
and IGL. Brackets indicate significant comparisons using the Wilcoxon rank-sum test and p-values are placed above each bracket. (B) Boxplots depict Pielou’s evenness
index in each BRCA subtype. (C) Boxplots depict the vertex Gini index in each BRCA subtype. (D) Boxplots depict the cluster Gini index in each BRCA subtype.
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types (Figure 4B). In the network analysis, the basal and the
HER2-enriched subtypes have higher vertex Gini indexes across
the chain types, indicating higher clonal expansion in these
subtypes (Figure 4C). The basal and HER2-enriched subtypes
also have higher cluster Gini indexes compared to the luminal
subtypes across the chain types, indicating that there may be
higher clonal diversification in these subtypes (Figure 4D). This
analysis revealed differences in diversity, evenness, and network
features across the BRCA subtypes.

3.5 B Cell Receptor Repertoire Features
Associated With Host and Clinical
Features and Mutation Load
We were interested in investigating associations between the B
cell repertoire features and mutation load, which was defined as
Frontiers in Immunology | www.frontiersin.org 8
the number of non-silent mutations per megabase, as well as
other host and clinical features available in TCGA (7, 49).

First, we correlated the B cell repertoire features with mutation
load and found that mutation load was not significantly correlated
with immune features in amajority of the tumor types analyzed.We
also observed that the tumor types with significant correlations
between their repertoire features and mutation load were not
necessarily the tumor types with the highest mutational loads
overall (Supplementary Figure 5A). However, in the tumor types
with significant correlations, mutation load seems to be largely
negatively correlated with entropy and evenness (Figure 5A). This
suggests that having a more diverse, even B cell repertoire seems to
be associated with tumors that have lower mutation load. The
exceptions were UCEC, which had a positive correlation between
mutation load and entropy, and THCA, which had a positive
A

B

C

FIGURE 5 | Associations between B cell repertoire features and tumor and clinical characteristics. (A) A heatmap depicting Spearman’s correlation coefficient for
mutation load, which is the number of non-silent mutations per megabase, and each B cell repertoire feature. Significant correlations (FDR < 0.05) are marked by an
asterisk. (B) A heatmap showing the log2 fold ratio between the mean of the stage I-II tumors and the mean of the stage III-IV tumors. Significance was computing
using the Wilcoxon rank-sum test and the asterisks indicate an FDR < 0.05. (C) A heatmap depicting Spearman’s correlation coefficient between patient’s age at
diagnosis and each B cell repertoire feature. Significant correlations (FDR < 0.05) are marked by an asterisk.
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correlation between mutation load and evenness. Similarly, when
comparing mutation load to the vertex and cluster Gini indexes, few
tumor types had significant correlations. However, among the
tumor types with significant correlations, mutation load was
positively correlated with the vertex and cluster Gini indexes.
This suggests that higher clonal expansion and higher clonal
diversification is associated with higher mutation load, perhaps
because tumors with higher mutation loads can generate more
neoantigens which can drive a better immune response. Indeed,
previous studies have shown that a higher non-synonymous
mutation burden in tumors was associated with improved
response to immunotherapies (50, 51).

We were also interested in investigating associations between the
B cell repertoire features and tumor stage. We compared the lower
stage tumors (Stage I-II) to higher stage tumors (III-IV) and found
that there was no significant difference in a majority of the tumor
types (Figure 5B). In the 5 tumor types with significant associations,
having a higher tumor stage was associated with higher vertex and
cluster Gini indexes in 4/5 tumor types, suggesting that theremay be
slightly increased clonal expansion and clonal diversification in
tumors with higher stages.

Next, we correlated age at diagnosis with the B cell repertoire
features and found significant associations in 8 tumor types
(Figure 5C). Age at diagnosis was negatively correlated with
Shannon entropy in BRCA, KIRC, and KIRP, similar to a
previous study (52). We also found a negative correlation between
age and evenness and a positive correlation between age and the
vertex Gini indexes in BLCA, HNSC, KIRC, and PRAD. The overall
correlation strengths were relatively low, suggesting a possible slight
increase of clonal expansion in older patients.

Lastly, we compared the B cell repertoire features between
sexes (Supplementary Figure 5B) and found very few significant
associations across tumor types and repertoire features. Females
have significantly higher entropy than males in BLCA but the log
fold difference between the mean female entropy value and the
mean male entropy value was relatively small.

Overall, the B cell repertoire features were not significantly
associated with mutation load or clinical features in a majority of
the tumor types. However, there did seem to be some consistent
trends among the tumor types with significant associations,
suggesting that there may be a subtle signal in these tumor types.

3.6 B Cell Repertoire Features Are
Prognostic in Select Tumor Types
We built Cox proportional hazard models for each B cell
repertoire feature to investigate associations with survival while
adjusting for age, gender, and tumor stage (Figure 6A and
Supplementary Table 2). We selected tumor types with at
least 40 events to have at least 10 events per predictor variable
(53). After FDR correction, we found significant associations
(FDR < 0.1) in 7/17 of the tumor types analyzed.

In the six tumor types that have significant associations with
Shannon entropy (BRCA, CESC, GBM, HNSC, SARC, SKCM),
having a higher entropy value was associated with improved
survival in all tumor types except GBM. In the five tumor types
that have significant associations with evenness, having a higher
evenness was associated with improved survival in SARC and GBM
Frontiers in Immunology | www.frontiersin.org 9
for a subset of chains. However, a higher evenness was associated
with decreased survival in the IGK chain for HNSC, in the IGL
chain for UCEC, and across all chains in SKCM as seen in a
previous study (54) (Figure 6B). This suggests that B cells may be
playing different roles in these tumor types. Vertex and cluster Gini
indexes were significantly associated with survival in at least one
chain type in BRCA, CESC, GBM, HNSC, SARC, SKCM, and
UCEC. In BRCA, CESC, HNSC, SARC, SKCM, and UCEC, having
a higher vertex and cluster Gini indexes was associated with
improved survival, suggesting clonal expansion may be beneficial
in these tumor types. However, having a higher vertex Gini index
was associated with worse survival in GBM, suggesting that clonal
expansion may be detrimental in this tumor type.

We also stratified the tumors by subtype and repeated the
analysis to see if specific subtypes reveal different behaviors
(Supplementary Figure 6). While five tumor types (HNSC,
KIRC, LGG, LUSC, SKCM) had at least one subtype with
significant associations with survival, we did not observe
differences between subtypes from the same tumor type.

3.7 V-Gene Usage Reveals Similarities in
COAD, READ, and UCEC Repertoires
Previous studies have shown that V-gene usage may differ in tumor
tissues (55). We wanted to investigate differences in V-gene usage
across the tumor types analyzed in this study. We defined V-gene
usage here as the percent of clones in each sample that use a
particular V-gene. We then used principal component analysis
(PCA) to reduce the dimensionality of the V-gene usage data and
plotted the first two principal components to visualize the data for
each Ig chain (Figures 7A–C).

For the IGH analysis, we used k-means clustering to identify
two clusters in the data after dimensionality reduction with PCA
(Supplementary Figure 7A). One cluster was primarily comprised
of COAD, READ, and UCEC samples (Supplementary
Figure 7B), suggesting that these samples have a similar V gene
usage pattern. We used an elastic net model to identify the V genes
that are associated with this cluster and identified 45 V-genes
(Supplementary Figure 7C). We also performed hierarchical
clustering on the IGHV gene usage data (Figure 7A) and found
a cluster of four V genes that have relatively high usage compared
to the others (IGHV3-21, IGHV3-23, IGH30-30, IGHV1-18),
which is consistent with previous studies (56, 57).

Next, we performed a similar analysis for the IGK and IGL
chains. We identified a group of 19 THYM samples that separated
out from the other tumor samples in PC1 for both IGK and IGL
(Figures 7B, C). These samples had significantly lower V-gene
usage (Wilcoxon rank-sum test IGK p-value = 2.8e-06, IGL p-
value = 3.9e-05) compared to the other samples, although we
could not find significant associations with clinical features such as
tumor site or having a history of myasthenia gravis, which is an
autoimmune neuromuscular disease found in 50% of cortical
thymoma patients (58). We used an elastic net model to identify
the V-genes that are associated with these THYM samples and we
identified 24 V IGK V-genes (Supplementary Figure 7D) and 44
IGL V-genes (Supplementary Figure 7E). After performing
hierarchical clustering on the IGKV gene usage data, we
identified a cluster of eight IGKV genes (IGKV3-20, IGKV1-5,
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IGKV1-33, IGKV2-28, IGKV4-1, IGKV1-39, IGKV3-11, IGKV3-
15) with relatively high usage compared to the other V-genes.
Similarly, the hierarchical clustering results for IGL identified a
cluster of 13 IGL V-genes with relatively high usage (IGLV6-57,
IGLV1-44, IGLV1-36, IGLV1-47, IGLV3-19, IGLV3-25, IGLV1-
51, IGLV3-1, IGLV3-21, IGLV2-11, IGLV2-23, IGLV1-40,
IGLV2-8). Interestingly, the IGLV2-14 V-gene formed its own
cluster separate from every other IGL V-gene and seems to have
relatively high usage across many tumor samples (Figure 7C).
DISCUSSION

Many studies have established the importance of T cells in
immunosurveillance and immunotherapy response in cancer.
However, the role of B cells has not been as well studied and
tumor-infiltrating B cells have been shown to have both protumor
and antitumor effects (1). Current bioinformatic tools allowed us to
interrogate the composition of B cell repertoires from RNA-seq data
through a pan-cancer approach, offering more detailed insights into
the B cell response to tumors. For example, Thorsson et al. extracted
and analyzed the TCR and BCR repertoires from the TCGA RNA-
seq dataset, but their analysis did not include tumor subtype
stratification, comparisons between the BCR repertoires in tumor
Frontiers in Immunology | www.frontiersin.org 10
versus adjacent non-tumor tissue, or associations between BCR
repertoire features and clinical features. In this study, we analyzed
the B cell repertoires of 9,522 tumor and adjacent non-tumor
samples across 28 tumor types and their subtypes using TCGA
RNA-seq and clinical data.

All tumor samples were assessed for immune repertoire
features, including Ig expression, Shannon entropy, clonal
expansion and clonal diversification, which revealed large
differences among the different tumor types. We found the
highest expression of IGH, IGK, and IGL chains in LUSC and
LUAD, which is similar to previous studies which found an
abundant and diverse B cell population in non-small cell lung
cancers (59). Many of the tumor types with the highest Ig chain
expression also have the highest overall leukocyte fraction and
are most responsive to checkpoint inhibitors (7), suggesting that
B cells may help promote response to immunotherapies. Indeed,
several studies have shown that an enrichment of B cells in
tertiary lymphoid structures was predictive of response to
immune checkpoint inhibitors in melanoma, soft-tissue
sarcoma, and renal cell carcinoma (60, 61). Moreover, we also
found that the tumor types with low IGH, IGK and IGL
expression, such as UVM and ACC, also have low overall
leukocyte fraction and poor responses to immunotherapies (23,
24). These patterns were also observed in the diversity analysis
A

B

FIGURE 6 | Survival analysis using B cell repertoire features. (A) Heatmap showing the hazard ratio from a Cox proportional hazards model for each B cell repertoire
feature adjusted for age, gender, and tumor stage. Red indicates a hazard ratio greater than 1 and green indicates a hazard ratio less than 1. Significant associations
(FDR < 0.1) are marked by an asterisk. (B) Kaplan-Meier curves for samples with high and low evenness with the median evenness value used as the cutoff. The
adjusted p-values are from the multivariate Cox regression models adjusted for age, gender, and tumor stage with the Benjamini-Hochberg procedure used to
control for multiple comparisons.
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using Shannon entropy, which was unsurprising given the
overall Ig expression in these tumors, and the vertex and
cluster Gini index indicating a clear clonal expansion and
diversification in the tumors with high overall Ig expression
and entropy.

We also found a significant positive correlation between
expression and Shannon entropy in all the tumor types
analyzed, similar to previous studies (54). Interestingly, we
found that the Shannon entropy indexes in IGK and IGL had
lower correlations with expression compared to IGH and that the
cluster Gini indexes for IGH were lower than IGK and IGL. This
suggests that there may be more uneven distribution of clones in
IGK and IGL compared to IGH, which is reflected in IGK and
IGL having lower Shannon entropy despite having higher
expression than IGH. Indeed, IGK and IGL are less diverse
Frontiers in Immunology | www.frontiersin.org 11
since they are produced by recombination of only the V and J
genes and they likely need to go through clonal expansion and
somatic hypermutation after exposure to an antigen.

Differences in B cell repertoire between tumor and adjacent non-
tumor samples may be due to response to tumor specific antigens.
The tumor samples tend to have lower Shannon entropy and vertex
Gini indexes compared to primary tumor samples, suggesting that
the increased clonal expansion in the tumor samples may be the
result of B cells in the tumor microenvironment reacting to
tumor neoantigens.

In our tumor subtype analysis, we analyzed 19 tumor types and
found significant differences between subtypes in 15 tumor types.
We decided to focus on BRCA as a case study in the main text.
The basal and HER2-enriched subtypes have lower evenness and
higher vertex Gini indexes and cluster Gini indexes, suggesting
A

B

C

FIGURE 7 | Analysis of V gene usage. (A) PCA plot using IGH V gene usage data. Each point is a sample and the color of the point corresponds to a tumor type. A
dashed circle is drawn around a cluster of COAD, READ, and UCEC samples. On the right is a heatmap with hierarchical clustering performed on the samples and
the IGH V gene usage data. The intensity of the heatmap corresponds to the percent of clones using each V gene. (B) PCA plot using IGK V gene usage data. A
dashed circle is drawn around a cluster of THYM samples. On the right is a heatmap with hierarchical clustering performed on the samples and the IGK V gene
usage data. (C) PCA plot using IGL V gene usage data. A dashed circle is drawn around a cluster of THYM samples. On the right is a heatmap with hierarchical
clustering performed on the samples and the IGL V gene usage data.
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more clonal expansion in these subtypes. Interestingly, previous
studies have shown that the basal and HER2-enriched subtypes
tend to have high immune infiltration (62, 63) and were the only
subtypes where increased expression of B cell signatures was
associated with metastasis-free survival (64).

Although we found large differences among the tumor types
with their B cell repertoire, we found that few tumor types had
significant associations between their B cell repertoire features and
mutation load, tumor stage, and age. Among the tumor types with
significant associations, we found that the repertoire features
associated with higher clonal expansion and clonal
diversification were positively correlated with mutation load.
This is in line with previous studies which have shown that a
higher mutation burden is associated with improved
immunotherapy responses (50, 51). We also found that age
tends to be negatively correlated with evenness and positively
correlated with vertex and cluster Gini indexes, suggesting that
older patients have greater clonal expansion than younger
patients. This reflects previous observations of decreased B cell
diversity and increased clonal expansion in normal aging (65).
Overall, the B cell repertoire features were not significantly
associated with mutation load or clinical features in a majority
of the tumor types. However, there did seem to be some consistent
trends among the tumor types with significant associations,
suggesting that there may be a subtle signal in these tumor types.

Next, we built Cox proportional hazard models for each B cell
repertoire feature to investigate the prognostic value of each feature.
After adjusting for age, gender, and tumor stage, we were unable
to find significant associations for a majority of the tumor types
analyzed. However, in the tumor types with significant associations,
we found some opposing trends such as evenness being associated
with decreased survival in SKCMandUCEC but increased survival in
GBM and SARC. Previous studies have shown that B cells can
differentiate into plasmablast-like cells in SKCM (66) while they may
act primarily as antigen-presenting cells in GBM (67), supporting the
idea that B cells play different roles in these tumor types.

Finally, our V-gene usage analysis revealed that a subset of
COAD, READ, and UCEC samples have similar IGH V gene
usage patterns. Interestingly, a recent study that predicted tumor
type from BCR sequences found that COAD samples were likely
to be predicted as UCEC in their model, supporting the idea that
these tumor types may have similar B cell repertoires (68).We also
identified a subset of THYM patients with overall low V-gene
usage, although we could not find significant associations between
this subset of patients and any clinical variables. In our hierarchical
clustering analysis, we identified clusters of V-genes in each chain
that had higher overall usage across the tumor types which were
largely consistent with previous studies (56, 57). For the IGL V-
gene analysis, we found that the IGLV2-14 V-gene formed its own
cluster and seems to have relatively high usage across many tumor
samples. Interestingly, IGLV2-14 has been previously associated
with chronic lymphocytic leukemia (69), multiple melanoma (70),
and it is the most common IGLV gene in human cord blood (71).

There are several limitations that should be noted. One
limitation of our study is the use of RNA-seq data rather than
targeted sequencing data (e.g. BCR-seq). While RNA-seq data has
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lower sequencing depth compared to targeted sequencing data, we
chose to use RNA-seq data because we wanted to leverage the large
number of tumor samples in the TCGA dataset. Additionally, it is
not possible to perform paired heavy and light chain analysis using
short-read bulk RNA-seq data. Therefore, results from this study
warrants validation with targeted sequencing data. Another
limitation of this study is the limited number of adjacent non-
tumor samples and the lack of true healthy samples, as previous
studies have shown that adjacent non-tumor samples tend to have
more inflammatory-associated cell types compared to healthy
samples (72). Additional analysis using datasets with both tumor
and healthy samples would be informative for validating the results
of this study. Moreover, the TCGA dataset, like many adaptive
immune receptor repertoire sequencing (AIRR-seq) datasets (73), is
primarily comprised of individuals with European ancestry (74).
Including more individuals with non-European ancestry in
immunogenomic studies is critical to understanding population
differences in the adaptive immune system and improving precision
immunodiagnostics and therapeutics. Lastly, our study is unable to
perform analysis within individual types of B cells, which single-cell
sequencing would allow, or to analyze the localization of B cell
populations within the tumor, which new technologies such as
spatial transcriptomics would allow. However, the amount of data
generated using these newer technologies is limited compared to the
amount of publicly available RNA-seq data currently available,
making it more feasible for future studies.

In summary, our study characterizes the B cell repertoire of
28 tumor types and reveals differences across tumors and tumor
subtypes, as well as between adjacent non-tumor and tumor
samples. These results help further our understanding of the role
of B cells in the tumor microenvironment with implications for
the development of novel B cell immunotherapies, therapeutic
strategies, and patient stratification.
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