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We screened 57 chemical probes, high-quality tool compounds, and relevant clinically
used drugs to investigate their effect on pro-inflammatory prostaglandin E2 (PGE2)
production and interleukin-8 (IL-8) secretion in human whole blood. Freshly drawn
blood from healthy volunteers and patients with systemic lupus erythematosus (SLE) or
dermatomyositis was incubated with compounds at 0.1 or 1 µM and treated with
lipopolysaccharide (LPS, 10 µg/ml) to induce a pro-inflammatory condition. Plasma was
collected after 24 h for lipid profiling using liquid chromatography tandem mass
spectrometry (LC-MS/MS) and IL-8 quantification using enzyme-linked immunosorbent
assay (ELISA). Each compound was tested in at least four donors at one concentration
based on prior knowledge of binding affinities and in vitro activity. Our screening
suggested that PD0325901 (MEK-1/2 inhibitor), trametinib (MEK-1/2 inhibitor), and
selumetinib (MEK-1 inhibitor) decreased while tofacitinib (JAK inhibitor) increased PGE2
production. These findings were validated by concentration–response experiment in two
donors. Moreover, the tested MEK inhibitors decreased thromboxane B2 (TXB2)
production and IL-8 secretion. We also investigated the lysophophatidylcholine (LPC)
profile in plasma from treated whole blood as these lipids are potentially important
mediators in inflammation, and we did not observe any changes in LPC profiles.
Collectively, we deployed a semi-high throughput and robust methodology to
investigate anti-inflammatory properties of new chemical probes.

Keywords: prostaglandin E2, whole blood assay, interleukin-8, inflammation, drug screen
HIGHLIGHTS

• Inhibitors for MEK decreased PGE2 and TXB2 production
• Inhibitors for MEK and ERK decreased IL-8 secretion
• JAK inhibitor tofacitinib increased PGE2 and TXB2 production
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INTRODUCTION

Inflammation is a highly controlled immune response to
eliminate the cause of tissue injury or infection and to initiate
tissue repair back to homeostasis via resolution (Nathan, 2002;
Buckley et al., 2013). However, inflammation is not always
terminated. Unresolved inflammation causes persistent pain,
tissue degeneration, and loss of function. In particular,
inflammatory responses drive many autoimmune diseases
(McInnes and Schett, 2011) and inflammation is a hallmark of
cancer (Hanahan and Weinberg, 2011). Thus, there is a great
need for new therapies that are anti-inflammatory and safe.

Prostaglandin E2 (PGE2) is a potent lipid mediator of
inflammation and immune responses, and PGE2 is a central
mediator of pain, edema, and cartilage erosion typically observed
in the joints of rheumatoid arthritis patients (Akaogi et al., 2012;
Fattahi and Mirshafiey, 2012). In addition, PGE2 is a promotor of
the immunosuppressive tumor microenvironment with major
impact on tumor progression (Wang and Dubois, 2010;
Hanahan and Weinberg, 2011; Ricciotti and Fitzgerald, 2011).
During inflammation, PGE2 is synthesized via conversion of
arachidonic acid by cyclooxygenases (COX-1 and COX-2) into
unstable PGH2 that is further metabolized by the inducible
terminal synthase microsomal prostaglandin E synthase-1
(mPGES-1) to generate PGE2. Multiple non-steroidal anti-
inflammatory drugs (NSAIDs) exist in clinical practice that
unselectively decrease PGE2 production via inhibition of COX,
but these drugs are all associated with adverse effects. Hence,
selective inhibition of PGE2 production with small molecule
inhibitors could therefore be a desirable therapeutic strategy in
inflammation and cancer (Bergqvist et al., 2020).

Interleukin-8 (IL-8) is a potent chemoattractant and activator
of neutrophils. IL-8 signaling is implicated in multiple chronic
inflammatory diseases (Russo et al., 2014) and cancer (Waugh
and Wilson, 2008). For example, a recent meta-analysis
concluded that patients suffering from systemic lupus
erythematosus (SLE) have increased levels of circulating IL-8
(Mao et al., 2018). Patients with central neuropsychiatric SLE
have increased concentration of IL-8 in cerebrospinal fluid
compared to patients with non-central neuropsychiatric SLE
(Yoshio et al., 2016). IL-8 is also associated with renal damage
and pulmonary fibrosis in SLE patients (Lit et al., 2006;
Nielepkowicz-Goździńska et al., 2014). Given that IL-8 is a
stimulant for neutrophil activation, which plays a significant
role in the pathogenesis of SLE (Kaplan, 2011), targeting IL-8
secretion or signaling could constitute a therapeutic strategy for
SLE. A similar role of neutrophils and net formation has been
reported in patients with dermatomyositis (DM) (Zhang et al.,
2014; Peng et al., 2018). In cancer, IL-8 is highly expressed in
several types of cancer tissues (David et al., 2016) and serum
concentration of IL-8 correlates with tumor burden (Alfaro et al.,
2017). The tumor-favoring actions of IL-8 include promotion of
angiogenesis, increased survival of cancer stem cells, and
attraction of myeloid cells that indorse the immunosuppressive
tumor microenvironment (Alfaro et al., 2017).

In this study, we aimed to evaluate the effect of 57 chemical
probes, high-quality tool compounds, and relevant control drugs
Frontiers in Pharmacology | www.frontiersin.org 2
on eicosanoid production and IL-8 secretion in human whole
blood. A chemical probe is defined as “… a selective small-
molecule modulator of a protein’s function that allows the user to
ask mechanistic and phenotypic questions about its molecular
target in biochemical, cell-based or animal studies” (Arrowsmith
et al., 2015), and these compounds follow the criteria of in vitro
potency (IC50 or Kd <100 nM), high selectivity versus other
protein subfamilies (>30-fold), and on-target cell activity at 1
µM. The chemical probes and other high-quality tool
compounds included are mainly epigenetic modulators and
kinase inhibitors that were produced in academic
collaborations or donated by pharmaceutical companies within
the Structural Genomic Consortium (SGC, www.thesgc.org),
which aims to investigate novel targets for drug development
in open science and in collaboration with the pharmaceutical
industry. These inhibitors were tested here at one concentration
(in triplicates, n = 4–15 donors) based on previous knowledge of
binding affinities and toxicity in vitro, as assessed using other
validated assays in our laboratories (https://ultra-dd.org/tissue-
platforms/cell-assay-datasets).
MATERIALS AND METHODS

Ethical Approval and Consent to
Participate
Ethical approval for this study was granted by local research
ethics committee at Karolinska University hospital (Dnr 02-196)
and the Regional Ethical Review Board in Stockholm (Dnr 2015/
2001-31/2). Full informed consent according to the Declaration
of Helsinki was obtained from all patients.

Collection of Blood
Peripheral venous blood was drawn from 10 females and 6 males,
aged between 27 and 81 years. Healthy controls (n = 4) and two
patient groups were included: SLE (n = 9) and DM (n = 3).
Patients with diagnosis SLE or DM and aged 18 or older were
recruited from the Rheumatology Clinic at Karolinska University
Hospital. Patients with ongoing treatment including Sendoxan
(cyclophosphamide) and Benlysta (belimumab) or with kidney
failure as defined by present dialysis or previous kidney
transplantation were excluded. Disease activity measurements
were not obtained at the time of sampling. For healthy control
and patients characteristics, see Supplementary Table 1. The
blood was collected in tubes containing sodium heparin (1000
U/ml).

Inhibitors
The inhibitors (chemical probes and other high-quality tool
compounds) tested here were obtained through the SGC
(www.thesgc.org) and supplied by different distributers
(Supplementary Table 2). Inhibitors and control drugs
(Supplementary Table 2) were reconstituted at 10 mM in
DMSO (D2250, Sigma-Aldrich), aliquoted in Eppendorf tubes
or 96-well plates, and kept at −80°C. A fresh aliquot was used at
each experiment. Diclofenac (dual COX-1/2 inhibitor) was used
May 2020 | Volume 11 | Article 613
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as positive control for inhibition of prostanoid production.
Lipopolysaccharide (LPS; L6529, Sigma-Aldrich) was
reconstituted in phosphate-buffered saline (PBS) (D8537,
Sigma-Aldrich) to a final concentration of 0.1 mg/ml and kept
at +8°C.

Whole Blood Assay
Inhibitors and vehicle control (DMSO) were diluted in PBS at
room temperature with no direct light on. The treatments were
prepared in 25 µl portions to U-shaped 96-well plate and 200 µl
of freshly drawn heparin blood (< 2 h at room temperature) was
added to the plate. The plate was incubated at 37°C for 30 min
and then 25 µl of 0.1 mg/ml LPS in PBS was added followed by
pipetting up and down 3 times (final concentration of LPS was 10
µg/ml). The tested concentration for inhibitor was 0.1 or 1 µM
(Supplementary Table 1). The plate was incubated for 24 h at
37°C and then centrifuged at 3000g for 10 min at 4°C. Working
on ice, 100 µl plasma was recovered to a new plate (for
prostanoid profiling) and from this 20 µl was transferred to a
second plate (for IL-8 quantification). The plates were sealed
with aluminum foil and stored at -80°C.

Extraction of Lipids
Plasma samples (80–240 µl) were thawed on ice and spiked with
50 µl deuterated internal standard mix containing 17 ng 6-keto-
PGF1a-d4, 8 ng PGF2a-d4, 12 ng PGE2-d4, 8 ng PGD2-d4, 8 ng
thromboxane B2 (TXB2)-d4, and 8 ng 15-deoxy-D12,14PGJ2-d4
(Cayman Chemical Company) prepared in 100% methanol.
Protein precipitation was performed by addition of 800 µl
100% methanol, followed by vortexing, and centrifugation at
3000g for 10 min at 4°C. The supernatants were collected in a
new plate and evaporated under vacuum for 4 h. The evaporated
samples (100–200 µl) were diluted to 1 ml with 0.05% formic
acid in water and then loaded onto Oasis HLB 1 cc 30 mg plate
(Waters Corporation, USA) that had been pre-conditioned with
1 ml of 100% methanol and 1 ml of 0.05% formic acid in water.
The plate was washed with 10% methanol, 0.05% formic acid in
water and lipids were eluted with 100% methanol. The eluates
were dried under vacuum overnight and stored at −20°C until
reconstituted in 50 µl of 20% acetonitrile in water prior to
analysis with l iquid chromatography tandem mass
spectrometry (LC-MS/MS).

Lipid Profiling by LC-MS/MS
Lipids were quantified in negative mode with multiple reaction
monitoring method, using a triple quadrupole mass spectrometer
(Acquity TQ detector, Waters) equipped with an Acquity H-class
UPLC (Waters). Eicosanoid were purchased from Cayman
Chemicals and individually optimized for based on precursor
ion m/z, cone voltage, collision energy, and fragment ion m/z
(Supplementary Table 3). An eicosanoid mix containing all
standards of interest was used to check interference in the LC-
MS/MS analysis. Lysophophatidylcholine (LPC)(14:0) and LPC
(18:0) were used to set optimal analytical parameters for
quantification of LPCs. Separation of lipids was performed on a
50 × 2.1-mm Acquity UPLC BEH C18 column 1.7 µm (Waters)
with a 12-min stepwise linear gradient (20%–95%) at a flowrate of
Frontiers in Pharmacology | www.frontiersin.org 3
0.6 ml/min with 0.05% formic acid in acetonitrile as mobile phase
B and 0.05% formic acid in water as mobile phase A. Data were
analyzed using MassLynx software, version 4.1, with internal
standard calibration and quantification to external standard
curves for prostanoids. LPCs were normalized as area-% within
each injection. Only lipids with peaks intensities of signal-to-
noise greater than 10 (S/N >10) were considered in our
data analysis.

Development of Whole Blood Assay
The whole blood assay was developed to screen for changes in
multiple eicosanoids. Each eicosanoid and corresponding
deuterated variant were individually optimized in the LC-MS/
MS analysis. A dilution curve containing 6-keto PGF1a-d4,
PGE2-d4, PGD2-d4, PGF2a-d4, TXB2-d4, 15d-PGJ2-d4, LTB4-
d4, LTC4-d5, LTD4-d5, 5-HETE-d8, 12-HETE-d8, 15-HETE-d8,
and undeuterated variants of 13-HODE, RvD1, RvD2, 17-
hydroxy DHA, and protectin DX was spiked into 100 µl
plasma at different stages throughout the extraction. A dilution
curve was spiked in water at the same step. The dilution curve
ranged from 0.006 to 1.5 pmol as final amount injected on the
column in the LC-MS/MS analysis. This enabled us to investigate
the lower limit of quantification (LLOQ), recovery efficacy, and
matrix effect for each eicosanoid. The LLOQ injected on column
was considered as great (0.02–0.05 pmol), good (0.1–0.2 pmol),
or poor (0.4–1.5 pmol). Eicosanoids with great LLOQ were
PGE2, PGF2a, TXB2, RvD1, RvD2, LTB4, protectin DX, and
13-HODE; good LLOQ were 6-keto PGF1a, PGD2, 5-HETE, 15-
HETE, and LTD4; poor LLOQ were 15d-PGJ2, 12-HETE, 17-
hydroxy DHA, and LTC4. The extraction recovery rates were
33%–125%. The response in plasma compared to 20%
acetonitrile were 52%–116% due to matrix effects. The
estimated LLOQ in 100 µl plasma was approximately 1 ng/ml
for the best performing eicosanoids including PGE2, TXB2,
PGF2a, RvD1, RvD2, and protectin DX. We can conclude that
the method provided similar quantitative performance in plasma
for many eicosanoids.

LPS at 10 µg/ml induced PGE2 and TXB2 production in
human whole blood, which are the two dominant eicosanoids
produced under these conditions (Mazaleuskaya et al., 2016). All
other eicosanoids were below the LLOQ. We chose 10 µg/ml of
LPS based on the consensus in the literature for this type of assay,
yielding a robust amount of PGE2 (49 ± 4 ng/ml, n = 5 donors)
and TXB2 (24 ± 9 ng/ml, n = 5 donors). The prostanoid
production was completely blocked using the dual COX-1/2
inhibitor diclofenac (10 µM). High concentration of DMSO
(0.1%) slightly decreased PGE2 production by 20% (n = 2
donors) while DMSO at 0.01% or 0.001% had no effect. The
intra-assay coefficient of variation (CV, n = 20 technical
replicates) was 12% and 11% for PGE2 and TXB2, respectively.
The inter-assay CV for control material (n = 3 donors) was 20%
for PGE2 and 30% for TXB2. This was performed on blood that
was drawn, incubated, extracted, and analyzed at separate
occasions. The suppression in signal due to matrix effects and/
or recovery efficiency varied between donors and experiments,
ranging from 10% to 70% suppression compared to signal in
extracted blank (mean ± SD, n = 6 donors, PGE2: 45% ± 25%,
May 2020 | Volume 11 | Article 613
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TXB2: 40 ± 20%). In summary, 24-h incubation of whole blood
with 10 µg/ml LPS resulted in profound induction of the COX-1/
2 products PGE2 and TXB2 that was efficiently blocked by
diclofenac at 10 µM.

Quantification of IL-8
IL-8 was quantified in plasma by human IL-8 (CXCL8) enzyme-
linked immunosorbent assay (ELISA) development kit (3560-
1H, Mabtech) according to manufacturer’s instructions.

Statistical Analyses
Data are presented as mean ± SEM if not stated otherwise.
Statistical analyses were performed using GraphPad Prism 6
(GraphPad Software). One-sample t-test and two-sample t-test
with Bonferroni correction were used to test significant
difference. Statistical significance level was set to p < 0.05.
RESULTS

Effect on PGE2 and TXB2 Production
Our screening of inhibitors suggested that selected kinase
inhibitors affected prostanoid production (Figure 1). The
strongest reduction in PGE2 production was observed by
MEK-1 inhibitor PD0325901 (31% ± 6%, p = 0.001, n = 4)
and MEK-1/2 inhibitor trametinib (34% ± 7%, p < 0.0001, n =
15). Moderate suppression in PGE2 concentration was found for
MEK-1/2 inhibitor selumetinib (65% ± 9%, p = 0.02, n = 5),
ERK-1/2 inhibitor SCH772984 (76% ± 11%, p = 0.04, n = 13),
and p38 inhibitor skepinone-L (76% ± 8%, p = 0.01, n = 13).
However, the tested p38 inhibitor pamapimod did not affect
PGE2 production. Two of these compounds decreased TXB2
production, namely trametinib (63% ± 6%, p = 0.02, n = 15) and
selumetinib (74% ± 7%, p = 0.02, n = 5). Diclofenac, here used as
a positive control for inhibition of prostanoid production,
blocked the prostanoid production while selective COX-2
inhibitor NS-398 inhibited only PGE2 production, in
Frontiers in Pharmacology | www.frontiersin.org 4
agreement with previously reported data for these compounds
in whole blood assay (Larsson et al., 2019). The JAK inhibitor
tofacitinib increased both PGE2 (286% ± 51%, p = 0.01, n = 6)
and TXB2 (169% ± 20%, p = 0.02, n = 6) production. The IRAK-
1/4 inhibitor I slightly increased the concentrations of PGE2
(139% ± 15%, p = 0.04, n = 7) and TXB2 (133% ± 8%, p = 0.008,
n = 7).

We chose to investigate the strongest observed effects in more
detail by performing concentration–response experiments for
PD0325901, trametinib, selumetinib, and tofacitinib. All three
MEK inhibitors showed a concentration-dependent response on
both PGE2 and TXB2 production while tofacitinib showed a
concentration-dependent response on PGE2 production
(Figure 2).

Effect on IL-8 Secretion
In line with the effect on prostanoid production, reduction in IL-8
secretion was found for PD0325901 (24% ± 9%, p = 0.03, n = 3),
trametinib (27% ± 5%, p < 0.0001, n = 13), and selumetinib (45% ±
10%, p = 0.03, n = 3) (Figure 3). Moderate reduction in IL-8
secretion was found for SCH772984 (62% ± 9%, p = 0.002, n = 12)
anddiclofenac (66%±8%, p = 0.003, n = 11).We could also observe
that tofacitinib increased IL-8 secretion (225% ± 57%, p = 0.16,
n = 3), however not with statistical significance.
Effect on LPC Profile
We measured LPC species within our targeted LC-MS/MS
analysis. LPCs are mainly generated by metabolism of
membrane phosphatidylcholine by cytosolic phospholipase A2

(Burke and Dennis, 2009). These lipids have been reported to be
involved in several cellular processes; sometimes with opposing
effect depending on degree of saturation, concentration, and
biological context (Sevastou et al., 2013; Drzazga et al., 2014). We
observed no difference in total LPC or LPC profile when whole
blood was treated with LPS neither did any of the tested
inhibitors alter the LPC profile (Figure 4).
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DISCUSSION

We have tested the inhibitory effect on prostanoid production
and IL-8 secretion in human whole blood for 57 high-quality
inhibitors with known target specificities and in vitro potencies.
None of the tested epigenetic modulators, which are acting on
demethylases, bromodomains, or methyltransferases, affected
PGE2 or IL-8 concentration. Inhibition of MEK-1/2 or ERK
decreased PGE2 production and IL-8 secretion in this assay. This
effect was observed for allosteric inhibitor trametinib (MEK-1/2),
non-ATP-competitive inhibitors PD0325901 (MEK-1) and
selumetinib (MEK-1/2), and ATP-competitive inhibitor
SCH772984 (ERK-1/2). These kinase targets are part of the
RAS/RAF/MEK/ERK signaling transduction pathway, where
inhibition of MEK prevents the downstream phosphorylation
Frontiers in Pharmacology | www.frontiersin.org 5
and activation of ERK that ultimately regulates cellular responses
such as survival, lipid metabolism, and protein translation
(McCubrey et al., 2007). For example, MEK-1/2 inhibitor
PD184352 decreased PGE2 production in melanoma cell line
by decreased COX-2 expression due to inhibition of
phosphorylation on ERK (Zelenay et al., 2015) and trametinib
reduced IL-8 production in melanoma cell line (Hartman et al.,
2017). We found that our positive control diclofenac for blocking
prostanoid production decreased IL-8 secretion, which is
explained by the fact that PGE2 stimulates IL-8 production in
cultured cells (Agro et al., 1996; Caristi et al., 2005; Aso et al.,
2012; Venza et al., 2012). While our study mainly focused on
identifying inhibitory effects, we observed that JAK inhibitor
tofacitinib increased both PGE2 production and IL-8 secretion.
Tofacitinib is used to treat rheumatoid arthritis and it is known
that tofacitinib can increase the expression of pro-inflammatory
mediators, including PGE2, in macrophages by acting inhibitory
on the expression of anti-inflammatory IL-10 (Kothari et al.,
2014). The increased formation of pro-inflammatory PGE2 and
platelet activating thromboxane A2 (as measured by stable
metabolite TXB2) in human whole blood may be associated
with the recently recognized increased risk of thromboembolism
associated with JAK inhibitors in treatment of rheumatoid
arthritis (Scott et al., 2018). Moreover, we did not observe
any changes in LPC profile by LPS alone or the tested
compounds. While LPCs can be generated by degradation of
phosphatidylcholine, LPCs are continuously incorporated back
into the plasma membrane (Law et al., 2019). This would result
in no net change in LPCs while other phospholipid species may
change in abundance. We acknowledge that the limitation of our
study is the usage of one concentration per tested inhibitor.
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However, the used concentrations were based on reported IC50

and/or EC50 values as well as solid experiences in our laboratories
using other validated assay systems (https://ultra-dd.org/index.
php/tissue-platforms/cell-assay-datasets). The concentrations
were selected to avoid cellular toxicity but we acknowledge that
greater concentrations might be of relevance considering the
bioavailability in blood. Indeed, we demonstrated in
concentration–response experiments that greater inhibitory
effect could be achieved by increasing the concentration for the
MEK inhibitors. However, this increases the risk of off-target
effects and/or introduction of cellular toxicity that needs to be
taken into account in experimental design and interpretation of
results. In conclusion, we identified inhibitors for MEK or ERK
as anti-inflammatory hits in our human whole blood assay.
Based on the suppression in PGE2 production and IL-8
secretion, further investigation of the MEK/ERK signaling
pathway may inform future therapeutic strategies to treat
inflammatory diseases such as SLE and DM.
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