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Abstract
Background Epithelial–mesenchymal transition (EMT) might be central to lung cancer development in
smokers and COPD. We illustrate EMT changes in a broader demographic of patient groups who were
diagnosed with nonsmall cell lung cancer (adenocarcinoma and squamous cell carcinoma). These included
COPD current and ex-smokers, patients with small airway disease and normal lung function smokers
compared to normal controls.
Methods We had access to surgically resected small airway tissue from 46 subjects and assessed for
airway wall thickness and immunohistochemically for the EMT biomarkers E-cadherin, N-cadherin,
S100A4, vimentin and epidermal growth factor receptor (EGFR). All tissue analysis was done with a
computer and microscope-assisted Image-Pro Plus 7.0 software.
Results Airway wall thickness significantly increased across all pathological groups (p<0.05) compared to
normal controls. Small airway epithelial E-cadherin expression markedly decreased (p<0.01), and increases
in N-cadherin, vimentin, S100A4 and EGFR expression were observed in all pathological groups
compared to normal controls (p<0.01). Vimentin-positive cells in the reticular basement membrane, lamina
propria and adventitia showed a similar trend to epithelium across all pathological groups (p<0.05);
however, such changes were only observed in reticular basement membrane for S100A4 (p<0.05).
Vimentin was higher in adenocarcinoma versus squamous cell carcinoma; in contrast, S100A4 was higher
in the squamous cell carcinoma group. EGFR and N-cadherin expression in both phenotypes was markedly
higher than E-cadherin, vimentin and S100A4 (p<0.0001).
Conclusion EMT is an active process in the small airway of smokers and COPD diagnosed with nonsmall
cell lung cancer, contributing to small airway remodelling and cancer development as seen in these patients.

Introduction
Over 3 million people died from COPD in 2019 and it is currently the third most common cause of death
globally [1]. The main features of COPD include a gradual narrowing of the airways and small airway
fibrosis and obliteration, resulting in persistent airflow limitation and difficulty breathing when performing
physical activities [2]. Lung cancer is the primary cause of cancer-related death, and there were over
2 million newly diagnosed cases worldwide in 2020 [3]. About 80–85% of lung cancer is nonsmall cell
lung cancer (NSCLC), with the highest number of cancer-related deaths globally. Adenocarcinoma is the
most frequently occurring histological type of NSCLC, accounting for 40% of cases, followed by
squamous cell carcinoma, which makes up approximately 25–30% of cases [4, 5]. Studies have shown that
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smokers with COPD, and the presence of emphysema in particular, have a four- to six-fold more
significant risk of developing lung cancer than smokers with normal lung function [6, 7]. Lung cancer is a
common cause of death in COPD patients, especially those with severe disease [8, 9]. COPD and lung
cancer have common characteristics, including elevated mortality rates and risk factors such as cigarette
smoking. Several mechanisms have been elucidated for the correlation between COPD and lung cancer,
such as genetic mutations, chronic inflammation and dysregulated activation of bronchioalveolar stem cells
but especially epithelial–mesenchymal transition (EMT) [10, 11].

EMT is the process of epithelial cells undergoing multiple molecular changes to obtain a mesenchymal
phenotype with the potential to migrate through the reticular basement membrane (Rbm) to the
sub-epithelial lamina propria (LP) [12, 13]. It is a widely recognised mechanism in embryonic
development (type-1 EMT), while pathological forms promote fibrosis (type-2 EMT) and epithelial
malignancy (type-3 EMT), mostly seen in cancer development, invasion and metastasis [14, 15].
Furthermore, we have reported EMT activity as central to fibrotic small airway remodelling and epithelial
malignancies in COPD patients [11, 16–18]. Hence, EMT could play a vital role in the connection between
COPD and lung cancer, which can be triggered by smoking.

To explore this further, we investigate here the EMT-related changes and airway wall thickness in the small
airways of broader demographic patient groups who are smokers with lung cancer and with or without COPD.
We also made an attempt to differentiate EMT activity based on the type of lung cancer in these patients.

Materials and methodology
Participants
We had access to surgically resected lung tissues away from the primary tumour mass from 35 participants
who consented to clinical samples at Royal Hobart Hospital (table 1). The thoracic surgeon (A.H.)
performed the surgeries according to appropriate guidelines. There were 22 patients with adenocarcinoma
and 13 patients with squamous cell carcinoma. 19 participants had mild–moderate COPD classified as
Global Initiative for Obstructive Lung Disease (GOLD) 1 and 2, of which nine were current smokers with
COPD (COPD-CS) and 10 were ex-smokers (>1 year smoking cessation) with COPD (COPD-ES). In
addition, seven participants were normal lung function smokers (NLFS) and nine participants had small
airway disease (SAD). The Tasmanian Health & Medical Human Research Ethics Committee approved the
study (Ethics ID: H0012374), while tissue from 11 healthy non-smoking individuals who had died due to
causes unrelated to pulmonary diseases were obtained from the James Hogg Lung Registry at the
University of British Columbia (Ethics ID: H00–50110) for the normal control (NC) group.

Immunohistochemistry
Resected small airway tissue sections were cut at 3 μm from the paraffin-embedded blocks as previously
reported [19–21]. Tissue sections were dewaxed and rehydrated in distilled water using xylene, absolute
ethanol and 70% ethanol (v/v) in distilled water, respectively. Heat-induced epitope retrieval was used with

TABLE 1 Patient demographics#

Groups NC NLFS SAD COPD-CS COPD-ES

Subjects, n 11 7 9 9 10
GOLD, n
GOLD 1 3 6
GOLD 2 6 4

Sex, n
Female 6 4 7 5 4
Male 5 3 2 4 6

Age, median (range), years 47 (35–87) 72 (52–79) 59 (42–84) 63 (59–78) 68.5 (56–85)
Smoking, pack-years NA 20.69±21.44 35.67±20.54 32.25±15.81 28.8±17.78
Post-BD FEV1 % pred NA 107.5±22.98 86.4±21.8 82.14±12.52 83.68±11.29
Post-BD FEV1/FVC % NA 79.7±6.45 73.84±3.21 66.39±3.55 63.39±4.83
Post-BD FEF25–75%, L·s

−1 NA 86.64±16.4 46.6±12.78 35.63±6.26 39.84±11.52

Data presented as mean±SD, unless otherwise indicated. NC: normal control; NLFS: normal lung function
smoker; SAD: small airway disease; COPD-CS: current smoker with COPD; COPD-ES: ex-smoker with COPD;
GOLD: Global Initiative for Chronic Obstructive Lung Disease; Post-BD: post-bronchodilator; FEV1: forced
expiratory volume in 1 s; FVC: forced vital capacity; FEF25–75%: forced expiratory flow at 25–75% FVC.
#: adenocarcinoma n=22; squamous cell carcinoma n=13.
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a Decloaking Chamber (Biocare Medical, Queensland, Australia) at 110°C for 15 min with heat retrieval
citrate solution (pH 6; S2369, Dako, Victoria, Australia). Endogenous enzyme blocking was performed
with 3% hydrogen peroxide in distilled water (v/v). Immunochemical staining was carried out with
epithelial junctional marker E-cadherin (1:50 dilution; M3612, Dako) and mesenchymal markers mouse
monoclonal N-cadherin (1:100 dilution; ab98952, Abcam, Victoria, Australia), rabbit polyclonal S100A4
(1:1000 dilution; A5114, Dako), mouse monoclonal vimentin (1:200 dilution; M7020, Dako) and
epidermal growth factor receptor (EGFR) (1:150 dilution; ab32077, Abcam), followed by an
enzyme-conjugated polymer backbone that carries secondary antibodies (Dako REAL EnVision detection
system, K5007), with 3,3′-diaminobenzidine (DAB+) as the chromogen for visualisation. In addition, for
correlation purposes, we incorporated an overlapping group of smokers and COPD tissues from a previous
study [16] in which small airways had been stained in the same way for α-smooth muscle actin (α-SMA),
collagen-1 and fibronectin.

Quantification of biomarkers expression in small airway
All quantification was done using a Leica camera (ICC50W, Leica, Sydney, NSW, Australia), microscope
(DM500, Leica) and computer-assisted Image-Pro Plus 7.0 software (Media Cybernetics, Rockville, MD,
USA). Non-overlapping images of small airways in each tissue section were taken at a ×40 bright field.
Eight images were randomly selected from the total number of images using an online random number
generator program (www.calculatorsoup.com) for quantification. The number of cells positive for S100A4
and vimentin in small airway epithelium and Rbm were quantified and normalised per millimetre of Rbm
length. Additionally, the percentage of epithelial cells with positive expression of EGFR and EMT markers
(N-cadherin, E-cadherin, S100A4 and vimentin) was measured. The number of positive cells in the LP and
adventitia are presented as cells·mm−2 of the area, respectively.

Measurement of small airway wall thickness
The small airway images of each subject were taken at ×40 bright field, and eight of the total images were
randomly selected (same as mentioned above). The airway sub-epithelial regions were divided into the
Rbm, which refers to the area between the lower margin of the epithelium and the upper margin of the LP;
the LP, which is the area between the lower limit of the Rbm and the upper margin of the muscle layer;
and the adventitia, which is the region between the lower margin of the muscle layer and the margin of the
alveolar tissue interface. The thickness of each layer was determined using Image-Pro Plus 7.0 software by
drawing a line along the outer margins of each layer and using the software’s automated distance and area
calculator to calculate the distance and area.

Statistics
GraphPad version 9.0 (GraphPad Software Inc., La Jolla, CA, US) was used for statistical analysis.
Nonparametric ANOVAs were performed using the Kruskal–Wallis test; specific group differences without
correction for multiple comparisons were assessed using a one-way ANOVA test with Dunn’s multiple
comparison test. Correlation analysis was performed with regression analyses using Spearman’s rank test.
A p-value <0.05 was deemed to be statistically significant.

Results
Small airway wall thickness
The thickness of small airway wall sub-epithelial area was significantly increased in all pathological groups
compared to NC. Specifically, markedly thickened Rbm (median 11.23 µm, range 7.20–15.20 µm,
p<0.001), LP (median 57.95 µm, range 39.72–78.99 µm, p<0.001) and adventitia (median 107.20 µm,
range 56.91–186.20 µm, p<0.001) were observed in COPD-CS compared to NC (Rbm: median 4.74 µm,
range 3.20–11.91 µm; LP: median 21.74 µm, range 10.00–48.37 µm; adventitia: median 41.23 µm, range
24.01–88.82 µm). In addition, the Rbm thickness was notably high in SAD (median 12.89 µm, range
7.67–17.84 µm, p<0.001) compared to NC. NLFS and COPD-ES groups also showed significantly thicker
Rbm (p<0.005), LP (NLFS p<0.005; COPD-ES p<0.05) and adventitia (p<0.005) (figure 1).

EMT marker expression in small airway epithelium
Representative images of EMT marker expression in small airways of COPD-CS and NC are shown in
figure 2. Intense positive mesenchymal marker expression (brown) was seen in COPD-CS (figure 2d, f, h, j)
compared to NC (figure 2c, e, g, i), while the epithelial marker was lost in COPD-CS (figure 2b) versus
NC (figure 2a). Epithelial marker E-cadherin expression significantly decreased across all pathological
groups compared to NC (p<0.01) (figure 3a). In contrast, a significant increase in mesenchymal marker
N-cadherin was observed in SAD (p<0.05) and COPD-CS (p<0.01) compared to NC (figure 3b). Even
though the increase in N-cadherin expression was not noteworthy in every pathological group compared to
NC, the ratio of N-cadherin to E-cadherin was substantially increased by over 20-fold in all pathological
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groups, particularly the COPD-CS group, which showed a 24-fold increase (figure 4a). Epithelial vimentin
and S100A4 expression were significantly upregulated in all pathological groups compared to NC (p<0.05
and p<0.05, respectively) (figure 3c, d). In addition, the epithelial expression percentage ratio of both
vimentin and S100A4 to E-cadherin increased by 1.67–4.79-fold across the pathological groups (figure 4b,
c). Similarly, epithelial EGFR expression was markedly increased in all pathological groups compared to
NC (p<0.05) (figure 3e); the expression ratio to E-cadherin also showed a 19–40-fold increase across all
the pathological groups compared to NC (figure 4d).
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FIGURE 1 Small airway sub-epithelial layer thickness across all pathological groups compared to normal control (NC). a) Reticular basement
membrane (Rbm) thickness; b) lamina propria (LP) thickness; c) adventitia thickness. NLFS: normal lung function smoker; SAD: small airway
diseases; COPD-CS: current smoker with COPD; COPD-ES: ex-smoker with COPD. *: p<0.05; **: p<0.01; ***: p<0.005; ****: p<0.001.
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FIGURE 2 Representative images of epithelial–mesenchymal transition marker expression in COPD current
smoker (COPD-CS) and normal control (NC) small airways. a, b) E-cadherin expression; c, d) N-cadherin
expression; e, f ) S100A4 expression; g, h) vimentin expression; i, j) epidermal growth factor receptor (EGFR)
expression. Bright field ×40. Scale bars: 50 μm.
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Mesenchymal marker expression in Rbm, LP and adventitia
Similar to the epithelium, Rbm cells were positive for vimentin and S100A4 across all pathological groups
compared to NC (p<0.01 and p<0.05, respectively) (figure 5a, b). Rbm vimentin and S100A4 expression
negatively correlated with E-cadherin expression (r= −1.32, p<0.005 and r= −0.45, p<0.05, respectively).
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ex-smoker with COPD. *: p<0.05; **: p<0.01; ***: p<0.005; ****: p<0.001.
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In addition, compared to NC, vimentin cell counts (cells·mm−2) in LP and adventitia showed a significant
increase across all pathological groups (p<0.01 and p<0.05, respectively) (figure 5c, e); however, this
increase was not observed for S100A4 (figure 5d, f ). Interestingly, a reverse trend was observed with
vimentin-positive cells in Rbm, LP and adventitia in COPD-ES, which, however, was not observed with
S100A4.

Correlation between EMT marker expression and small airway thickness in COPD
We observed a positive correlation between mesenchymal markers and small airway wall thickness in the
COPD group. Specifically, epithelial vimentin expression and Rbm S100A4 expression showed a
significant positive correlation with Rbm thickness (r′=0.523, p<0.01 and r′=0.537, p<0.01, respectively).
Epithelial vimentin expression also positively correlated with LP thickness (r′=0.505, p<0.01) and
epithelial S100A4 expression positively correlated with adventitial thickness (r′=0.429, p<0.05).

Correlation between EMT markers and airway wall remodelling factors (α-SMA, fibronectin and
collagen-1) in COPD
We used expression data for small airway wall remodelling factors in sub-epithelial layers, including
α-SMA, collagen-1 and fibronectin, from our previous study [16] for correlation analysis. The expression
of these markers was positively correlated with EMT markers. Significantly, epithelial EGFR expression
was positively correlated with α-SMA expression in Rbm (r′=0.685, p<0.02). Epithelial N-cadherin and
Rbm S100A4 expression was positively correlated with collagen-1 expression in LP (r′=0.411, p<0.05 and
r′=0.375, p<0.05, respectively), and epithelial vimentin expression was positively correlated with
adventitial collagen-1 expression (r′=0.435, p<0.03).
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Correlation between EMT marker expression, smoking history and lung physiology parameters
in patients with COPD
We observed a positive correlation between smoking pack-years and Rbm thickness (r′=0.456, p=0.0249)
(figure 6a) and similar significant positive correlations of smoking pack-years with Rbm vimentin and
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S100A4 expression (r′=0.378, p=0.05 and r′=0.475, p=0.0172, respectively) (figure 6c, e), and epithelial
N-cadherin and EGFR expression (r′=0.452, p<0.01 and r′=0.440, p<0.05, respectively) in the COPD
groups (figure 6b, f ). We also observed a close to statistically significant positive correlation between
epithelial vimentin expression and pack-years (figure 6d). EMT marker expression was negatively
correlated with lung function (as assessed by forced expiratory volume in 1 s (FEV1)/forced vital capacity
(FVC), particularly Rbm and LP S100A4 expression (r′= −0.410, p<0.05 and r′= −0.552, p<0.01,
respectively), and EGFR expression was negatively correlated with forced expiratory flow at 25–75% of
FVC (FEF25–75%) (r′= −0.415, p<0.05). We also found that airway thickness in NLFS and COPD-CS,
particularly Rbm and adventitial thickness, negatively correlated with FEV1/FVC (r′= −0.646, p<0.005
and r′= −0.649, p<0.005, respectively), and negatively correlated with FEF25–75% (r′= −0.530, p<0.05 and
r′= −0.531, p<0.005, respectively).
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FIGURE 6 Correlation between epithelial–mesenchymal transition marker expression and smoking history.
a) Reticular basement membrane (Rbm) thickness versus smoking history; b) epithelial N-cadherin expression
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receptor (EGFR) expression percentage versus smoking history.
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Correlation between EMT marker expression and cancer morphology type
Adenocarcinoma and squamous cell carcinoma phenotypes were more commonly seen in the COPD-CS
group (figure 7a, b). Airway expression of all mesenchymal markers was significantly higher in both
cancer phenotypes than in NC, particularly N-cadherin and EGFR (figure 7c). EGFR and S100A4
expression was relatively higher in squamous cell carcinoma than in adenocarcinoma, particularly in
COPD-CS (figure 7d, e).

Discussion
In the current study, we observed EMT changes and small airway fibrotic remodelling in a more detailed
subgroup of patients. Specifically, the thickness of sub-epithelial layers, i.e. the Rbm, LP and adventitia,
was markedly increased in both the current smoker groups, with and without COPD (COPD-CS and
NLFS), compared to NC. Although sub-epithelial layers were significantly thickened in the COPD-ES
group compared to NC, they showed a reverse trend compared to the COPD-CS group, though still higher
than in the NLFS group. This indicates the potential of smoking cesstion to reverse small airway wall
thickening. This work provides a basis for investigating the effects of longitudinal smoking cessation on
EMT, angiogenesis, transforming growth factor-β/Smad, Wnt/β-catenin signalling and inflammatory
pathways. Such studies will be highly informative in understanding what gets switched off on smoking
cessation and what does not, given that ex-smokers still get lung cancer and continue to have fibrotic
changes.

We investigated EMT biomarker expression in each sub-epithelial layer and correlated it with the thickness
in these patients. EMT markers in the layers are a sign of cell migration, i.e. type 3 EMT activity. We
observed a substantial increase in vimentin expression in all sub-epithelial layers of the small airway wall
in all pathological groups. The most significant increase was observed in the COPD-CS and NLFS groups
compared to the NC group. Additionally, we found a robust positive correlation between vimentin
expression and Rbm and LP thickness.

Our findings indicated a significant increase in S100A4 or fibroblast-specific protein 1 levels within the
small airway epithelium and Rbm of both COPD groups and NLFS compared to NC. S100A4 expression
positively correlated with Rbm and adventitial thickness. The correlation between vimentin, S100A4 and
airway thickness is further supported by the positive correlation with the expression of the airway wall
remodelling factors α-SMA, fibronectin and collagen-1 in sub-epithelial layers. Indeed, the airway
epithelium of COPD patients exhibits heightened cellular expression of mesenchymal markers such as
S100A4 and vimentin [17]. We have previously shown that EMT increases myofibroblasts, leading to the
formation and progression of fibrosis in COPD patients [16, 22]. EMT-mediated fibrosis is also one of the
causes of lung cancer [23]. Therefore, the prevalence of lung cancer among COPD patients is primarily
attributed to the presence of airway fibrosis and remodelling [24, 25]. Additionally, elevated levels of
S100A4 and vimentin are inversely correlated with lung function, indicating a potential physiological
impact [26].

Furthermore, the other main characteristic of EMT is the decrease in E-cadherin levels. E-cadherin is
crucial for preserving the connection between epithelial cells and arranging the cytoskeleton [27]. By
contrast, N-cadherin is an intercellular junctional mesenchymal marker. The presence of N-cadherin
suggests the occurrence of EMT, and its expression has been linked to the progression of different types of
carcinomas [28–30]. We observed a marked decrease in E-cadherin across all pathological groups, along
with an increase in N-cadherin, with a particularly high increase in the COPD-CS group compared to the
NC group. The ratio of N-cadherin to E-cadherin in the COPD-CS group was approximately 24-fold
higher, indicating that small airway epithelium lost the epithelial characteristics and transformed to the
mesenchymal phenotype in all pathological groups. The negative correlations of epithelial vimentin and
S100A4 expression with E-cadherin expression further indicate that mesenchymal transition is progressing
(data not shown). In addition, we observed that N-cadherin was significantly elevated whereas E-cadherin
was significantly downregulated in both carcinoma phenotypes compared to NC, and N-cadherin was
higher than the other mesenchymal markers, vimentin and S100A4. Cancer-related EMT involves
increased expression of N-cadherin and decreased expression of E-cadherin. This shift in cadherin
expression is linked to augmented migratory and invasive characteristics, leading to lower patient survival
rates [28, 31].

Cigarette smoking is a significant risk factor for developing lung cancer and COPD. Our results show that
vimentin and S100A4 were markedly increased in the NLFS group compared to NC and even higher in
the COPD-CS group. The expression of N-cadherin, vimentin and S100A4 was also positively correlated
with smoking history, which further indicates that EMT progression is escalated by smoking and COPD.
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FIGURE 7 Epithelial–mesenchymal transition (EMT) marker expression and cancer morphological types. a) The
proportion of each subgroup with adenocarcinoma phenotype. b) The proportion of each subgroup with
squamous cell carcinoma (SCC) phenotype. a and b indicate that the major proportion in both cancer types is
current smokers with COPD (COPD-CS). c). EMT marker expression in the small airway epithelium in
adenocarcinoma and SCC compared to normal controls (NC). d) Epidermal growth factor receptor (EGFR)
expression in each subgroup in adenocarcinoma versus SCC. e) S100A4 expression of each subgroup in
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More EMT activity was seen in squamous cell carcinoma compared to adenocarcinoma, especially in the
COPD-CS group. However, EMT activity was relatively lower in COPD-ES compared to COPD-CS. This
indicates that smoking cessation could potentially reduce EMT progression and, therefore, prevent cancer
development.

EGFR is implicated in the pathogenesis of NSCLC [32, 33]. Our results demonstrated significantly
elevated EGFR levels in smokers with and without COPD, particularly in COPD-CS, which had a strong
positive correlation with smoking history. EGFR expression was higher in both NSCLC morphological
types and significantly higher in COPD-CS patients with squamous cell carcinoma. The heightened
expression of EGFR in NSCLC is related to lower survival rates [32], as well as frequent lymph node
metastasis and inadequate response to chemotherapy.

Enhanced understanding of EMT mechanisms linked to disease provides an opportunity for precise therapy
aimed at inhibiting COPD progression and preventing cancer metastasis. Inhaled corticosteroids have
become a standard treatment in more severe COPD and have an anti-EMT effect in COPD airways [34, 35],
further reducing the risk of lung cancer in COPD patients [36]. This supports the administration of inhaled
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corticosteroids or other medications with comparable effects at an early stage of COPD [37]. This could
help to not only reduce airway inflammation but also prevent EMT activation, which results in fibrosis and
potential malignant consequences. In addition to EMT, we believe endothelial–mesenchymal transition can
also contribute to the formation of pro-cancer stroma and fibrosis (figure 8). During endothelial–mesenchymal
transition, endothelial cells, like epithelial cells, can gain a mesenchymal phenotype leading to fibrotic or
malignant changes [25]. Further work in this direction would be of great value.

There are limitations to this study. First, the sample size was relatively small, which limits the correlation
evaluation. For example, we can see the negative correlation trend between EMT marker expression and
lung function; however, a larger sample size could improve the outcomes and better evaluate EMT
activity-mediated lung physiology changes. Second, the clinical and pathological stage of lung cancer was
unavailable. However, our findings have indicated that escalated EMT-mediated fibrosis and small airway
remodelling in early COPD contributes to NSCLC development.

In conclusion, this study investigated EMT activities in lung cancer patients with COPD. We found that
EMT is an active process in the small airway of smokers with COPD diagnosed with lung cancer,
contributing to the small airway remodelling and cancer development seen in these patients. This is the
first study to show such changes in broadly phenotyped individuals. EMT markers and EGFR can be used
as the therapeutic target in lung cancer patients with COPD, and smoking cessation can assist in reducing
EMT progression [38–40].
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