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Age-related deviations of the immune system contribute to a higher likelihood of infections,
cancer, and autoimmunity in the elderly. Senescence of T-lymphocytes is characterized by
phenotypical and functional changes including the loss of characteristicT-cell surface mark-
ers, while an increase of stimulatory receptors, cytotoxicity as well as resistance against
apoptosis is observed. One of the key mediators of immune regulation are naturally occur-
ring regulatoryT-cells (Tregs). Tregs express high levels of CD25 and the intracellular protein
forkhead box P3; they exert their suppressive functions in contact-dependent as well as
contact-independent manners. Quantitative and qualitative defects ofTregs were observed
in patients with autoimmune diseases. IncreasedTreg activity was shown to suppress anti-
tumor and anti-infection immunity.The effect of aging onTregs, and the possible contribution
of age-related changes of theTreg pool to the pathophysiology of diseases in the elderly are
still poorly understood.Treg homeostasis depends on an intact thymic function and current
data suggest that conversion of non-regulatoryT-cells intoTregs as well as peripheral expan-
sion of existingTregs compensates for thymic involution after puberty to maintain constant
Treg numbers. In the conventional T-cell subset, peripheral proliferation of T-cells is associ-
ated with replicative senescence leading to phenotypical and functional changes. ForTregs,
different developmental stages were also described; however, replicative senescence of
Tregs has not been observed yet.
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INTRODUCTION
The immune system combats against infectious agents and
depletes damaged or transformed cells, whereas intact self-
components are usually ignored. Nevertheless, clinical manifes-
tations of autoimmunity occur in at least 5% of the general
population. The exact causes of autoimmune diseases are elu-
sive; however, genetic and environmental risk factors as well as
an insufficient elimination of cells bearing autoreactive T-cell
receptors (TCRs) in the thymus contribute to the evolvement of
disease (1, 2). To prevent autoimmunity, tolerance mechanisms
including clonal deletion, induction of apoptosis, or anergy of
self-reactive T-cells are essential. In addition, regulatory T-cells
(Tregs) were identified as sentinels of the immune response keep-
ing aberrant/exaggerated immune reactions in balance. Several
distinct T-cell subsets with regulatory function have been iden-
tified so far including natural Tregs, adaptive or induced Tregs

(iTreg), type 1 regulatory T-cells (Tr1), T helper 3 cells (Th3),
double-negative (dn) T-cells, γδ T-cells, and iNKT cells. In a
number of autoimmune diseases a diminished prevalence and/or
impaired function of Tregs were observed (3). As several autoim-
mune disorders (such as rheumatoid arthritis or vasculitis) occur
more frequently in the elderly, the question arises whether aging
is linked to quantitative and/or qualitative defects of the Treg

pool (4–6).
In this review we summarize current data about the effects of

aging on Tregs and highlight the possible mechanisms leading to
senescence of Tregs.

CHARACTERIZATION OF TREGS
DEFINITION AND PHENOTYPE
Natural Tregs develop in the thymus through recognition of self-
antigen presented by thymic epithelial or dendritic cells. For this
process CD28 co-stimulation is required, whereas IL-2 and TGF-β
are less important as indicated by knock-out mice models (7).

Today, there is still no consensus on the reliable identifica-
tion of Tregs by flow cytometry. A variety of cell surface mol-
ecules have been proposed as specific Tregs markers such as
glucocorticoid-induced tumor necrosis factor receptor (GITR),
cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), the co-
receptors Neuropilin-1 and PD-1, the adhesion molecule CD62L,
major histocompatibility complex (MHC) class II DR, or CD45
isoforms. The type I cytokine receptor CD127 is a negative marker
of Tregs and the absence of this molecule is frequently used for Treg

identification (8).
The forkhead transcription factor FoxP3 was proposed as the

most specific marker of Tregs as FoxP3 expression is essential for
Treg development and function (9): Tregs were unable to develop in
a mouse receiving FoxP3-deficient progenitor cells from another
animal (10) and retroviral expression of FoxP3 in human and
murine T-cells enabled the conversion of non-regulatory naïve
T-cells into a Treg-like phenotype with suppressive activity and
surface expression of CD25 (9). A mutation of the FoxP3 gene in
humans results in the fatal autoimmune syndrome IPEX (immune
dysregulation, polyendocrinopathy, X-linked) (11). For experi-
mental studies, however, FoxP3 appears not to be an optimal Treg
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marker because first, permeabilization of T-cells is necessary to
stain FoxP3 and cells are thus not viable anymore and second,
newer data indicate that human FoxP3 is up-regulated in activated
T-cells without suppressive function as well (12).

The Ikaros family transcription factor Helios was proposed as
an alternative indicator of human Tregs with a higher specificity
compared to FoxP3. Recent data, however indicate that Helios
is also up-regulated in activated non-regulatory T-cells (13). In
summary, there is currently no specific marker of human Tregs

available limiting the validity of studies investigating qualitative
and/or quantitative changes of the Treg pool.

MECHANISM OF SUPPRESSION
The mechanisms of Treg mediated immunosuppression are still
unclear. Most likely, Tregs have multiple functions with direct
and indirect inhibitory effects on antigen-presenting cells (APCs)
and T-cells such as the following (14, 15): (a) expression of the
surface molecule CTLA-4 directly suppressing the activity of T-
cells, (b) indirect inhibition of effector cells by the induction of
anti-inflammatory biochemical pathways in APC, (c) direct or
indirect killing of effector cells and APCs, and/or (d) production
of immunoregulatory cytokines such as TGF-β and IL-10 (16).

Interestingly, a recent study reported that human Tregs are
able to induce senescence of naïve and memory responder T-cells
in vitro and in vivo. The resulting senescent T-cell subset had an
altered phenotype and revealed potent suppressive functions. The
mechanisms leading to senescence of non-regulatory T-cells were
not completely understood; however, the phosphorylation of p38
and ERK1/2 signaling pathways inhibiting naïve T-cell growth and
cell-cycle regulation appeared to play a role (17).

THE EFFECT OF AGING ON TREG PREVALENCES AND
FUNCTION
A prevalence of approximately 0.6–15% out of the CD4+ T-cell
pool has been reported for Tregs in healthy adults and mice (4,
18). The influence of aging on Treg prevalence in humans has
been rarely studied so far and available reports suggest only minor
changes of the circulating Treg pool through age (19). Higher pro-
portions of Tregs were only found in cord blood samples suggesting
a pivotal role of Tregs during homeostatic proliferation of naïve T-
cells in the fetal life (20, 21). During the first 36 months of life Treg

levels decline rapidly (22) and remain relatively stable thereafter.
Mouse studies showed increased Treg prevalences in lym-

phoid organs of aged compared to young animals, whereas fre-
quencies in circulating blood and thymus were unchanged (23,
24). This finding led to the hypothesis that during aging Tregs

accumulate in lymphoid tissues; hypothetically explaining the
increased susceptibility to infections and reduced vaccine response
in elderly animals. The accumulation of Tregs has further been
observed in the skin of aged persons possibly resulting in a higher
risk of skin cancer as Tregs reduce local anti-tumor immune
responses (25–27).

In animals, Treg function seems to decrease with advancing
age. The transfer of CD25+ Tregs from aged mice into young ani-
mals for example resulted in a lower suppression of delayed type
hypersensitivity responses compared to the infusion of young Treg

cells (23). Another study found that CD4+CD25high Tregs from

aged animals less efficiently inhibited the proinflammatory activ-
ity of IL-17+ T-cells compared to Tregs from young mice (28). In
human studies it was observed that Tregs from young and elderly
individuals similarly inhibited the proliferation of responder cells
whereas the production of the anti-inflammatory cytokine IL-
10 was reduced in cells from the older group. The phenotype of
Tregs including expression of CD25, FoxP3, IL-7Rα, or chemokine
receptor expression, however, was unchanged (29). In conclu-
sion Tregs from aged individuals are less efficient in preventing
the occurrence of autoimmunity, while their number remains
unaltered.

On the other hand, cancer and infections occur more com-
monly in the elderly suggesting increased Treg responses (see also
above) (29–31). One mouse study found an increase of Treg preva-
lences in aged animals correlating with a defective tumor clearance.
CD25-depletion restored the anti-cancer immune response (32).
Similarly, CD25-depletion in aged mice reduced the lesion size in
a Leishmania major infection model (24). Others reported that
the depletion of Tregs with denileukin diftitox improved tumor-
specific immunity only in young mice whereas tumor growth was
unaffected in aged mice. This was explained by increased num-
bers of myeloid-derived suppressor cell (MDSC) in aged animals,
and upon depletion of these cells tumor-specific immunity was
restored (33).

In summary, current data on age-related changes of Treg preva-
lences and function are conflicting and do not completely explain
the simultaneously increased risk of autoimmunity (suggesting
lower Treg function), cancer, and infections (indicating increased
Treg responses) in the elderly. Apart from the difficulty of a reli-
able identification of Tregs the possible accumulation of Tregs in
lymphoid organs and/or tissues during aging might lead to an
underestimation of the total Treg pool in current human studies.
Future studies investigating tissue samples from immune-organs
of elderly individuals would be desirable to better understand the
role of Tregs in the pathogenesis of age-related diseases.

TREG DEVELOPMENT AND HOMEOSTASIS
Development of natural Tregs in the thymus depends on a positive
selection process including high affinity interactions of the TCR to
cortically expressed host antigens. Thymic stromal lymphopoietin
activated CD11c-positive dendritic cells (34), co-stimulatory mol-
ecules including CD28, PD-1, CD40L (35) as well as the cytokine
IL-2 were all shown to be crucial for thymic Treg generation (36–
38). Besides, the Nr4a nuclear receptors (involved in apoptosis,
proliferation, DNA repair, inflammation, and others) were recently
reported to contribute to Treg development. Mice lacking these
receptors in T-cells were unable to produce Tregs and died early
from systemic autoimmunity (39).

During aging a progressive degeneration of the thymus occurs
leading to a substantial loss of its capacity to generate and export
new T-cells (40, 41). Throughout middle age thymic epithelial
space and the functional unit of thymopoiesis (and thus the pro-
duction of T-cells) decline by approximately 3% per year until the
age of 45 when only an irrelevant level of functional thymic tissue
remains. The total number of T-cells in the periphery nevertheless
is unchanged and peripheral mechanisms of T-cell renewal have
to compensate for progressive thymic failure (42–44).
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Parallel to the overall reduction of thymic T-cell output the
production of thymically derived Tregs decreases with age (45).
Alternative mechanisms such as increased surveillance of Tregs in
the elderly (46) as well as peripheral Treg generation may compen-
sate for the loss of thymic function to maintain a sufficient Treg

pool (see Figure 1). Indeed, numerous studies indicate a possi-
ble conversion of non-regulatory CD4+CD25− T-cells into Tregs

in vitro and in vivo (47, 48). Moreover, mouse studies showed that
peripheral self-antigen-driven proliferation of Tregs is a thymus-
independent mechanism to maintain Tregs (49–51). The propor-
tion of conventional T-cells differentiating into Tregs as well as
the relative contribution of homeostatic Treg proliferation to the
overall Treg pool in elderly individuals are unknown.

Peripheral mechanisms of T-cell renewal (particularly home-
ostatic expansion of existing Tregs) are probably not infinite.
Normally, T-cells proliferate beyond the seventh decade of life.
Thereafter, telomere lengths are usually contracted to levels known
as the “Hayflick limit”. At this stage, non-regulatory T-cells do not
proliferate anymore and undergo phenotypical and functional
changes such as down-regulation of CD28 and acquisition of
cytotoxic potential (4, 52, 53). Due to the fact that Tregs display
even shorter telomeres than non-regulatory T-cells, it is conceiv-
able that peripherally proliferating Tregs reach the “Hayflick limit”
even earlier (54). Impaired Treg homeostasis may then result in
immune dysfunction with increased risk of immune-mediated
disorders.

In addition to the shortened telomere length, TCR diversity is
also contracted to at least 100-fold in elderly individuals (55). This
has been explained by the observation that homeostatic prolifer-
ation of T-cells is antigen dependent. Thus, T-cells with a high
affinity TCR to self-antigens or antigens deriving from chronic
virus infections have a survival advantage over other T-cells (42,
56). Given that similar mechanisms drive peripheral proliferation
of non-regulatory T-cells and Tregs, a reduction of Treg TCR diver-
sity (with a skew to certain antigens) can be expected in the elderly.
Consequently, Tregs could mediate increased immunosuppression
in response to specific self- (even if transformed) or viral anti-
gens with increased incidence of malignancies and infections in
the elderly. At the same time the reduced diversity of Tregs could
result in decreased protection from autoimmunity (3).

DEVELOPMENT AND CELLULAR SENESCENCE OF TREGS
FROM NAÏVE TO MEMORY CELL STATUS
Similar to the developmental stages known for non-regulatory T-
cells (development form CD45RA+ naïve to CD45RO+ memory
and finally to CD28− memory effector T-cells), different cellu-
lar subsets of Tregs were also observed. In humans, CD4+foxP3+

Tregs may have either a“naïve-like”phenotype characterized by the

expression of CD25+CD45RA+ or a CD25hiCD45RO+ “memory-
like” phenotype (54). In mice, naïve-like Tregs were characterized
by the expression of CD25, CD62L, and CCR7 and by pref-
erential homing to antigen-draining lymph nodes, where they

FIGURE 1 | Age-related changes ofTreg homeostasis. In young individuals
Tregs are generated in the thymus and are released as “naïve-like” Tregs into
circulation. After antigen-contact, Tregs develop into a “memory-like”
phenotype. Treg homeostasis is supported by homeostatic proliferation of
“naïve-like” and “memory-like” Tregs as well as conversion of non-regulatory
T-cells into Tregs. Telomere length and T-cell receptor diversity is higher in
naïve-like compared to memory-like Tregs. After puberty thymic function is

progressively lost and in aged individuals homeostatic proliferation of existing
Tregs as well as conversion of non-regulatory T-cells into Tregs compensate for
thymic failure to maintain Treg pool. Due to ongoing homeostatic replication
telomere length and T-cell receptor diversity of Tregs from elderly people are
contracted compared to those from young individuals. Recurrent stimulation
of Tregs might then lead to a status of “terminal-differentiation” with altered
phenotype and function. Treg regulatory T-cell, TCR . . . T-cell receptor.
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were able to inhibit the induction of inflammation (10, 57, 58).
Memory/effector-like Tregs (characterized by expression of CD29,
CD44, ICOS, and LFA-1) migrated into non-lymphogenic tissues
and sites of inflammation; a local down-regulation of immune
reactions was shown (57, 58).

In humans, the highest prevalence of naïve-like Tregs were
found in cord blood and it was assumed that these naïve-like
Tregs are produced in the thymus (20, 59). The prevalence of
memory-like Tregs increases rapidly during childhood and it was
demonstrated that these memory-like Tregs have shorter telomeres
and a lower content of TCR excision circles (Trecs) compared to
naïve-like Tregs reflecting a longer replicative history (54). The
mechanisms mediating the transition of a naïve-like Treg into
a memory-like phenotype still have to be explored; however, it
is believed that antigen experienced dendritic cells migrating to
secondary lymphoid tissues are involved. Tregs proliferate upon
stimulation with autologous immature and mature dendritic cells
(54, 60). A low surface expression of CD45RB on memory-like
Tregs further supports the hypothesis of an antigen-driven devel-
opment of naïve-like Tregs. CD45RB is normally down-regulated
after repeated antigen-contact (61).

Human adult peripheral blood usually contains both, naïve-
like and memory-like Tregs. Parallel to the reduction of total naïve
T-cells, the quantity of naïve-like Tregs declines with age whereas
the prevalence of memory-like Tregs increases (29, 62). The total
pool of circulating Tregs; however, remains unchanged as men-
tioned above (19). As naïve-like Tregs exhibit a higher proliferative
potential in vitro compared to memory-like Tregs it can be expected
that the capacity of the immune system to downregulate abnormal
immune responses declines with age (54).

END-DIFFERENTIATED TREGS AND ASPECTS OF TREG SENESCENCE
Replicative senescence of T-cells is a prominent feature of aging
resulting from homeostatic proliferation and repetitive antigen
exposure (63). The most important phenotypic feature of senes-
cent T-cells is the loss of the type I transmembrane protein CD28,
a major co-stimulatory molecule (64). From the functional per-
spective, non-regulatory CD28− T-cells produce large amounts
of interferon γ, perforin, and granzyme B, providing them with
the ability to lyse target cells (65). Another feature of CD28−

T-cells is their longevity and persistence that can be explained
by defects in the apoptotic pathway with upregulation of bcl-2
and Fas-associated death domain like IL-2-converting enzyme-
like inhibitory protein (FLIP) (66, 67). Terminally differentiated
T-cells also acquire new stimulatory receptors including killer
cell immunoglobulin-like receptors (KIRs) and Toll-like receptors

(TLRs) (68,69). Thus,activation of CD4+CD28− T-cells no longer
depends on professional antigen-presenting cells, rather it is pro-
moted by stress molecules as well as bacterial and/or viral products
(65). The frequency of terminally differentiated CD4+CD28− T-
cells is increased in old individuals as well as in younger patients
with autoimmune diseases such as rheumatoid arthritis or spondy-
loarthritis (70). Given that Tregs proliferate in the periphery to
maintain the total Treg pool after thymic failure it is plausible
to hypothesize that Tregs may undergo terminal-differentiation
as well.

Interestingly, a proportion of Tregs from aged mice showed

decreased expression of CD25 (46, 71). These CD25low Tregs

occurred predominantly in the spleen (24) but had com-
parable functional properties to CD25+ Tregs. A similar
CD4+CD25−foxP3+ Treg population has been observed in SLE
patients. SLE patients are known to have a prematurely aged
immune system (72) with accumulation of CD28− T-cells. A
detailed characterization of CD4+CD25−FoxP3+ Tregs regarding
the expression of naïve/memory T-cell markers or determination
of telomere lengths was unfortunately not performed. Further
evidence for the occurrence of Treg senescence was found in a
study on healthy aged individuals reporting the occurrence of a
CD8+CD25+ Treg population lacking CD28 expression. These
regulatory cells shared phenotypic and functional features with
CD4+ Tregs from the same population (73). The occurrence and
possible characteristics of terminally differentiated CD4+ Tregs is
an interesting issue that has to be investigated by future studies.

CONCLUSION
Accumulating evidence suggests age-associated changes of Treg

prevalence and/or Treg function. Due to involution of thymus after
puberty peripheral mechanisms including homeostatic prolifera-
tion of Tregs or conversion of non-regulatory T-cells into Tregs

compensate for the decreasing generation of new Treg cells. How-
ever, these peripheral mechanisms are limited; this leads to altered
composition of the Treg pool. Age-related changes of Tregs are
suspected to increase the risk of autoimmunity, cancer, and infec-
tions in the elderly; however, the exact mechanisms are still poorly
understood. Current studies are limited by the difficult identifica-
tion of human Tregs and the uncertainty whether circulating Tregs

reflect the total Treg pool or a cellular subset only. Future studies
are required to investigate cellular senescence of Tregs and possible
therapeutic approaches targeting Tregs in aged individuals.
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