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Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is relatively common in China and has complex
pathogenesis, difficult clinical treatment, and poor prognosis. Immune status is an important factor affecting ACLF prognosis.
Interleukins are a family of secreted lymphocyte factors that interact with a host of cell types including immune cells. These
signaling molecules play important roles in transmitting information; regulating immune cells; mediating the activation,
proliferation, and differentiation of T and B cells; and modulating inflammatory responses. Many studies have investigated the
correlation between interleukin expression and the prognosis of HBV-ACLF. This review focuses on the potential use of
interleukins as prognostic biomarkers in HBV-ACLF. References were mainly identified through PubMed and CNKI search,
including relevant studies published until December 2021. We have summarized reports of several promising diagnostic
interleukin biomarkers that predict susceptibility to HBV-ACLF. The use of biomarkers to understand early prognosis can help
devise different therapeutic measures and improve patient survival. Ongoing research on prognostic biomarkers of HBV-ACLF
is promising, and future preclinical and clinical studies are warranted.

1. Introduction

Hepatitis B virus-related acute-on-chronic liver failure
(HBV-ACLF) is a kind of acute liver function deterioration
of chronic liver disease with immune dysfunction and is
the main form of chronic acute liver failure (ACLF) [1–3]
and characterized by coagulation and severe jaundice, usu-
ally within 4 weeks of complicated with ascites and/or
hepatic encephalopathy [4]. ACLF progressing rapidly is
the feature of mortality rates as high as 50%-90% [5]. A ret-
rospective cohort study by Xiao et al. found that patients
treated with artificial liver support system (ALSS) had a
higher short-term survival rate than those treated with stan-
dard medical therapy. Furthermore, different modalities of
ALSS were associated with different outcomes, with patients
receiving hybrid artificial liver support system having higher
short-term survival than those receiving plasma exchange

artificial liver support system based [6]. Early identification
and aggressive intervention may improve the prognosis of
these patients. Thus, seeking reliable prognostic markers
and will have a high risk of mortality and distinguishing
reversible patients after treatment will help reduce the mor-
tality of HBV-ACLF [7].

Acute exacerbations in patients with compensated cir-
rhosis lead to multiple organ failure and high short-term
mortality [8]. The death of patients with HBV-ACLF is often
associated with extrahepatic organ failure. Extrahepatic
organ failure often occurs concurrently with liver failure
and is associated with severe systemic inflammation [9].
Therefore, the inflammatory response is of great importance
in the pathogenesis of ACLF, and systemic inflammatory
response is considered as a marker of ACLF [10, 11] and
affects the prognosis of ACLF [11–14]. Recruitment and dif-
ferentiation of immune cells at inflammatory sites are

Hindawi
Mediators of Inflammation
Volume 2022, Article ID 7794890, 13 pages
https://doi.org/10.1155/2022/7794890

https://orcid.org/0000-0002-9877-5810
https://orcid.org/0000-0003-1400-2085
https://orcid.org/0000-0003-2432-511X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7794890


activated and promoted by proinflammatory cytokines [15].
Interleukins refer to cytokines interacting with leukocytes or
immune cells, which participate in transmitting information,
activating and regulating immune cells, and mediating
inflammatory reactions like activation, proliferation, and
differentiation of T cells and B cells [16]. Several previous
studies have shown that interleukin level in vivo is correlated
with the prognosis of ACLF. This paper will comprehen-
sively explore the relationship between interleukin level
and the prognosis of HBV-ACLF.

2. Interleukin-1

IL-1 plays a key role in immune response and inflammation.
Interleukin-1 receptor antagonist (IL-1RA) is a natural anti-
inflammatory antagonist of IL-1, induces the expression of
anti-inflammatory cytokines (like IL-10 and IL-4), and
reduces the production of proinflammatory cytokines (like
IFN-γ, IL-1, and IL-6) [17], reducing inflammation through
competitive inhibition without triggering signaling cascades
[18]. Imbalance of IL-1RA and IL-1 lead to the progression
of various diseases [19]. It shows an association with various
inflammatory and autoimmune diseases [20]. IL-1RA also
owns an antiapoptotic effect in acute and chronic inflamma-
tion and can facilitate the proliferation of liver cell [21].
Serum IL-1RA concentration was negatively correlated with
the end-stage liver disease score model, IL-1RA concentra-
tion, and IL-1RA/IL-1β ratio of HBV-ACLF patients in the
death group was pronouncedly lower than those in the sur-
vival group [17]. This indicates that IL-1RA is vital in liver
inflammation, and liver inflammation is relatively decreased
in patients with HBV-ACLF, which is negatively correlated
with the severity of the disease [17]. Above 96% of ACLF
cases in China are associated with HBV [22]. It was found
that levels of serum IL-1RA, IL-1β, IL-6, and TNF-α in
patients with acute hepatitis B (AHB) and chronic hepatitis
B (CHB) were lower compared to patients with HBV-
ACLF [20, 22]. The ratio of IL-1RA to IL-1β was lower in
the HBV-ACLF group compared with the AHB group [22],
and the IL-1RA concentration and IL-1RA/IL-1β ratio of
the death group were significantly lower than those of the
survival group [22], but IL-1RA/IL-1β were higher, suggest-
ing that endogenous IL-1RA alone was not enough to coun-
ter the action of IL-1, leading to cascade inflammation and
liver injury [17], and the serum IL-1RA concentration was
negatively correlated with the MELD score [22]. Studies
have found that the serum IL-1RA level of female ACLF
patients is obviously higher than that of males [17], and
the IL-1RA produced by peripheral monocytes obtained
from the female is 5-10 times that of male cells during the
menstrual cycle [19]. Female ACLF patients may have a bet-
ter prognosis than males. HBV-ACLF patients treated with
IL-1RA may be a new idea.

NLRP3 is an important component of the inflamma-
some; it stimulates the maturation of precursors of the
caspase1-dependent cytokines IL-1β and IL-18 (pre-IL-1b
and pre-IL-18) [23]. NLRP3 inflammasome has been impli-
cated in various liver diseases, and its activation has been
implicated in liver injury. Low levels of NLRP3 are in normal

liver tissue [24]. After LPS stimulation of monocytes, com-
pared with healthy people, the expression of IL-1β in the
liver tissue of ACLF patients was increased, while the level
of IL-1β was decreased in advanced ACLF patients [25].
Among these single-nucleotide polymorphisms (SNP), two
polymorphisms belonging to the IL-1 gene cluster were
found (IL-1β:rs1143623 and IL-1ra:rs4251961), which are
closely related to ACLF. Both SNPs are protective against
ACLF, and these two polymorphisms in the IL-1 gene clus-
ter appear to affect mortality in patients with decompensated
cirrhosis, as 28-day survival in patients with combined pro-
tective SNP has seen an increase [26]. Wei et al. [27] con-
ducted a meta-analysis on the relationship between IL-1β,
TNF-α gene polymorphisms, and HBV infection, including
49 articles. The study found that 7 polymorphisms of IL-
1β rs1143634 may be used as HBV infection potential
genetic biomarkers. In addition, serum IL-1α was increased
in patients with chronic hepatitis C (HCV), cirrhosis, and
hepatocellular carcinoma (HCC) compared with healthy
controls [28]. IL-1β-31 genotype is a biomarker for the
development of cirrhosis and HCC susceptibility in patients
with HCV [29]. In conclusion, high levels of IL-1 may be
associated with poor prognosis of viral infection-associated
liver diseases and HBV-ACLF.

3. Interleukin-6

As a kind of proinflammatory cytokine, IL-6 is a critical
defense inducer of infection, and inflammation is more sen-
sitive than CRP index [30, 31]. IL-6 is produced in mono-
cytes, macrophages, T cells, fibroblasts, and endothelial
cells, initiating the production of acute-phase proteins and
rapidly activating the host defense system to perform multi-
ple functions [32]. Studies have shown that compared with
white blood cell (WBC) or C-reactive protein (CRP), IL-6
is a more sensitive marker for severe systemic inflammation
in patients with severe liver injury, especially playing a key
role in early liver regeneration response [33]. In addition,
IL-6-mediated activation of STAT3 is a major driver of
hepatocyte repair and replication, which promotes hepato-
carcinogenesis. Elevated levels of IL-6 can be found in the
serology of HCC patients [34].

The process of ACLF progress is closely related to the
prognosis of systemic inflammation [35]. Studies have found
that the IL-6 level of patients with HBV-ACLF rapidly pro-
gressing to death is higher than that of patients with survival,
and IL-6 is an independent factor affecting the prognosis of
HBV-ACLF. HBV-ACLF patients with high IL-6 levels have
more than twice the risk of death compared to patients with
low IL-6 levels [36]. However, it has been suggested that
acute and only short-term increases in IL-6 levels may ben-
efit liver regeneration, while chronic increases in IL-6 may
adversely affect the liver and other organs. Some experimen-
tal studies have also shown that IL-6 is a cytokine with mul-
tiple biological functions, which can promote inflammatory
response and maintain tissue homeostasis, and is associated
with liver regeneration in animal models of acute liver fail-
ure. The complex function of IL-6 involves hepatic quasi-
or transsignaling [37–39]. It can be seen that IL-6 level and

2 Mediators of Inflammation



duration simultaneously influence the development of HBV-
ACLF [36].

Previous studies have demonstrated that plasma IL-6
increased with the increase of Th17 cells in patients with
HBV-ACLF [40], and proinflammatory IL-6 is the main reg-
ulator of Th17 cell differentiation from naive T cells [41, 42].
IL-6 triggers signal transduction and activates intracellular
STAT3 through dimerization of GP130 [41, 43]. We demon-
strated that increased CD4+ T cell IL-6 expression is consis-
tent with increased Th17 response in patients with HBV-
ACLF [44], and IL-6 stimulation can activate the STAT3
pathway in peripheral blood mononuclear cells of patients
with ACLF [44]. Th17 cells are a novel type of CD4+ T cell
subset, which is the main mediator of tissue inflammation
and is related to the pathogenesis of autoimmune and
inflammatory diseases and also participates in the progres-
sion of liver failure [45]. Expressed in IL-6 and IL-17
patients with elevated ACLF immunohistochemical staining
of liver tissue, the expression of STAT3 and mTOR rise [46].
And with mTOR, CD4+ T cells cannot be differentiated into
Th17 cells; thus, the activation of IL-6 to STAT3 was
reduced [46].

Hyper-interleukin-6 (HIL-6) is an artificial protein,
including variants of IL-6 and glycoprotein 80 (soluble
interleukin-6 receptor, sIL6R), linked by artificial short-
linker [47]. Containing HIL-6 and hepatocyte growth factor
(HGF) recombinant adenovirus Ad-HGF-HIL-6, compared
with Ad-HGF or Ad-HIL-6, can significantly reduce the
ACLF serum and tissue of high mobility group protein B1
(HMGB1) concentration and inflammation, and necrotic
liver cells can be reduced, and ACLF can be more effectively
protected in rat liver [47]. All of the above suggest that the
protective mechanism of ACLF by AD-HGF-HIL-6 may be
related to the HMGB1 signal, which deserves further study
[47]. Wang et al. explored the association between IL-6 gene
polymorphisms and susceptibility to liver disease through a
meta-analysis that included 25 case-control studies, and
patients with IL-6-specific genotype may have a higher risk
of liver disease [48].

4. Interleukin-9 and Interleukin-10

IL-9 and IL-10 have been indirectly linked to HBV-ACLF
progression. IL-9 is a cytokine produced by Th9 cells [49].
IL-9 and IL-10 levels were obviously lower in dead ACLF
patients than in surviving ACLF patients, and baseline IL-9
levels indicated the prognosis of ACLF patients with 87.5%
sensitivity and 61.5% specificity [49]. The expression of cyto-
kines in the liver of ACLF patients is found to be unbal-
anced. Compared with CHB and healthy controls, the level
of proinflammatory cytokines IFN-γ and TNF-α in the liver
of ACLF patients is significantly upregulated [50], while the
expression of TNF-α can be counterbalanced by IL-10. It has
been reported that IL-10 treatment can normalize hepatitis
C transaminase levels. Improve liver histology and reduce
fibrosis [51]. Ye et al. included 22 case-control studies for
meta-analysis and found that IL-10 rs1800871 polymor-
phism was associated with HBV risk, and allele C and geno-
type CC at IL10 rs1800871 locus may increase susceptibility

to hepatitis B infection [52]. A meta-analysis showed that
IL-10-1082GA gene polymorphism is associated with sus-
ceptibility to persistent HBV infection in the Chinese popu-
lation, and IL-10-592CA gene polymorphism is associated
with HBV clearance in the Chinese population [53]. In addi-
tion, increased IL-9 levels suggest failure of HCV sustained
viral response in HCV infected patients [54]. IL-10 can be
used as a new biomarker to evaluate the degree of inflamma-
tion in HCC development [55]. Compared with healthy con-
trols, serum IL-10 was elevated in patients with HCV,
cirrhosis, or HCC [56]. IL-10 RS180096 TT genotype, IL-
10-592 CA polymorphism, and IL-10 ACC haplotype [56]
are good markers for HCV patients to develop cirrhosis
and HCC susceptibility. In conclusion, high levels of IL-10
may be associated with poor prognosis of viral infection-
associated liver diseases, while the effect of IL-10 on HBV-
ACLF remains to be studied.

5. Interleukin-12

IL-12 is secreted primarily by macrophages, which are key to
initiating the cascade of immune-activated cytokines IFN-γ.
Clinical studies have found that serum IL-12 in patients with
HBV-ACLF is significantly elevated (approximately 2 times)
compared with severe chronic hepatitis B, moderate chronic
hepatitis B, and healthy controls [57, 58]. IL-12 induces IL-
21 through transcription factors STAT1, STAT3, STAT4,
and STAT5 [59] and enhances T follicular helper (Tfh) cells
differentiation [60]. Upregulated Tfh cells and IL-21 are
closely related to the severity and improvement of HBV-
ACLF, and increased IL-12 may be related to the occurrence
of ACLF. IL-12 promoted central memory CD8+ T cell
response and functionally rescued the exhausted viral-
specific CD8+ T cells in chronic HBV infection [61, 62].
Xue et al. showed that IL-12 levels significantly increased
in patients with HBV-related liver failure compared with
healthy controls [58]. In addition, IL-12 can be used as a
new marker to assess the degree of inflammation in the
development of HCC [55]. IL-12p40 levels are predictive
markers of nonvirological response to HCV treatment with
pegylated interferon and ribavirin in detecting treatment
efficacy [63]. Thus, high levels of IL-12 may be associated
with poor prognosis of viral infection-associated liver dis-
eases, HCC and ACLF.

6. Interleukin-17

IL-17 is secreted by Th17 cells and stimulates CXCL8 pro-
duction by hepatic stellate cells through the IL-17 receptor
[64], which recruits immune cells to mediate large-scale tis-
sue inflammation, thereby inducing severe liver inflamma-
tion [65]. CD4+ T cells produce IL-17 and participate in
the pathogenesis of ACLF associated with HBV [44]. Mem-
ory T cells continuously produce IL-17, which may be one of
the causes of progressive liver injury in ACLF patients4451.
Data showed that Th17 cell level in HBV-ACLF patients or
severe CHB patients was significantly higher than that in
healthy people and CHB patients [40, 66, 67]. And the fre-
quency of peripheral Th17 cells was correlated with the

3Mediators of Inflammation



MELD score [68], and the ratio of Th17 to Treg cells were
negatively correlated with the survival rate of ACLF patients
[69]. Th17 cells preferentially produce IL-17A and IL-17F,
with RORγ T as the transcription factor in their differenti-
ation [7, 70, 71]. Studies have shown that patients with
ACLF RORγ T express an increase. Therefore, RORγ T
may serve as a promising target for inhibiting Th17/IL-17-
mediated inflammation in ACLF patients [72]. TMP778
inhibited RORγ T-mediated Th17 cell activity [72], and
the expression of IL-17A, IL-17F, IL-22, IL-23, IL-26, and
CCR6. ACLF patients showed increased expression of
CCR6 and IL-17R [73]. CCR6 is the hallmark chemokine
receptor of Th17 cells and can promote the inflammatory
function of Th17 cells [73].

It has been proven that the increased expression of IL-
17 in HBV-ACLF disease is also closely related to the
aggravation of CHB [40], the degree of liver fibrosis [74],
and the severity of cirrhosis [75], indicating that IL-17 par-
ticipates in the progression of HBV-ACLF disease. The
expression of IL-17 can increase antiapoptotic molecules,
improve the survival rate of virus-infected cells, and expand
the persistent infection [76]. CD4+ T cells secreted IL-17A,
which was not regulated by Treg cells, and reduced the
levels of hepatitis B surface antigen (HBsAg) and hepatitis
B envelope antigen (HBeAg) in the culture medium and
hepatitis B virus DNA (HBV DNA) in HepG2.2.15 cells
[69, 77]. The active resistance of IL-17A to various infec-
tions may amplify liver damage [74]. In terms of disease
progression, elevated levels of IL-17 also indicate chronic
progression to HCC in HCV patients [78], and IL-17 con-
centration is also a predictor of subsequent HCC develop-
ment in patients with cirrhosis. The combination of AFP
and IL-17 was very effective in predicting the incidence of
HCC within 1 year [79].

Th17 cells were preferentially increased in ACLF
patients and were positively correlated with Treg cells, and
the increase of Treg cells in ACLF may be a result of the neg-
ative feedback effect of high Th17 [69]. The interaction
between Treg cells and Th17 is key to sustaining the balance
between immune response and pathological damage [69].
The ratio of Th17 to Treg cells frequency was significantly
reduced in the HBV-ACLF survival group, and the ratio of
most surviving patients was lower than 1.0 [69]. The ratio
of Th17 to Treg cells may be a potential prognostic marker
of ACLF. Research finds that in the IL-6 and IL-17 patients
with increased ACLF immunohistochemical study of the
liver tissue, the expression of STAT3 and mTOR increased
[44, 46, 80]. Blocking mTOR can inhibit the differentiation
of Th17 cells. mTOR can be used as a novel therapeutic tar-
get for patients with HBV-ACLF to inhibit Th17-mediated
progressive liver injury [44].

7. Interleukin-18

IL-18 is constitutively expressed by natural killer-like B
(NKB) cells and is stably secreted during infection [81];
NKB cells are a new immune subset isolated from NK cells
and B cells. NKB cells have phenotypes of NK cells and B
cells. NKB cells exhibit immunomodulatory functions in

eliminating microbial infection and inflammation by secret-
ing interleukin (IL)-12 and IL-18 [82]. IL-18 is a decisive
factor in controlling Th1/Th2 balance during antiviral
responses [83]. HBV X protein induces the expression of
IL-18 in the liver and is closely related to liver damage dur-
ing HBV infection [83]. IL-18 signaling induces the activa-
tion of two major pathways, including myeloid
differentiation factor 88 (MyD88)/IL-1 receptor-related
kinase/TNF receptor-related factor 6 and signal transducer
and activator of transcription/mitogen activator kinases
[84–86]. Both pathways ultimately mediate the phosphoryla-
tion of NF-κB. The study found that low concentrations of
IL-18 did not induce elevated NF-κB phosphorylation,
which may be due to insufficient neutralization of IL-18BP
by IL-18. Conversely, high concentrations (10 ng/mL) of
IL-18 might completely block the activity of IL-18BP and
further increase phosphorylated NF-κB, ultimately inducing
NKB cell activity in HBV-ACLF, suggesting that in HBV-
ACLF, IL-18 has potential positive feedback activity in regu-
lating NKB cells during progression [82]. Clinical trials
showed that compared with CHB, asymptomatic HBV car-
riers, and control group, the percentage of NKB cells in lym-
phocytes and the level of IL-18 in HBV-ACLF patients were
significantly increased [82]. Elevated NKB cells and IL-18
may be important indicators of poor prognosis in patients
with HBV-ACLF [82]. The increased proportion of NKB
cells and the increased level of IL-18 in peripheral blood
have good prognostic value on the survival status of HBV-
ACLF. It indicates that IL-18 may be a hallmark cytokine
secreted by NKB cells for regulating the inflammatory
response of HBV-ACLF [82]. Studies show that IL-18-
607A/C functional polymorphism is associated with suscep-
tibility to an enhanced form of HBV DNA replication in
chronic infection [83]. The -137C minor allele and the CG
genotype are protective against chronic HBV infection
[83]. Another study found that the -607A allele, -607AA,
and -607AC genotypes were significantly higher in patients
with high HBV DNA levels than those with low HBV
DNA levels [83]. Yu et al. performed a meta-analysis of the
relationship between IL-18 gene polymorphisms and viral
hepatitis. The results demonstrate that the IL-18 rs1946518
and IL-18 rs187238 polymorphisms may be associated with
the susceptibility of East Asians to HBV [87]. In addition,
serum IL-18 levels were significantly increased as HBV dis-
ease progressed to HCC compared with controls [88]. In
conclusion, IL-18 may be a biomarker for HBV related dis-
ease progression to HCC and ACLF.

8. Interleukin-21

IL-21 is a novel cytokine, which is produced mainly via acti-
vating CD4+ T cells and NK T cells. It can regulate the acti-
vation, proliferation, and survival of CD4+ T cells and B
cells; the functional activity of CD8+ T cells and NK cells
curb the differentiation of induced Treg cells, offset its inhib-
itory effect on effector T cells [89], stimulate T cell and B cell
reactions, and regulate chronic viral infection [90]. On the
other hand, IL-21 is likely to participate in liver injury by
regulating the function of natural and adaptive immune cells
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and/or changing the expression of other inflammatory cyto-
kines and can cause severe hepatitis through various ways
[91]. Serum IL-21 levels in patients with severe chronic hep-
atitis B (S-CHB), moderate chronic hepatitis B (M-CHB),
and healthy controls (HC) were lower compared to HBV-
ACLF patients [57]. Hu et al. also found that serum IL-21
level and secretion increased in HBV-ACLF patients [91].
Previous research has shown the rs12508721T/C and
rs2221903A/G polymorphisms of the IL-21 gene were asso-
ciated with susceptibility to HBV-related HCC and chronic
HBV infection [92]. The CD4+ Th cells secreting IL-21
increased in the HBV-ACLF group, while the CD4+ Th cells
secreting IL-21 decreased in the HBV-ACLF recovered
subjects, suggesting that CD4+ Th cells secreting IL-21
may participate in the pathogenesis of HBV-ACLF [91].
Upregulation of Tfh cells and IL-21 show a close associa-
tion with the severity/improvement of HBV-ACLF. Serum
of patients with HBV-ACLF rich in IL-21 enhances the
differentiation of primary CD4+ T cells into Tfh cells,
and this interaction can be blocked by anti-IL-21 anti-
bodies [57]. The production of IL-21 was significantly cor-
related with the number of Tfh cells, clinical score, and
liver function (ALT/AST), verifying the important role of
IL-21 in Tfh cell generation during the occurrence of
HBV-ACLF [57]. However, other studies have shown that
there is no obvious correlation between the frequency of
CD4+ IL-21 T cells and MELD score or survival rate of
HBV-ACLF patients [91].

Similar to other cytokines that signal by a popular C-
chain subunit, IL-21 activates Janus kinase (JAK)-a family
of protein tyrosine kinases JAK1 and JAK3, and JAK1 binds
to the IL-21 receptor (IL-21R), and JAK3 binds to the C-
chain. IL-21R-induced signal transduction activates the sig-
nal transducers and transcriptional molecular activators
[93]. In vitro experiments showed that IL21 upregulated
IL-1β, IL-6, IL-10, IFN-γ, and TNF-α from peripheral blood
mononuclear cell (PBMC). These cytokines are likely to be
partially affected by IL-21 and may promote the develop-
ment of HBV-ACLF [91].

9. Interleukin-22

IL-22, which was first discovered in 2000, was induced by
IL-9 in thymic lymphoma, T cells, and other immune cells
[94], belonging to the IL-10 cytokine family [95]. Human
IL-22 is mainly produced by Th1 and Th22 T cell subsets,
Th17 cells, and NK cell subsets [95]. IL-22 acts through a
transmembrane receptor complex composed of IL-22Rα
and IL-10R2, which are expressed only in nonimmune cells,
including hepatocytes, renal cells, keratinocytes, intestinal,
or respiratory epithelial cells [95–97]. IL-22 is transmitted
through JAK and STAT signaling pathways by binding
dimer IL-22R and activates transcription factors STAT1,
STAT3, STAT5, etc., through phosphorylated kinases Jak1
and Tyk2 [95, 98]. Participate in inflammation and damage
of different tissues [97, 99]. IL-22 has a proinflammatory
function and is likely to damage the prognosis of severe liver
patients. Studies have found that in patients with cirrhosis,
high serum IL-22 concentration is associated with the occur-

rence, progression, and mortality of ACLF [100]. Circulating
IL-22 was associated with MELD score and the chronic liver
failure consortium (CLIF-C) acute-on-chronic liver failure
score (CLIF-C ACLFs). Elevated levels of plasma and intra-
hepatic IL-22 in patients with HBV-ACLF are about 1.3
times that of patients with CHB [101], and increased circu-
lating IL-22 is related to a low survival rate of HBV-ACLF
[101]. In vitro studies have shown that IL-22 promotes liver
inflammation via Th17 cells and macrophages to the liver in
HBV-infected people and mice and induces the production
of proinflammatory mediators and acute phase proteins in
liver cells [102]. Persistent intrahepatic inflammation may
result from insufficient host immunity to clear the viral
infection, leading to the development and progression of
HBV-ACLF. Moreover, proliferative and antiapoptotic
activities of IL-22 may accelerate the growth of existing
HCC [103]. IL-22 binding protein (IL-22BP) is a soluble
inhibitor of IL-22 signal transduction and can prevent il-22
from binding to its transmembrane receptor, which is a sin-
gle chain receptor of IL-22. The study found that patients
with ACLF of IL-22BP/IL-22 ratio is lower than the patients
without ACLF [100], during the period of cirrhosis develop-
ment for ACLF and eventually death rates of IL-22BP/IL-22
which are declining gradually [100]. In vitro experiments
have shown that IL-22BP can inhibit IL-22 signal transduc-
tion in hepatocytes and inhibit the generation of proteins in
the acute phase [100]. High levels of IL-22BP can neutralize
IL-22 in vitro and have protective effects in mouse acute
liver failure models [104].

Studies have demonstrated that IL-22 advanced the
expansion of liver progenitor cells/stem cells in mice and
hepatitis B patients in a STAT3-dependent manner, showing
a role in promoting liver regeneration [105]. In animal
models of concanavalin-induced hepatitis or alcoholic hepa-
titis, the application of IL-22 can reduce the severity of liver
disease [106, 107]. By creating a severe liver injury model
using serum and liver samples from patients with ACLF,
IL-22 therapy was subsequently demonstrated to improve
the survival of ACLF by alleviating bacterial infection
[108]. In mice, IL-22 prevents hepatocytes from apoptosis
in a Mir-15A/16-1-dependent manner [109]. The liver pro-
tection or liver damage shown by IL-22 in different liver dis-
eases may be due to the stage dependence (i.e., acute and
chronic) and/or disease dependence of IL-22.

10. Interleukin-23

IL-23 is from macrophages and dendritic cells (DCS) and
exerts a key role in bridging congenital and adaptive
immune responses [110]. Serum IL-23 level in patients with
CHB is positively correlated with liver injury [111]. HBV
infection induces the production of IL-23 via antigen-
presenting cells and causes liver injury through the IL-23/
IL-17 axis [112]. Persistent IL-23 generation of liver inflam-
matory macrophages responding to damaged hepatocytes
after chronic HBV infection altered macrophage function
for HCC promotion. Blocking IL-23 activity may be
benefited CHB patients who had a high risk of HCC [113].
Serum IL-23 was significantly upregulated in CHB and
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ACLF patients, and the upregulated IL-23 was significantly
correlated with the aggravation of HBV-ACLF, and the
serum IL-23 level in HBV-ACLF patients after treatment
was significantly lower than that in the nonsurvival group
[114]. There was a significant positive correlation between
IL-23 expression and INR/PT/MELD score system in
HBV-ACLF patients, and there was a positive correlation
between IL-23P19 mRNA expression and TBIL. Elevated
IL-23 cytokine levels have been observed in single-cell-
derived dendritic cells from patients with HBV-ACLF,
which is associated with high mortality [114].

IL-23R expression increase is related to the severity of
acute or chronic liver failure [115]. IL-23R was not only pro-
nouncedly correlated with alanine aminotransferase (ALT),
straight bilirubin (SBil), Child-Turcotte-Pugh, and MELD
scores but liver cirrhosis. IL-23R is critical to the production
of pathogenic Th17 cells [115], and ACLF patients express-
ing high IL-23R on Th17 cells lead to the activation of the
STAT3 pathway and the functional activation and matura-
tion of Th17 cells [116], which can induce inflammation
and is closely related to the severity of liver disease [115].
Specifically, targeted inhibition of IL-23-induced STAT3
phosphorylation can reduce liver inflammation [117].
Another study showed that the IL-23R R381Q gene variant
prevents immune-mediated disease through blocking the
IL-23-induced effector response of Th17 cells [118]. Com-
prehensive to these results, we conclude that Th17 cells
increased in patients with ACLF IL-23R expression in
peripheral blood and liver, and Th17 cells produce a large
number of inflammatory cytokines and cause severe inflam-
mation and disease progression of the pathogenic microen-
vironment. The NF-κB pathway is likely to participate in
the expression of IL-23 in HBV-ACLF patients [114]. The
expression of NF-κ BP65 was elevated in HBV-ACLF
patients, suggesting that IL-23 and NF-κB signaling pathway
may lead to poor prognosis of HBV-ACLF.

11. Interleukin-27

IL-27 belongs to the IL-12 family as a heterodimer somatic
factor consisted of two subunits of EPeb virus inducible gene
3 (EBI3) and IL-27P28 [119], binding to receptors with
GP130 and IL-27RA to activate JAK-STAT and MAPK sig-
naling pathways [120]. IL-27 can play a proinflammatory
and anti-inflammatory role during immune response [117,
120]. IL-27 supports antibody-driven autoimmune diseases
by affecting B cells [121, 122]. Studies have found that serum
IgG, IgA, and IgM levels of HBV-infected patients are posi-
tively correlated with serum TBil levels and negatively with
prothrombin activity (PTA) and albumin levels, which are
commonly used as markers of liver injury [123]. IL-27 is
positively correlated with the level of immunoglobulin
in vivo, indicating that IL-27 facilitates the induce of immu-
noglobulin and aggravates liver injury. High levels of IL-
27EBI3 cytokine or IL-27RA expression are associated with
poor prognosis in HCC patients. We suspect that a higher
level of IL-27 may be a marker to predict the poor prognosis
of HBV-ACLF [36, 57, 124].

12. Interleukin-31

IL-31, a newly discovered proinflammatory cytokine [125],
is mainly produced by CD4+ T cells and regulated by the
JAK-STAT, PI3K/AKT, and RAS/ERK signaling pathways
[126, 127]. It has been demonstrated and shown that serum
levels of TGF-β1 and IL-31 are significantly enhanced in
ACLF patients, and the TGF-β1/IL-31 pathway is likely to
contribute to progressive liver injury in ACLF through direct
inflammatory function and expression of other inflamma-
tory cytokines that regulate innate and adaptive immune
cells [112]. TGF-β1/IL-31 pathway displayed high sensitivity
and specificity in the prediction of ACLF nonsurvivors
(85.7% and 100.0%, respectively) [112]. Moreover, TGF-β1
and IL-31 are associated with the progression of chronic
hepatitis B to cirrhosis and are closely related to the severity
of hepatitis B virus-related liver cirrhosis (HBV-LC). In
patients with HBV-related cirrhosis, serum TGF-β1 and
IL-31 were significantly elevated, with sensitivity and speci-
ficity of 90.9% and 66.7%, respectively. These findings sug-
gest a possible role of the TGF-β1/IL-31 pathway in the
pathogenesis of liver fibrosis during chronic hepatitis B virus
infection [128]. TGF-β1 appears to bind to the function of
IL-31. TGF-β1 is a 25kDa homologous dimer protein, which
consists of two subunits connected via disulfide bonds and is
a strong inhibitor of DNA synthesis and cell proliferation
[129]. Miwa et al. found that TGF-β1 was obviously
increased in both plasma and liver tissue of patients with ful-
minant liver failure (FLF) [130]. Besides, TGF-β1 curbed
liver regeneration and facilitated perineural fibrosis and
hepatocyte apoptosis in fulminant hepatic failure (FLF) rat
models [131]. The biological function of TGF-β1 relies on
signal transduction and Smad protein regulation. TGF-β1
was found to promote Smad2 phosphorylation and the bind-
ing of Smad3 to the IL-31 promoter and then the IL-31-
JAK-STAT signaling pathway [132].

13. Interleukin-33

ACLF patients usually present with monocyte dysfunction
and excessive systemic inflammatory response [133]. Serum
interleukin-33 (IL-33) levels are correlated with the severity
of the liver disease. Meanwhile, IL-33 is expressed in both
cancer cells and stromal cells in the HCC microenviron-
ment, which may be a key tumor promoter for HCC prolif-
eration and tumorigenicity and negatively correlates with
survival of HCC patients [134, 135]. IL-33 regulates immune
response as a risk pattern (DAMP)-related molecule [133].
Compared with patients with chronic hepatitis B and the
control group, the expression level of IL-33 in peripheral
blood and liver of patients with HBV-ACLF was signifi-
cantly increased [133]. It was found that the expression of
HLA-DR, CCR2, and CD80 was significantly increased in
monocytes treated with IL-33. In a patient with HBV-ACLF,
IL-33 enhances LPS-induced monocyte inflammatory storm
through ERK1/2 activation, and the systemic inflammatory
storm is the main driver of ACLF, leading to over activation
of the innate immune system [133]. Therefore, high levels of
IL-33 are a marker of the poor prognosis of ACLF.
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14. Interleukin-35

IL-35 belongs to IL-12 members of the family of IL-12
[136] and is mainly secreted by CD4+ T and CD8+ T reg-
ulatory Treg cells, activated dendritic cells, and regulatory
B cells and has shown immunosuppressive function in
various infectious diseases, cancers, and autoimmune dis-
eases [137–139]. In tumor tissues of patients with HBV-
related HCC, high expression of IL-35 was associated with
tumor cell invasion and poor prognosis. It is also an inde-
pendent prognostic factor for HCC recurrence [140, 141].
During the period of acute and chronic viral hepatitis,
IL-35 immunosuppression functions mainly through pro-
moting the proliferation and differentiation and CD8+ T
cell function and inhibition of Th17 Treg cells T cell tox-
icity; CD8+ T cell-mediated cytotoxicity mechanisms
include the direct cytolytic activity of target cells and non-
cytolytic activity of cytokine-mediated tissue damage
[141–148].

ACLF patients have a complex immune state, accom-
panied by excessive inflammation and immune failure
[149]. Compared with patients with chronic viral hepatitis
and healthy people, ACLF patients with viral hepatitis
induced increased serum IL-35 level [150], which was pos-
itively correlated with total bilirubin and negatively with
prothrombin time activity [150], indicating a possible rela-
tionship between IL-35 and severe liver injury [150]. In
patients with ACLF, IL-35 stimulus inhibiting nonspecific
antigen cytotoxic CD8+ T cell activity and inhibiting cyto-
kines mediated target cell death, suggesting IL-35 to CD8+

T cell immune inhibition. CD8+ T cells in ACLF patients
showed depletion phenotype, and the expression of per-
forin, granzyme B, and FasL mRNA in peripheral CD8+

T cells was downregulated. Immune checkpoint molecules
(PD-1, CTLA-4, and LAG3) were increased. Increased IL-
35 expression in ACLF patients may lead to T cell dys-
function or failure by reducing the induction of cytotoxic
and immune checkpoint molecules in ACLF patients
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Figure 1: Effects of ILs on the prognosis of HBV-ACLF and its mechanism. (Illustration: the picture shows the main cells producing ILs; the
key mechanisms of different ILs affecting the prognosis of ACLF; the key signaling pathways that can regulate the function of ILs, and the
key cytokines that cause the inflammatory storm of liver and summarized the whole paper briefly.)
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which leads to the poor prognosis. They are shown in
Figure 1.

15. Conclusion

Among the above, more than ten kinds of ILs, IL-1, IL-6, IL-
12, IL-17, IL-18, IL-21, IL-23, IL-33, IL-31, and IL-35 may be
the prognostic indicators for HBV-ACLF. Among them, IL-
1, IL-6, IL-17, IL21, IL-23, and IL-35 are relatively important
regulatory factors, which may affect systemic inflammatory
response due to their own changes along with changes in
other ILs levels.

The mechanism of ILs affects the prognosis of ACLF and
can be summarized as the following categories: (1) the levels
of ILs are closely associated with HBV infection, which affect
the degree of liver inflammation in patients with HBV,
aggravating liver damage and leading to the occurrence
and bad prognosis of ACLF patients (e.g., IL-1, IL-17, IL-
18, and IL-31); (2) affecting the functions of CD4+ T,
CD8+ T, and Treg cells may lead to the immune dysfunction
or failure of systemic T cells and result in poor prognosis of
ACLF patients (e.g., IL-17, IL-21, IL-22,IL-31, and IL-35);
and (3) further studies indicated that the STAT signaling
pathway (IL-6, IL22, IL23, IL27, and IL31), JAK signaling
pathway (IL-21, IL-22, and IL-31), mTOR signaling pathway
(IL-6 and IL17), NF-κB signaling pathway (IL18 and IL-23),
and Smad signaling pathway (IL-31) may regulate the
expression of related ILs. Thus, the expression of many cyto-
kines such as IFN-γ, TNF-α, and TGF-β can be affected, and
the immune status and prognosis of ACLF patients can be
affected. For example, the activation of the key signal path-
way JAK/STAT signal pathway can promote the activation
of Th17 cells and Tfh cells by upregulating the expression
of IL-21 and IL23, aggravating the inflammatory storm of
liver, and leading to the occurrence and development of
ACLF. The JAK/STAT signaling pathway can be activated
by phosphorylation of Smad, which promotes the produc-
tion of TGF-β and IL31, inhibits hepatocyte regeneration,
and promotes ACLF development. Activation of the
mTOR/STAT signaling pathway can inhibit CD4+ T cells
to differentiate into Th17 cells, thus inhibiting Th17-
mediated progressive liver injury and improving the progno-
sis of ACLF. In addition, the clear correlation between ALT,
TBil, PT, INR, and MELD scores and ILs also suggest that
ILs can reflect the severity of liver disease and the prognosis
of HBV-ACLF to a certain extent. However, the predictive
value of the above-mentioned ILs needs further study and
verification.
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