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Modeling and inference are central to most areas of science
and especially to evolving and complex systems. Critically,
the information we have is often uncertain and insufficient,
resulting in an underdetermined inference problem; multi-
ple inferences, models, and theories are consistent with
available information. Information theory (in particular, the
maximum information entropy formalism) provides a way
to deal with such complexity. It has been applied to numer-
ous problems, within and across many disciplines, over the
last few decades. In this perspective, we review the histori-
cal development of this procedure, provide an overview of
the many applications of maximum entropy and its exten-
sions to complex systems, and discuss in more detail some
recent advances in constructing comprehensive theory
based on this inference procedure. We also discuss efforts
at the frontier of information-theoretic inference: applica-
tion to complex dynamic systems with time-varying con-
straints, such as highly disturbed ecosystems or rapidly
changing economies.

data-based models j economies and ecosystems j entropy j information-
theoretic inference j theory construction

During the past several decades, technological advances
have led to explosive growth along two axes of science: the
acquisition of data and the computational capacity to pro-
cess data. Paralleling these advances, scientists have become
increasingly aware that civilization now depends upon our
capacity to understand the structure and predict the future
behavior of enormously complex systems, such as econo-
mies and ecosystems. The task of marshaling the fruits of the
new technologies toward that goal poses a grand challenge
to society.

A combination of huge datasets and fast computers
coupled with advances in artificial intelligence, machine
learning, deep learning, and data science in general might
conceivably achieve that goal. Indeed, there has been pro-
gress in their application to chess, Go, computer vision,
and robotics, as well as to improvements in text genera-
tion, facial and speech recognition, motion detection, and
other tasks. In addition to “big data,” in the last few decades
there have been numerous mathematical discoveries and
new theorems that opened the way for a more theoretical
analysis of certain complex systems. However, truly com-
plex systems, such as ecosystems, economies, and climate,
appear especially refractory to analysis by merely process-
ing big datasets with these advanced tools and new mathe-
matical discoveries. The available information for studying
and modeling such systems is insufficient to determine out-
comes. Such problems are greatly underdetermined. More-
over, myriad poorly understood mechanisms, including a
web of feedbacks that masks causal interconnections,

operate. Additionally, boundary conditions in space and
time may not uniquely determine trajectories.

Understanding such systems requires theory and mod-
els spun off from theory, as well as big data. However,
what kind of theory or models is needed? In the search for
the answer, bottom-up, reductionist, and agent-based
models are natural candidates. If these could be combined
with identified laws analogous to Newton’s, then predictive
theory might be obtainable. Unfortunately, the above-
mentioned problems generally render such systems opa-
que to traditional mechanistic modeling. There are multiple
theories and models that are consistent with the informa-
tion we have about such systems; these are massively
underdetermined problems.

Nearly four decades ago, John Skilling (1) suggested an
answer to the fundamental question: How do we predict
the behavior of incompletely characterized systems? His
answer was to turn to information theory and in particular,
to the maximum entropy (MaxEnt) inference procedure (2).
The basic idea is to use the information and knowledge we
do possess about a complex system as constraints and
then, use well-established mathematical procedures to infer
additional knowledge by maximizing a certain objective
(decision) function subject to these constraints. The objec-
tive function is derived from information theory, and its
maximization ensures that we have made optimal use of
prior knowledge.

MaxEnt is a powerful inferential tool for modeling and
theory construction. Each application is different and
demands its own information and structure, but MaxEnt is a
general logical foundation for solving a huge range of prob-
lems. Here, we briefly review the historical development of
this procedure, provide an overview of the many applica-
tions of MaxEnt and its extensions to complex systems that
have appeared since the Skilling article was published, and
discuss in more detail some recent advances in constructing
comprehensive theory based on this inference procedure.
We also discuss efforts at the frontier of information-
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theoretic inference (application to complex dynamic sys-
tems with time-varying constraints, such as highly disturbed
ecosystems or rapidly changing economies) and argue that
information-theoretic inference, hybridized with more con-
ventional mechanistic modeling, may provide the greatest
insight. We conclude with thoughts on open questions and
potential new directions.

A Brief Historical Perspective

The original principles of information-theoretic inference
can be traced to Jacob Bernoulli’s work in the late 1600s. He
established the mathematical foundations of decision-
making under uncertainty and is recognized as the origina-
tor of probability theory. His work is summarized in Ars
Conjectandi (3). Bernoulli introduced the “principle of insuffi-
cient reason,” although the principle is also attributed to
Laplace. It states that absent relevant information about
the probability of a particular outcome, we must treat all
possible outcomes as equally likely. Following Bernoulli’s
work, Simpson (4), Bayes (5), and de Moivre (6) indepen-
dently established more mathematically sound tools of
inference. However, it was Laplace (7), with his deep under-
standing of the notions of inverse probability and “inverse
inference,” that finally laid the foundations for statistical and
probabilistic reasoning or logical inference under uncer-
tainty. The basics of MaxEnt and information-theoretic infer-
ence grew out of that work.

Jumping forward almost two centuries takes us to Shan-
non (8) and Jaynes (2). Shannon’s work on communication
theory and in particular, on what he called information
entropy became the foundation of modern information
theory. Building on this foundation, Jaynes recognized that
Shannon’s information entropy provided the key to unbi-
ased inference under uncertainty. In particular, Jaynes gen-
eralized Bernoulli’s and Laplace’s principle of insufficient
reason and formulated his classic work on the method of
MaxEnt.

MaxEnt selects the flattest and therefore, least informa-
tive, probability distributions compatible with constraints
imposed by prior knowledge. Bias, in the form of assump-
tions about the distribution that are not compelled by prior
knowledge, is thereby eliminated (2, 9). The MaxEnt form of
a probability distribution, pðnÞ, is obtained by maximizing

its Shannon information entropy (8), �∑npðnÞlog
�
pðnÞ

�
,

under imposed constraints. As Skilling (1) noted, Jaynes’
MaxEnt provides a systematic and optimal approach to
inference from incomplete information. Methodological
advances have subsequently been made by a large number
of researchers across many disciplines (10–18).

To understand the motivation for the use of the Max-
Ent inference principle, consider the following four prem-
ises, which comprise a logical foundation for knowledge
acquisition.

1) In science, we begin with prior knowledge and seek to
expand that knowledge.

2) Knowledge is nearly always probabilistic in nature, and
thus, the expanded knowledge we seek can often be
expressed mathematically in the form of probability
distributions.

3) Our prior knowledge—including the information we
have—can often be expressed in the form of constraints
on those distributions.

4) To expand our knowledge, the probability distributions
that we seek should be “least biased” in the sense that
the distributions should not implicitly or explicitly
depend upon any assumptions other than the informa-
tion contained in our prior knowledge.

The key, of course, is how to implement step 4 above. Fortu-
nately, there is a rigorously proven mathematical procedure
(13, 19, 20) to do so, and it is precisely the maximization of
Shannon entropy that Jaynes had earlier proposed. Thus,
acceptance of these four premises entails acceptance of a
specific information-theoretic process of inference, MaxEnt.
A quick overview of the mathematical machinery of MaxEnt
is given in Box 1 (13, 19, 21).

An Aside on the Interpretation of Probability

In applications of MaxEnt, we are not concerned about the
distinction between frequencies and pure probabilities;
constraints on the probability distribution, which are the
input to MaxEnt inference, may arise from any combination
of empirical (frequentist) data, Bayesian inferences, or sym-
metries and conservation laws. Probabilities are never
observed; they are always theoretical expectations or
inferred likelihoods based on observed frequencies or on
laws of nature. Some argue that probabilities are objectively
grounded in these laws [e.g., Keynes (22)], while others,
such as Ramsey (23), consider them to be subjective
degrees of belief, known also as “Bayesian probabilities.”

Regardless of the interpretation, we assert that there is
a unique, most rational way to assign degrees of belief to
the states of the system. Theoretical expectations of objec-
tive frequencies of occurrence are the goal of MaxEnt
inference. MaxEnt updates probabilities, whether based
on frequencies or subjective belief, using the information
we have (ref. 23; a recent discussion is in ref. 16, box 2.1).
Prior information may be noisy, imperfect, and subject to
interpretational and processing errors, but within the MaxEnt
inference framework, uncertainty and imperfections in our
prior information can be readily accommodated.

In summary, the MaxEnt approach is an objective infer-
ence procedure in the sense that different analysts pos-
sessing the same prior knowledge, however obtained and
however imperfect, will reach the same conclusions about
inferred distributions.

Recent Applications: An Overview

The use of information-theoretic inference and MaxEnt in
particular blossomed within many disciplines in the last few
decades. Fig. 1 summarizes representative applications from
different disciplines. We divide them into two broad catego-
ries: data-based inference and theory construction, although
that distinction is not always definitive; some applications
may belong in both. In each example, we define in column 2
the entities that are the arguments of the probability distri-
butions we wish to infer, in column 3 the information used
as constraints, and in column 4 the new information we
obtain from MaxEnt.
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Applications to data-based inference, emphasized in ref.
1, began with Bernoulli and Laplace and are distinguished
from applications to theory construction by their focus on
answering specific questions about, or resolving ambiguous
or missing and imperfect information in, a specified data-
set. Examples include improving the resolution of a fuzzy
image, filling in missing data in an economic input–output
table, and inferring the future range, under climate change,
of a species. An example of creating an input–output table
from aggregated data is shown in Box 2.

The goal of MaxEnt-based theory construction, in con-
trast, is to infer probability distributions that comprise a
unified and comprehensive predictive understanding for a
wide range of phenomena in a wide class of systems, such
as thermodynamic systems, ecosystems, or economies.
The first example, Jaynes’s (2) derivation of statistical
mechanics, opened the floodgates to many recent applica-
tions shown in the figure. Because theory construction is
more ambitious yet less familiar to many, we discuss this
in more detail below (2, 15–18, 24–66).

MaxEnt for Theory Development

Many complex physical, biological, and social systems can
be usefully, albeit approximately, described at two well-
differentiated levels: themicroscale and themacroscale. In the
classical statistical mechanics of an ideal gas, we distinguish
kinetic energies of individual gas molecules, which are micro-
scale variables, from macroscale variables, often termed state
variables, such as pressure, volume, and temperature. In ecol-
ogy, we distinguish growth rates of individual organisms and
abundances of each species from state variables, such as total
productivity and the total number of individuals in the system.
In economics, we distinguish the production and consumption
of individuals from aggregate demand and supply or total
Gross Dometic Product (GDP) of the economy.

Bottom-up models and theories of such systems begin
with choices of dominant driving mechanisms operating
among microscale components of the system and then,
predict macroscale behavior from microscale drivers.
This approach, although at times instructive, builds on

assumptions about mechanisms and parameter values
that can rarely be validated.

MaxEnt-based theory takes a top-down approach to
infer probability distributions, describing the details at the
microscale from prior knowledge specified in the form of
macroscale constraints. Without MaxEnt, the problem is
underdetermined because the low-dimensional macroscale
constraints cannot uniquely determine the shape of high-
dimensional distributions over microscale variables.

Example of Ecological Theory. The ecological theory referred
to in Fig. 1 (theory construction, row 2) is designated METE
(Maximum Entropy Theory of Ecology). Over spatial scales
ranging from small plots to large landscapes, for a wide
variety of habitat types, and within broad groups of species,
such as plants, birds, insects, or microbes, METE predicts
the functions describing patterns in the abundance, spatial
distribution, and energetics of species and individuals. Con-
sider, for example, the community of trees in a designated
area of a forest. In METE, the state variables are the area
(A0) of the system, the total number of tree species (S0) and
individuals (N0) in the community, and the total productivity
or metabolic rate (E0) of the trees. These play a role loosely
analogous to pressure, volume, temperature, and number
of molecules in thermodynamics, although in thermody-
namics, each state variable is either extensive or intensive,
whereas in ecology, S0 is neither.

At the core of METE are two probability distributions: an
ecological structure function that describes the allocation
of individuals across species and metabolism across indi-
viduals and a spatial distribution that describes the spatial
clustering of individuals within species. The structure func-
tion is a joint probability distribution, Rðn,εjS0, N0,E0Þ, con-
ditional on three state variables, giving the probability that a
randomly selected species has abundance n and a randomly
selected individual from the species with abundance n has a
metabolic rate ε: The spatial distribution, Πðnjn0,A,A0Þ, is
the probability that if a species has abundance n0 in an
area A0, then it has abundance n in an area, A, randomly
located in A0. Ratios of the state variables S0, N0, and E0
comprise the constraints that determine the structure

Box 1. The MaxEnt procedure.

To illustrate the basic structure of a MaxEnt inference, we use
the simplest example of a single-variable, discrete probability
distribution, PðnÞ, the form of which we seek to infer. Assume
our prior knowledge consists of the mean values, over PðnÞ,
of each of K functions, fkðnÞ, where k can be 1, 2, …, K. Our
knowledge of these mean values may arise from measure-
ments or by deduction from general principles, such as con-
servation laws and symmetries. Denoting these mean values
as Fk, we have the following K constraints on PðnÞ:

∑
n
fkðnÞPðnÞ = Fk:

An additional constraint is that PðnÞ is normalized to one.
If n can take on any value from, say, 1 to N and N > K + 1,

then these constraints do not uniquely determine PðnÞ. Max-
imizing the Shannon entropy of PðnÞ subject to these con-
straints, however, does yield the unique MaxEnt solution:

PðnÞ = Z�1e�∑kλkfkðnÞ:

Here, Z is a normalization constant, and the λk ’s are
Lagrange multipliers, which along with Z, are uniquely deter-
mined functions of the Fk ’s. A straightforward application of
the calculus of variations (21) is used to derive this result.
The same framework is easily extended to more complex
problems, where the distribution is multivariable, continuous,
and conditional on other factors.

Of all distributions that are consistent with the infor-
mation used—the constraints—the MaxEnt solution for
PðnÞ can be shown (13, 19) to be closest to the uniform
distribution, and thus, it captures a state of maximum
uncertainty. In that sense, the derived probability distri-
bution is unbiased; any other distribution, resulting
from a different objective function, would implicitly
embody assumptions that are not warranted by prior
knowledge.
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function, and n0A=A0, the mean value of n in A, is the con-
straint on the spatial distribution. The MaxEnt solutions for
these two distributions have no adjustable parameters
if the constraints are specified. If their actual measured val-
ues are not available, we can indirectly infer them from
other data and general principles. The metabolic rates of

the insects in a patch of meadow, for example, are not
readily measured, but if a metabolic scaling law relating
mass and metabolism is assumed, then metabolism can
be inferred (67).

From the structure function and the spatial distribution,
numerous testable ecological predictions flow, including

Fig. 1. Overview of representative applications of information-theoretic MaxEnt inference.
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the distribution of abundances over the species and meta-
bolic rates over the individuals (68); a measure of intraspe-
cific spatial aggregation of individuals (68); the dependence
of species diversity on area sampled (69); a relationship
between the abundance of a species and the average met-
abolic rate of its individuals (68); and an equation of state
relating biomass, metabolic rate, abundance, and species
diversity (18). Fig. 2 shows the mathematical structure of
METE, illustrating how predictions for multiple patterns
flow from the application of MaxEnt.

Empirical tests provide support for the theory (69–72).
An extension of the original theory with an additional state
variable for the number of genera, or families, successfully
predicts the distribution of species over these higher taxo-
nomic categories as well as the dependence of the
abundance–metabolism relationship on the structure of
the taxonomic tree (53, 73).

Examples of Economic Theory. In Fig. 1 (theory construction,
rows 3 and 4), we refer to MaxEnt-based economic and
social science theories. Depending on context, the entities
of interest may be individual preferences, beliefs, strategies,
strategic behavior, or even decision processes. Ambiguity
arises because we do not observe, for example, individuals’
preferences and thus, the relationship between preference
and action. Therefore, the specification of the constraints
may be complicated and problem specific.

In an early application, Golan (54, 74) used MaxEnt to
derive a multivariable stochastic theory of size distributions
of firms in an economy. It is a statistical model of agents’
production subject to some resources and technological
constraints. An extension of this theory to a general equilib-
rium model of a complex economy composed of consumers
and producers is developed in refs. 16 and 75. Foley (55)

developed a statistical equilibrium theory of markets. Mar-
ket analysis begins with agents’ offer sets that reflect their
desired and feasible transactions, which are conditional on
agents’ information, technical possibilities, endowments,
and preferences. The market distributes agents over offer
sets to maximize the entropy of the market transaction dis-
tribution. This is the most decentralized allocation possible
given the preferences of agents. Such top-down theories
are based on minimal macroscale information and require
less structure and fewer assumptions than in classical
bottom-up economic modeling.

Information-theoretic inference also elegantly connects
game theory with empirical evidence. McKelvey and Palfrey
(76) took a statistical approach to modeling quantal (dis-
crete) choice within a game-theoretic setup. Players choose
strategies based on their preferences (expected utility), with
choices based on a quantal choice model, and assume that
all other players are doing the same. Given a specific error
structure, a quantal response equilibrium (QRE) is a fixed
point of this process. The resulting response functions are
probabilistic; better responses are more likely to be
observed than worse responses. They look at a specific
parametric class of quantal response functions, which is the
traditional way of analyzing empirical choice models to yield
a logit equilibrium. The maximum likelihood logit model is
exactly the MaxEnt model for all unordered discrete choice
problems (77). The QRE can be developed directly via this
approach. This, in turn, combines the two branches of liter-
ature coming from statistics and information theory for
modeling a game, and it provides a simple way for doing
empirical studies. More recently, Scharfenaker and Foley
(78) built on the above work and employed the MaxEnt
approach to develop a quantal response statistical equilib-
rium in a model of economic interactions.

Box 2. An input–output and social accounting matrix
(SAM) example.

Economists often work with regional or economy-wide equi-
librium models. Such models require the use of multisec-
toral economic data to estimate a matrix of expenditure,
trade, and/or income flows. Such detailed data become
available only after a long delay (about a decade). However,
the aggregated data—the totals of each row and column—
are always available. Hence, the underdetermined problem
is to infer, from the incomplete aggregated data, a new
matrix that satisfies a number of linear restrictions. This is
shown in the table below, where the observed information
is the row and column sums (uppercase) and the desired
information is the matrix entries (lowercase).

To put this within an economic context, consider the
Leontief input–output model for an economy with K sectors,
each producing a single good. The sectors buy nonnegative
amounts of each other’s products to use as intermediate
inputs. An input–output table also includes rows of pay-
ments to primary factors of production and columns of cat-
egories of final demand. An SAM expands the input–output
accounts, adding accounts that map from factor payments
(value added) to final demand for goods. An input–output
table is rectangular, while an SAM is always square, with
row sums equaling column sums X = Y and AX = Y. In a K × K

SAM matrix, call it A, the column sums of A equal one, and
the matrix is not invertible.

In this example, we show how to utilize the MaxEnt
approach to fill up the cells of a 3 × 3 SAM.

X1 X2 X3

Y1 a11 a12 a13
Y2 a21 a22 a23
Y3 a31 a32 a33

The table is a toy 3 × 3 SAM matrix with elements aij. We
want to infer these quantities from the observed row and
column sums (Y and X).

Although the X, Y, and A are in units of dollars (flows), the
observed X ’s and Y ’s can be normalized, so the matrix A can
be viewed as a set of K probability distributions. To solve
the problem, we maximize the entropy �∑ijaijlogaij subject
to the K linear constraints ∑jaijxj = yi and the K normaliza-
tions ∑iaij = 1. The solution is a�ij =

1
Zjðλ�i Þexpðλ

�
i xjÞ, where λ�i ’s

are the K = 3 Lagrange multiplier associated with each one
of the three linear constraints and Zjðλ�i Þ is a normalization
factor. If any additional information is known, such as
a21 = 0, it can be incorporated into the model as well. That
approach is used often in economics (15, 34) as well as
other related matrix-balancing problems. The Markov exam-
ple discussed below is a generalization of this simple model.
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Criticisms and Failures of MaxEnt-Based Theory

One criticism of MaxEnt-based theory is that the choice of
state variables appears arbitrary, as does the choice of the
sought-after probability distributions, such as the structure
function in METE. Is theory construction just a trial and error
search for suitable constraints and objective functions to
accurately predict patterns in nature? In response, we note
that a similar concern applies to bottom-up models, which
often contain arbitrary choices of functional forms, individu-
al’s behavior, and parameter values describing microscale
interactions. Scientific theories, we reply, never derive purely
from logic; the selection of the elements of theory is often
guided in part by intuition and data availability.

If specified correctly, constraints are sufficient statistics
and capture the information needed to describe a system’s
behavior. They and Shannon’s entropy objective function
provide a falsifiable means of characterizing the system in
the simplest way.

Another criticism of MaxEnt-based theory is that, lacking
explicit mechanisms, no causal insight is gained. One
response is that when MaxEnt-based theory is successful,
then whatever the mechanisms are that determine the val-
ues of the state variables, those mechanisms are sufficient
to explain the probability distributions at the microscale; to
predict the observed patterns, there is no need for added
complexity. In that sense, the role of mechanism is identi-
fied, even if the actual mechanisms that determine the
state variables are unknown. Below, we provide an example
where MaxEnt allows us to infer causal relationships.

An important connection between MaxEnt and mecha-
nism stems from the observation that if the set of state
variables used in building a MaxEnt-based theory is insuffi-
cient to make accurate predictions, the nature of the
discrepancy can point the way to identifying important
mechanisms. In thermodynamics, for example, the failure
of the ideal gas law under extreme values of the state varia-
bles led to the discovery of Van der Waals’s forces between
molecules.

In ecology, if additional flow resources, such as water,
nitrogen, etc., are allocated among individuals along with
energy flow expressed as total metabolic rate, then the
predicted distribution of abundances, n, over the species is
altered. METE in its original form predicts a log-series abun-
dance distribution, which varies as 1=n at small n. However,
if r additional resource constraints are added, then the
abundance distribution varies as 1=nrþ1 (17), thereby
increasing the predicted fraction of species that are rare.
This makes sense according to the niche concept in ecol-
ogy; a greater number of limiting resources provides more
specialized opportunities for rare species to survive. Thus,
METE relates the degree of rarity in a community to the
number of resources driving macroecological patterns.
METE, a seemingly nonmechanistic theory, can inform us
about what mechanisms might be driving these patterns.

A dramatic example of statistical theory failure arises
when a MaxEnt theory derived using static constraints is
applied to a dynamic system in which the values of the state
variables are changing in time. However, if MaxEnt is speci-
fied correctly, dynamic systems can be modeled as well (Fig.

Fig. 2. The mathematical architecture of the METE. Empirically testable metrics, such as the distributions of abundances over species and metabolic rates
over individuals, the species–area and endemics–area relationships, and an energy-equivalence principle derive from specified mathematical operations on
the two fundamental distributions in the theory: an ecological structure function, R, and a spatial distribution, Π, which in turn, are derived using MaxEnt
under the constraints specified in the text. Adapted from ref. 53.
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1, theory construction, bottom rows). As an example con-
sider maximum caliber (MaxCal) (Fig. 1, theory construction,
row 6). Applying the same principles as in MaxEnt, MaxCal
(59–62) gives the probability distribution of the different
potential pathways of a dynamical system or a network.
While MaxEnt deals with equilibrium states and relatively
stationary populations, MaxCal applies to systems far from
equilibrium. The idea is to maximize the path entropy
(defined over the probability that the dynamical process
evolves in a specific path) over all possible pathways subject
to dynamical constraints. This yields the probability distribu-
tion over the possible pathways: the relative probability that
a system will move from one state to another. In most prac-
tical cases, that approach was applied for discrete probability
distributions, which are in fact characterized by a first-order
Markov process. Technically, although MaxCal deals with
dynamical systems, the underlying logic is that these dynam-
ics, or paths, are actually fixed throughout the period ana-
lyzed, and the constraints are averages over the different
paths. In that way, the connection with MaxEnt is easy to
see. In what follows, we provide new ways to model dynamic
systems.

Extension of MaxEnt Methods to
Dynamic Systems

If the state variables are changing in time, such as in a none-
quilibrium thermodynamic system, a disturbed ecosystem, or
a transitioning economy, the constraints imposed by instanta-
neous values of the dynamic state variables may fail to
accurately predict instantaneous microscale distributions. In
ecology, there aremany examples of such failure (72, 79–82).

From METE to DynaMETE. To extend MaxEnt-based ecologi-
cal theory from the static to the dynamic domain, Harte
et al. (18) proposed a theoretical framework, called Dyna-
METE, that hybridizes the MaxEnt inference procedure
with explicit processes that perturb the system and gener-
ate time-dependent state variables. DynaMETE is an exten-
sion to far from steady-state ecosystems of METE, which
was applicable only to systems with time-independent
state variables. The list of state variables now includes
both the instantaneous values and the first-time deriva-
tives of the static-theory macrovariables, S, N, and E. In
that circumstance, a purely top-down approach does not
suffice; DynaMETE is a hybrid theory that combines mech-
anisms at the microscale with top-down MaxEnt inference.

The general structure of DynaMETE should apply to any
system with clearly distinguishable macrostates and micro-
states, in which the time evolution of the microvariables
can be written as transition functions of the instantaneous
values of the microvariables and the macrovariables. The
time evolution of the system is calculated in an iterative
process in which the macrovariables are updated by aver-
aging transition functions over probability distributions that
in turn are updated by MaxEnt imposed instantaneously
using the full set of state variables as constraints. A consis-
tent iteration procedure for solving the theory was pro-
posed in ref. 18 and is summarized in SI Appendix, Box S1
using a simple toy model realization of the more general
DynaMETE framework.

The dynamics of disturbed two-tiered systems are espe-
cially complex and rich in possibilities if the microscale and
the macroscale are entwined in the sense that the mecha-
nisms governing the dynamics of the microscale variables
are partially governed by the values of the macroscale vari-
ables (83). Although originally posited as a property unique
to living systems, we see no reason why such entwining of
the microscale and macroscales might not arise in any
complex system. For example, in economics, changes in an
individual’s wages or a firm’s profits can be influenced by
the changing state of the macroeconomy and by changes
in the number of firms and workers. In ecology, the repro-
ductive rates and growth rates of individuals in any particu-
lar species might be influenced by a changing total number
of individuals in the ecosystem as well as by the population
density of that particular species. Such entwined dynamics
are readily incorporated in the DynaMETE framework
(SI Appendix, Box S1).

In the static limit, in which the state variables are rela-
tively constant in time, DynaMETE reduces to the static
METE. However, following an ecological disturbance, such
as a wildfire or the introduction of exotic species, it makes
new predictions for patterns of interest to ecologists, such
as species–area relationships or abundance distributions.
It also predicts the future time trajectory of the state varia-
bles. These new predictions will depend upon the nature
of the disturbance. Hence, from observed transitions in
patterns, we may be able, in the future, to attribute spe-
cific combinations of mechanistic causes of disturbance in
our rapidly changing ecosystems in the Anthropocene.

Data-Based Extensions to Dynamics: A Conditional Markov
Example. Markov processes (referred to in Fig. 1, data-
based inference, row 4) describe the time evolution of a
system when the current state of the system is conditional
on the state in the previous period. A simple Markov model
yields a probability distribution describing the transition
from state k to state j within a well-defined time period
Δt ≡ ðtþ 1Þ � t , where “≡” stands for definition. It is also
known as a “short memory” process.

Across disciplines, Markov processes are used to model
dynamic processes from population growth of species to
the progression of securities in financial markets to pro-
motions within hierarchical organizations. To calculate the
state of the system (or an individual in the system), the
usual rule of conditional probability is used (SI Appendix,
Box S2, Eq. S7). In a generalized and more realistic version
of such a process, the transitions are also conditional on
environmental, economic, physical, or other conditions,
allowing inference of the causal effect of exogenous forces
on the transition probabilities. However, for complex and
evolving systems, such as behavioral, social, and ecological
systems, that is a tough problem to solve because we do
not know the details of the underlying processes that gen-
erate the observed information. In addition to the usual
uncertainty, there is model ambiguity. This example shows
that MaxEnt opens the way for modeling conditional Mar-
kov processes of complex systems with continuously evolv-
ing data. In SI Appendix, Box S2, we provide a detailed
mathematical formulation of that model (16, 34).
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To infer the steady-state transition probability matrix, we
use time series data. The difficulty is that such data emerge
from a constantly evolving complex system, and thus, there
is no unique steady-state transition matrix. However, if
we accommodate for possible ambiguity and uncertainty in
the constraints, we can derive an approximate steady-state
transition matrix. It is the most probable data-based transition
matrix, conditional on all our information and consistent with
all of the observed complex time series data.

The information used is time series data about each
entity’s state at period t, as well as information on exoge-
nous variables that may affect the entity’s transition probabil-
ities. We capture the relationship between the observed data
Y, the unknown probabilities P, and the exogenous informa-
tion X by multiplying each element of X by the elements on
both sides of the core equation, defined in SI Appendix, Box
S2, Eq. S7, and sum over the entities and time periods (16).
That is, the constraints are specified in terms of moment
conditions. Due to model ambiguity and the complexity of
the data, we also allow for some additive uncertainty in the
constraints. We call it “flexible constraints.”

Given these flexible constraints (and the usual normaliza-
tions), our objective is to simultaneously infer the transition
probabilities and the uncertainty (noise) given the observed
information Y and X. If we do not assume anything about
the uncertainty or construct a likelihood function, the prob-
lem is underdetermined, but MaxEnt gives the desired solu-
tion. To do so, we need both the P’s and the uncertainty to
be probability distributions so that we can define their
Shannon entropy. To transform the uncertainty associated
with each constraint into a probability distribution (W), we
follow refs. 15, 16, and 77 and view the uncertainty as the
expected value of a random variable (with mean zero) with
probability distribution W (SI Appendix, Box S2, step 1). With
this transformation, we maximize the joint entropy of P and
W subject to the constraints (SI Appendix, Box S2, Eq. S8) to
obtain the solution. The transition probabilities (P), the
uncertainty probabilities (W), and the Lagrange multipliers
are inferred simultaneously in the optimization.

We can then evaluate the transition at each period t.
Moreover, the effect of each exogenous variable on each
one of the inferred transition probabilities has a direct
causal interpretation: the effect of a change in some exoge-
nous factor on the transition probability. Causal effects can
be calculated for both continuous and discrete exogenous
variables. Importantly, the generalized MaxEnt Markov prob-
lem is of the same dimension (the number of constraints
and Lagrange multipliers) as the MaxEnt. The generalization
discussed opens the way for solving more complex prob-
lems without increasing the model’s complexity. As with the
DynaMETE and METE, if there is no uncertainty and the sys-
tem is at a steady state, the generalized approach discussed
here reduces to the classical MaxEnt or MaxCal. In fact, the
MaxCal is a special case of the Markov framework we pre-
sent here. If there is no ambiguity and uncertainty over the
exact dynamic and the paths (or transitions) are not condi-
tioned on other external factors and complex data, both
converge to the same outcome (16, 61).

This example demonstrates one of the major advan-
tages of the information-theoretic framework for data-
based inference with a system that is constantly evolving.

The inferred solution—transition matrix in this case—is
the best data-based approximate theory of the unknown
true process. It also allows us to perform predictions and
to understand the forces driving this system. That frame-
work is computationally efficient and easy to apply.

In both the Markov and the DynaMETE approaches to
extending MaxEnt inference to dynamics, transition functions
govern the time evolution of the probability distributions of
interest. In the Markov example, MaxEnt is used to infer the
transition matrix using observed time series data as con-
straints. In DynaMETE, on the other hand, the dependence
of the transition functions on micro-level and macro-level
variables is assumed as input, transition function averages
over certain probability distributions give the time depen-
dence of the state variables, and the state variables and
their time derivatives provide the constraints under which
MaxEnt inference updates the probability distributions. It
is thus an iterative process in time. In both approaches,
the transition functions can be functions not only of the
micro-level entities but also, of the state variables or other
exogenous factors.

Open Questions

Information theory has contributed much to the advance-
ment of modeling and inference, yet it has much more to
offer. One possible future advance in applying MaxEnt is
to a class of systems that we have not discussed here. As
emphasized above, applications of MaxEnt have generally
been for the study of systems in which a clear separation
of macro and micro levels of description is natural. Yet,
some complex systems cannot be easily reduced to such a
bipartite structure. Turbulence in Earth’s climate system,
for example, is intrinsically a multiscale phenomenon. One
open question, then, is how can we apply MaxEnt to infer
distributions at any scale in such systems?

Another question is how to extend the framework to
improve capacity to identify misspecification of constraint
information and to better identify the nature of flexible
constraints for data-based models. Related to this, improv-
ing the ability to identify the most useful constraints aris-
ing from huge datasets, which potentially could result in
an overwhelming number of constraints, is likely to
become more important in the future. This will likely entail
developing optimal aggregation procedures.

Finally, we observe that the two approaches we have
described above for using information theory to solve
dynamical problems are complementary. DynaMETE
assumes knowledge of the transition functions, whereas
the Markov approach infers those functions. Might a syn-
thesis of the two methods provide a powerful method for
studying systems far from steady state?

Summary and Conclusion

With all problems in science, the more information we
have, the better will be the models and theories we can
construct. However, for hugely complex systems, like the
ones we confront in economics and ecology, we never will
have enough information to unambiguously predict out-
comes. For such systems, theory and model construction
are an underdetermined inference problem. If, however,

8 of 10 https://doi.org/10.1073/pnas.2119089119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119089119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119089119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119089119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2119089119/-/DCSupplemental


we specify available information as constraints and build
directly on the MaxEnt principle, we ensure that out of all
possible models that are consistent with the information
we have, the chosen one is least biased.

Both within each of us and surrounding all of us are sys-
tems of immense complexity. Critical to our survival and
well-being is understanding those systems sufficiently well
so that we can make reliable predictions and design effective
interventions. MaxEnt, an information-theoretic method of
inference, provides a powerful foundation for the study of
complex and continuously evolving systems. It is a powerful
method for extracting insight from sparse, uncertain, and

heterogeneous information and is also a foundation for com-
plex systems theory construction. We expect applications of
MaxEnt inference to continue expanding the frontiers of
complexity science within and across disciplines.

Data Availability. There are no data underlying this work.
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