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In cellular physiology and signaling, reactive oxygen species (ROS) play one of the most critical roles. ROS overproduction leads to
cellular oxidative stress. This may lead to an irrecoverable imbalance of redox (oxidation-reduction reaction) function that
deregulates redox homeostasis, which itself could lead to several diseases including neurodegenerative disease, cardiovascular
disease, and cancers. In this study, we focus on the redox effects related to vascular systems in mammals. To support research in
this domain, we developed an online knowledge base, DES-RedoxVasc, which enables exploration of information contained in
the biomedical scientific literature. The DES-RedoxVasc system analyzed 233399 documents consisting of PubMed abstracts and
PubMed Central full-text articles related to different aspects of redox biology in vascular systems. It allows researchers to explore
enriched concepts from 28 curated thematic dictionaries, as well as literature-derived potential associations of pairs of such
enriched concepts, where associations themselves are statistically enriched. For example, the system allows exploration of
associations of pathways, diseases, mutations, genes/proteins, miRNAs, long ncRNAs, toxins, drugs, biological processes,
molecular functions, etc. that allow for insights about different aspects of redox effects and control of processes related to the
vascular system. Moreover, we deliver case studies about some existing or possibly novel knowledge regarding redox of vascular
biology demonstrating the usefulness of DES-RedoxVasc. DES-RedoxVasc is the first compiled knowledge base using text
mining for the exploration of this topic.

1. Introduction

In cellular physiology and signaling, reactive oxygen species
(ROS) are involved in various processes including cellular
growth, gene expression, activation of signal transduction
pathways, and induction of transcription factors in defense
against infection [1–3]. In the vascular system, ROS play an
important role in regulating endothelial function and vascu-
lar tone in physiological condition [4]. However, ROS are
also involved in pathophysiological processes such as inflam-
mation, endothelial dysfunction, and vascular remodeling in
cardiovascular diseases (CVD), including hypertension

[5–8]. ROS are implicated in vascular pathophysiology, lead-
ing to atherosclerosis and arterial hypertension. Moreover,
ROS-generating systems were found to facilitate diseases
which promote vascular pathologies, such as hypercholes-
terolemia, diabetes mellitus, and obesity [9]. Within the
cardiovascular system (CVS), ROS have the role of signal-
ing molecules and facilitate cellular differentiation and
growth, cell migration, inactivation of NO, protein phos-
phorylation, and extracellular matrix production and
breakdown. However, many of these effects relate to path-
ological changes in the vasculature [1]. ROS are produced
by endothelial cells (EC), vascular smooth muscle cells
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(VSMC), and adventitial cells and can be generated by
various enzymes [10].

We are witnessing an enormous increase in the volume of
published research material, which makes it infeasible for an
individual researcher or a team of researchers to track all
important developments even in a specific field. This is very
prominent in the biomedical domain where, in addition to
the great volume of published scientific reports, the informa-
tion contained in these documents is itself highly complex.
For example, the following query: “(human OR mouse
OR rat OR mammal∗) AND (radical∗ OR peroxide∗ OR
“reductive stress” OR ROS OR “reactive oxygen species”
OR RNS OR “reactive nitrogen species” OR redox OR
“reduction-oxidation reaction” OR oxidative OR nitrosative
OR peroxide∗ OR superoxide∗ OR detoxifi∗ OR antioxid∗
OR “polyunsaturated fatty acids” OR “arachidonic acid”
OR “linoleic acid” OR hydroperoxide∗ OR “hypochlorous
acid” OR peroxynitrit∗ flavoprot∗ OR xanthine oxidase∗
OR “cytochromes P450” OR catalase∗ OR sulfiredoxin∗
OR peroxiredoxin∗) AND (“angina pectoris” OR anemia
OR aneurysm∗ OR angio∗ OR arter∗ OR atrial OR atrio-
ventricular OR aort∗ OR bradycardia OR blood OR brain
OR circulati∗ OR clogging OR cardio∗ OR coronary OR
edema OR heart OR ishemic OR hemo∗ OR hypertension
OR leukemia OR leuko∗ OR macroangiopathy OR microan-
giopathy OR neovascularization OR occlusion OR pericardi∗
OR sepsis OR “sickle cell” OR tachycardia OR tachyarrhyth-
mia OR thromb∗ OR vaso OR vein∗ OR ventricular OR
vascular∗OR vessel∗)” was used to retrieve all literature spe-
cifically focused on the problems related to redox effects on
the cardiovascular system in mammalian organisms. Clari-
vate Analytics (https://clarivate.com/) has indexed in the
Web of Science (All Databases), having 36063 and 169212
scientific articles published in 2017 and in the 2013-2017
period, respectively. This clearly highlights the challenges of
analyzing information even in specialized domains.

The problem of how to explore such a voluminous infor-
mation pool leads to looking for ways to simplify the search
for useful information. This problem is not new, and it has
been clear that one needs automated systems to support anal-
ysis of information contained in published literature. The last
three decades have seen numerous attempts devoted to
developments in this direction. This problem is addressed
through text mining. Different aspects of text mining and a
complementary set of techniques for the so-called natural
language processing (NLP) have been applied for the explo-
ration of biomedical information from free text [11–23].

Different methods were used for obtaining information
from free text [24–33], many based on heavy utilization of
ontologies and ontology structures [28]. Also, there have
been systematic efforts to combine text mining with other
methods to enhance the capacity to extract useful informa-
tion (for example, [30–32, 34]).

Text mining found applications in different biomedical
domains [31, 35–48], for example, dealing with problems of
cancers [42], disease biomarkers [47], sickle cell disease
[49], tomato species [50], medicinal herbs [35], sodium
channels [51], drug repurposing [37], protein analysis
[40, 52], prioritization of cancer genes and pathways [41],

hepatitis C virus [53], cancer risk assessment [48], associa-
tions of mutations and human diseases [54], or association
of transcription factors [55].

Research in the utilization of text mining in the bio-
medical field has resulted in a number of applications
that are accessible online, such as [56–79]. These demon-
strate the increasing value of applying text mining to the
biomedical field.

In this study, to support research in redox biology and its
effects on CVS, we developed an online knowledge base (KB),
DES-RedoxVasc (http://www.cbrc.kaust.edu.sa/des-rv), which
enables exploration of information contained in biomedical
scientific literature focused on redox control of vascular sys-
tems in mammals. We provide examples of DES-RedoxVasc
use.

2. Exploration System

2.1. Server Architecture and Underlying Systems.DES-Redox-
Vasc is a publicly available visual, interactive, topic-specific
literature exploration system that was developed using an
upgraded version of the DES system originally developed
by some of the coauthors of this report (VBB and AR) and
was used as the underlying framework for several published
topic-specific KB (different versions) [24, 49–55, 58, 62, 65,
68, 70, 72, 78, 80–83]. The KB is implemented and hosted
on a CentOS-7 operating system. Results are provided using
Apache web server version 2.4.6. A local MongoDB (2.6.11)
database stores the literature repository which comprises
open-access PubMed and PubMed Central articles, and the
KB index and related tables are stored on a PostgreSQL
(9.2.15) database. Apache Lucene was used to index the doc-
uments. Various programming languages/tools were used to
develop the KB including: JavaScript, JQuery 3.0.0C/C++
(gcc 4.8.5), Java (OpenJDK 1.8.0_91), Perl v5.16.3, and PHP
5.4.16. DES-RedoxVasc is functional across commonly used
web browsers (Windows, Linux, and Mac OS platforms)
and was specifically tested for Firefox, Safari, and Chrome.
The DES workflow has been described earlier [54].

2.2. The Literature Corpus and Dictionaries Incorporated into
DES-RedoxVasc. The MongoDB literature repository con-
tains only documents that are tagged as open access, which
means that they are freely amenable to text mining. Thus,
to create the literature corpus to be analyzed, the local
MongoDB repository, last updated on September 03, 2018,
was queried for all topic-specific PubMed and PMC arti-
cles. The same query used to query Web of Science (All
Databases) above was used to create the literature corpus.
The literature index server is designed to match the query
to the titles, abstracts, and full-text article when available
through the PMC set. The query retrieved 233399 articles.

Also, 28 topic-relevant dictionaries were used in this
KB, of which eight dictionaries were newly compiled (see
Table 1). The remaining 20 dictionaries were previously
used in other KBs developed using the DES framework
and in Table 1.

All dictionary concepts (see Table 2 for definitions) are
normalized where possible. Normalization of concepts
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ensures that when concepts can be referred to by different
symbols, names, or synonyms, it is always associated to a sin-
gle entity (using an internal identifier) and it also ensures that
concepts can be recognized through universal IDs such as
NCBI Taxonomy ID, Entrez Gene ID, and UniProt ID that
are regarded as trusted sources. For example, dealing with
genes and proteins is frequently problematic in text mining.
This is as a consequence of gene/protein names/symbols
and their aliases, frequently denoting more than one gene/-
protein. We combined Entrez Gene (for genes) with UniProt
(for proteins) nomenclatures which provide the official
names/symbols/aliases routinely used. Then the normaliza-
tion is applied in the DES system. The normalization of
dictionary concepts improves the accuracy of concepts’
enrichment estimates.

Some concepts are relevant to more than one dictionary,
for example, enzymes are gene products, and it is expected
that nomenclatures of these entity types would have a sub-
stantial intersection. The same goes for drugs and chemicals,
drugs and antibiotics, gene functions and pathways, etc. It is
worth noting that normalization is done at the dictionary
level and not across dictionaries because (1) it is the seman-
tically valid approach, as biological entities might be perti-
nent to, say, both chemicals and drugs, and should be
viewed as such depending on the scope of the literature and
the user’s interest and (2) these dictionaries are used in a
modular fashion independently from each other; it is not
redundant to keep a reference to the same entity in two or
more dictionaries. For example, a user might be interested
only in drugs, and not in the more general collection of

Table 1: Dictionaries used in DES-RedoxVasc with data source references.

Dictionary Enriched unique terms in the KB Status

Chemicals/compounds

Chemical Entities of Biological Interest (ChEBI) [84] 17981

Toxins (T3DB) [85] 2083

Lipids (lipids maps) [86, 87] 2852

Amyloids (Human and Mouse); compiled in-house 393 Newly compiled

Functional annotation

Biological Process (GO) [88] 5438

Cellular Component (GO) [88] 1125

Molecular Function (GO) [88] 1755

Pathways (KEGG [89], Reactome [90], UniPathway [91], and PANTHER [92]) 1445

Diseases

DOID Ontology (BioPortal)—Human Disease Ontology [93] 3467

ADO Ontology (BioPortal)—Alzheimer’s disease ontology [94] 937 Newly compiled

DMTO Ontology (BioPortal)—Diabetes Mellitus Treatment Ontology [95] 1941 Newly compiled

HFO Ontology (BioPortal)—Heart Failure Ontology [96] 1001 Newly compiled

CVDO Ontology (BioPortal)—Cardiovascular Disease Ontology [97] 53 Newly compiled

HP Ontology (BioPortal)—Human Phenotype Ontology [98] 3204

UBERON Ontology (BioPortal)—Uber Anatomy Ontology [99] 6540 Newly compiled

ICD9 Ontology (BioPortal)—International Classification of Diseases,
Version 9 - Clinical Modification [100]

688

Drugs

Drugs (DrugBank) [101] 3918

ATC Ontology (BioPortal)—Anatomical Therapeutic Chemical Classification [102] 1991 Newly compiled

CSSO Ontology (BioPortal)—Clinical Signs and Symptoms Ontology 210 Newly compiled

SIDER (Drug Indications and Side Effects) [103] 3190

Human

Human Genes and Proteins (Entrez Gene) [104] 21858

Human Transcription Factors [105] 1505

Human Transcription Co-Factors (TcoF-DB) [105] 384

Human microRNAs (HGNC and Entrez Gene)
PMEDIDs for HGNC and Entrez Gene

1811 Updated

Human Long Non-Coding RNAs (HGNC) [106] 460

Mutations (tmVar) [107] 12514

Human Anatomy (in-house compiled) 2538

OMIT Ontology (BioPortal)—Ontology for MicroRNA Target [108] 656 Newly compiled
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chemicals, and as such chooses only drugs for the KB anno-
tation; therefore, they should have access to all drugs that
are also part of the chemical dictionary. This also applies
when doing dictionary specific searches within the same
KB. It is not however acceptable to have redundant concepts
within the same dictionary.

The literature corpus and 28 dictionaries were used for
concept document mapping. The concept document map-
ping results were then used to statistically determine
enriched concepts and enriched pairs of concepts.

2.2.1. Enriched Concepts. In a KB, concepts could be statisti-
cally enriched or not. If they are enriched in the KB, this is
based on their abundance in the KB corpus which should
be greater than one would expect as compared to the rest of
the PubMed/PMC literature. The frequency of the concept
across the entire literature is indicative of the expectation of
its frequency in any randomly selected sample from the liter-
ature. A concept is enriched when its frequency in the KB is
significantly higher than the expected frequency. To quantify
determination of which concepts are enriched, a concept has
to have a P value < 0 05 in the DES-RedoxVasc corpus when
compared to the complete set of PubMed Central and
PubMed articles in our local repository; in this manner, con-
cepts most relevant to the KB are identified. The P value was
calculated based on the Benjamini-Hochberg procedure to
correct for multiplicity testing. Note that this P value is also
known as a false discovery rate (FDR).

2.2.2. Enriched Concept Pairs. Pairs of enriched concepts are
considered enriched for association by considering the abun-
dance of their cooccurrence as compared to the individual
occurrence of concepts that form the pair. So, for example,
if two concepts occur 100 times each and they cooccur 90

times, there is a high chance that they are associated, because
they each occurred with the other concept 90% of the time.
The situation is of course not typically symmetric, but the
example is just for clarification. The resulting enriched pairs
of concepts may or may not be directly associated; however,
the more a pair is enriched this way, the higher the probabil-
ity for the association between the two concepts.

Using cooccurrence as a proxy for semantic relatedness,
or association, is a well-established, if not the dominant,
approach to semantic analysis and association extraction
and is by nomeans particular to DES. PMI (pointwise mutual
information) and cosine distance from Word2Vec embed-
dings are some of the mainstream examples of such an
approach. Establishing association between two biomedical
entities from the text in a biologically meaningful way (e.g.,
causality, inhibition, and coexpression) is however a much
more challenging task, that is, the subject of much
research pertinent to the more general question of NLU
(natural language understanding). Focusing on one type
of association, with certain simplifying assumptions, can
render the task of targeted association extraction more
amenable to computation, but this is not the purpose of
our explorative system.

The total number of statistically enriched concepts
from all 28 dictionaries used is 101938. The number of
enriched concepts per dictionary is provided in Table 1.
The total number of statistically enriched pairs of concepts
that are themselves found statistically enriched is 5631393.
The literature corpus, 28 dictionaries, enriched concepts,
and enriched pairs of concepts were integrated to create
DES-RedoxVasc. The resulting network of concept pairs
was also embedded in a high-dimensional semantic space,
therefore enabling the computation of semantic similarity
between any two concepts within the KB.

Table 2: Vocabulary and interactive tools used in DES-RedoxVasc.

Vocabulary and
interactive tools

Definition

Concepts
Biological words or phrases (e.g., inflammation, oxidative stress, and hydrogen peroxide) found in this

topic-specific literature, organized into thematic dictionaries, and used to mine the literature

Concept Pairs
Cooccurring “Enriched Concepts” (e.g., cell fate determination and TAL1; Wnt receptor and CELSR2; and
BMP2K and coronary artery endothelial cell) that may or may not have a biological association/connection

FDR
“To be enriched, a concept or a pair has to have an FDR false discovery rate < 0 05 in the DES-RedoxVasc
corpus. The FDR is obtained by correcting the enrichment P values for multiplicity testing based on the

Benjamini-Hochberg procedure”

Literature Provides the literature set used in the development of this KB

Network A tool for the visualization of concept associations as a graph of interlinked nodes

Concept Co-occurrences
A list of concepts which cooccur in the literature with the concept in question. Concepts are regarded as

cooccurring in the text if they are within a 200-character distance from each other (refer to rationale below).
Only enriched pairs are shown in this list

Knowledge base A store of information or data that is available to draw on

Dictionaries A set of topic-specific vocabularies made up of words or phrases used for the purpose of text mining

kb_frequency Frequency of a concept within the KB literature corpus

bkg_freq Refers to background frequency: frequency of a concept within the whole PubMed/PMC literature corpus

Density KB frequency divided by background frequency
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2.2.3. Semantic Similarity. This similarity is a metric which
establishes the likeness or closeness of two concepts in terms
of their potential meaning. Semantic similarity can be the
result of semantic relatedness, such as synonymy, antonymy,
and hypernymy. For example, tall and short are semantically
similar even though they are antonyms because they both
share the semantic dimension of “height.” Semantic simi-
larity within DES is calculated as the cosine distance
between two concept embeddings (vector representations in
a latent semantic space). These embeddings are obtained
using a skip-gram Word2Vec model trained on the
DES-RedoxVasc literature corpus with normalized concept
annotation. Therefore, the underlying assumption for
semantic similarity in DES is concept cooccurrence, but not
necessarily direct cooccurrence.

3. DES-RedoxVasc Overview and Case Studies

DES-RedoxVasc allows oxidative control and vascular
system-related literature to be easily explored using terms
and associations that are determined to be statistically
enriched in topic-specific publication. Briefly, these
enriched terms/concepts can be explored using the
“Enriched Concepts” (Enriched Terms) link or via the
“Enriched Pairs” (Enriched Term Pairs) link that provides
enriched cooccurring concepts. Concepts are regarded as
cooccurring based on their cooccurrence in the text within
a 200-character distance from each other. However, DES-
RedoxVasc only reports the portion of cooccurring con-
cepts (pairs of concepts) where pairs are statistically
enriched, thereby increasing the probability that the
reported associations could have “biological relevance.”
However, “biological relevance” is left to the user to check
on by exploring the actual related literature provided
through the interface. So, if genes or proteins keep cooc-
curring with a particular disease or process much more
frequently than is statistically expected, then we assume
that these genes or proteins are deemed to be important
to the disease pathology or process (also refer to Enriched
Concept Pairs).

Users can also use the “Column visibility” tab in these
links to explore enriched terms using ranking options for
the false discovery rate (FDR), density, kb_frequency, and
bkg_freq. Also, concepts are color coded to indicate the
dictionary from which the concepts are retrieved.

Moreover, each concept is linked to a clickable box
through which the “Network” and “Term Co-occurrences”
links can be examined. Detailed description is provided in
[72]. There is also the “Literature” link that allows users to
explore the literature in DES-RedoxVasc (PubMed abstracts
and PMC full-text articles) and the “Network” link that allows
users to explore and generate networks of enriched concept
pairs. This version of DES also provides a new link named
“Semantic Similarity.” Users are also provided with a “Soft-
ware Manual” on the “Home” page of DES-RedoxVasc.
Below, we provide several examples wherein a range of
biomedical entities are used to develop insights into redox
control in vascular systems.

3.1. Example 1: Finding the Relevant Concepts of Different
Categories Using “Enriched Concepts” View. One rather sim-
ple but useful use of DES-RedoxVasc is a possibility to
quickly find some of the most relevant concepts related to
redox processes in CVS. For this, one can choose the
“Enriched concepts” view button (on the left side). Then
the page will show the list of most characteristics concepts
from all dictionaries as found by the system. If one wants to
see the most enriched concepts from a specific dictionary,
this is possible by selecting the dictionary from the dropdown
menu from the right side. As the inspection of these most
characteristic concepts will show, most of them are very
clearly related to the topic that we study. In the following,
we examine such singled-out genes/proteins and microRNAs
in more details.

Oxidants classified either as ROS [109, 110] or reactive
nitrogen species (RNS) [109, 110] are generated through
the cells’ normal metabolic processes as well as exogenous
factors such as atmospheric pollutants and irradiation. These
oxidants play important physiological roles in cell mainte-
nance and are considered not to harm the human body when
oxidant-antioxidant levels are relatively in equilibrium [111].
However, in cases where the levels of these oxidants exceed
the levels of antioxidants, oxidative stress (OS) is triggered
[112]. To counteract this state of oxidative stress, the cells
increase antioxidant production to reestablish redox homeo-
stasis [113, 114]. However, in contrast to the oxidative mech-
anisms, excess levels of antioxidants lead to excess reducing
equivalents of glutathione (GSH), NADPH, and NADH that
depletes ROS and triggers reductive stress (RS) [115]. This
state of chronic reductive stress stimulates an increase in
the production of oxidants only to establish an oxidative
stress state that is eventually driven back to the reductive
stress state. Thus, excess antioxidant agents may also induce
prooxidant effects [116].

These counter mechanisms describe the general pro-
cesses that govern redox control. Moreover, the lack of redox
control in the form of prolonged oxidative or reductive
stresses has been linked to several disease states [117–119]
including cardiovascular diseases.

Thus, we start exploring the efficacy of DES-RedoxVasc
to retrieve established associations through the “Enriched
Concepts” link (see Figure 1 and also see the “‘Published
Examples” link for a more detailed description of how exam-
ples were generated).

3.1.1. Gene/Protein Associations with “Oxidative Stress.”
Figure 1 shows that the gene/protein nodes are connected
with “Oxidative stress” by a large number of articles. To con-
firm that the genes/proteins nodes and microRNA have true
associations retrieved by DES-RedoxVasc, we checked the lit-
erature suggested by DES-RedoxVasc. Li et al. demonstrated
that eNOS knockout mice exhibit cardiac aging prematurely
and early mortality [120]. In line with this finding, Zanetti
et al. used aortae of rats (old and young) to demonstrate that
the activated inducible nitric oxide synthase (iNOS),
impaired SOD1 activity, and increased OS are associated
with vascular aging. They also showed that caloric restriction
blunts oxidative stress, reduced iNOS expression, and
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increased SOD1 activity [121]. They further reported that
SIRT1 expression remains unchanged. However, it has been
shown that human coronary arterial endothelial cells treated
with resveratrol induced SIRT1, as well as upregulated eNOS
in a SIRT1-dependent manner [122]. Also, OS induced
with SOD1 deficiency triggers oxidatively modified CA2
to accumulate in erythrocytes [123].

ROS is also produced in normal airway epithelial cells
stimulated with human neutrophil elastase (also known as
HNE or ELANE) [124]. It was also shown in a large gene set
that Nrf2 binds to the antioxidant response element (ARE)
(including glutamate-cysteine ligase (GCL), NAD(P)H-
quinone oxidoreductase 1 (NQO1), heme oxygenase-1
(HMOX1), which encodes HO-1, and thioredoxin reduc-
tase 1 (Txnrd1)) to alleviate oxidative stress [125]. Thus
HO-1 was shown to play a key role in oxidative stress-
related pathologies such as CVDs and atherosclerosis
[126]. OGG1 repairs DNA damage induced by OS, and
an OGG1 (rs1052133) polymorphism has been associated
with atherosclerosis [127] and CVD [128] risk.

All genes/proteins from Figure 1 had an association
with “oxidative stress” except LPO. The reason is that
LPO in the text was used to refer to lipid peroxide instead
of “lactoperoxidase.” Despite ELANE (with one of its
synonyms being HNE) and CA2 being associated with
“Oxidative stress,” in most of the articles that putatively
linked these concepts to “Oxidative stress,” HNE refers
to the peroxidation by-product 4-hydroxy-2-nonenal
instead of the human neutrophil elastase gene or product
and CA2 refers to calcium. These examples illustrate a

limitation of text mining caused by multiple meanings of
the same symbol.

3.1.2. MicroRNA Associations with “Oxidative Stress.”On the
other hand, if we look at nodes that are connected by a small
number of articles such as the nodes for microRNAs in
Figure 1, Step 3, we find “MIR23A” [129], “MIR34A” [130],
“MIR155” [131], “MIR210” [132], and “MIR106B” [133]
being associated in our KB with “oxidative stress” via “6,”
“4,” “3,” “2,” and “1” articles, respectively.

The literature focused on “MIR23A-” (miR-23a-)
revealed areas of research that may increase our insight of
miR-23a-related redox control in various diseases. Dubois-
Deruy et al. demonstrated that SOD2 is increased in the left
ventricle after heart failure in rats, as well as miRNAs
(miR-222-3p, miR-23a-3p, and miR-21-5p) targeting SOD2
[129]. They further demonstrated that left ventricular
remodeling postmyocardial infarction in REVE-2 patients
[134] exhibits high levels of these SOD2-targeting miRNAs.
In line with this finding, it was demonstrated that inhibit-
ing oxidative stress-induced miR-23a (MIR23A) reduces
degeneration of retinal pigment epithelium (RPE) cells
[135]. They further demonstrated that glutaminase (GLS)
is a direct target of miR-23a and oxidative stress in miR-
23a-overexpressed RPE cells is alleviated by GLS expression.
This is interesting as GLS converts glutamine to glutamate,
the precursor needed for synthesis of the antioxidant gluta-
thione (see Figure 2).

Figure 2 depicts an overview of how redox control
contributes to maintaining a healthy state and how redox

Figure 1: Using DES-RedoxVasc to find out potential connections between the concepts. The purple circles, the pink circles, and the green
circles mark the “CVDOOntology (BioPortal) Cardiovascular Disease Ontology” dictionary, the “Human Genes and Proteins (Entrez Gene)”
dictionary, and the “Human microRNAs” dictionary, respectively. Based on the cooccurrence frequency, the color of edges can go from black
(strong association) to grey (weaker association). The number of documents that link the potentially associated nodes is displayed on
each edge.
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dysfunction contributes to different disease states. When an
increase in OS is coupled with the inhibition of the oxidative
stress-induced microRNA, antioxidant synthesis is increased
which reduces the oxidative stress back to the redox “homeo-
stasis” state. Conversely, redox dysregulation in the form of
increased expression of microRNAs inhibits antioxidant
synthesis possibly leading to a disease state. This contra-
dicts Lin et al. who, instead of inhibition, suggested the
expression of miR-23a is required for the maintenance of
healthy RPE cells [136].

3.2. Example 2: Hypotheses and Potentially New Insights
Derived through the Use of DES-RedoxVasc

3.2.1. Hypothesis 1: Heart Failure May Occur in Response to
Oxidative Stress. On the page “Enriched pairs,” “Oxidative
stress response” in column 1 is linked to a number of
miRNAs (see column 2 when the “Human miRNAs” dic-
tionary is selected), among which there is “MIR4639”
(hsa-miR-4639). We checked the FARNA database [137]
for hsa-miR-4639 and found that this miRNA is expressed
in the heart [137]. Furthermore, FARNA suggests that
hsa-miR-4639 is implicated in heart failure. On the other
hand, Chen et al. demonstrated that increased levels of
hsa-miR-4639 in plasma leads to downregulation of the
DJ-1 protein activity in patients with Parkinson’s disease
[138]. Moreover, they demonstrated that miR-4639-5p
directly binds the DJ-1 transcript at its 3′UTR that results
in the downregulation of the DJ-1 protein activity. This is
interesting, as oxidative stress activates DJ-1 and DJ-1 is
shown to inhibit alpha-synuclein aggregate formation that
leads to Parkinson’s disease [139]. The relationship between
miR-4639 and oxidative stress is via DJ-1, as the Nrf2-
regulated antioxidant defense mechanism is impaired when
levels of DJ-1 are decreased [140]. DJ-1 has also been shown
to protect the heart against oxidative damage. That is, Billia
et al. demonstrated that DJ-1 (with synonym PARK7)

protects murine hearts against oxidative damage [141].
DJ-1 was also shown to protect the heart from ischemia-
reperfusion injury [142, 143]. Moreover, the work of Li
et al. shows that miR-4639 is almost 3-fold overexpressed
in chronic heart failure patients compared to the control
group [144]. All this leads us to the following hypothesis
(see Figure 3): “overexpression of miR-4639 in the heart
downregulates DJ-1 that protects the heart from oxidative
damage, which may be one of the causes leading to
heart failure.”

3.2.2. Hypothesis 2: Vascularization Redox Is Relevant to
Alzheimer’s Disease. In search of novel insights, it is also use-
ful to look at the concepts from different dictionaries that are
associated with each other. For this analysis, we looked at
all connections/association found between concepts in
DES-RedoxVasc. Figure 4 shows the interconnectedness
of the dictionaries with themselves and with the other dic-
tionaries based on the cooccurring concept pairs, in the
form of a heatmap. As shown in Figure 4, after normaliza-
tion, the concepts from the ADO dictionary have the most
connections to concepts from other dictionaries. This
might seem surprising, but within the field of Alzheimer’s
disease research, vascularization is intensely researched as
a mechanism for the disease development, with some
researchers proposing that it is primarily a vascular disorder
rather than a neurodegenerative disease [145]. However,
since this link is based on the analysis of literature focused
on redox effects to CVS, this implicitly suggests that redox-
related vascular disorders may link to Alzheimer’s disease.
We take this observation based on Figure 4 cautiously, as
the number of concepts included in different dictionaries
varies as well as the coverage of a particular domain by these
concepts. So, it also could be that the quality of the ontologies
from which we derived some of our dictionaries is affecting
the heatmap in Figure 1. In any case, it was interesting to

Oxidative stress

Oxidative stress

Maintaining
redox control

GSH

GLS

GLS Protects from
disease

miR-23a

miR-23a

Develop
disease

Figure 2: An overview of microRNA in redox control linked to maintaining a healthy state and contribution to redox dysfunction impacting
different diseases.
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observe potential support for the hypothesis on a link of
vascularization to Alzheimer’s disease.

3.2.3. Hypothesis 3: ZFAS1 May Play a Role in the Fine-
Tuning of the Oxidative Stress-Responsive miR-27B. In search
of novel insights, we also looked at the associations of
concepts based on semantic similarity using the “Semantic
Similarity” link (see Figure 5 and also see the “Published
Examples” link for a more detailed description of how exam-
ples were generated). One of the semantic similarities
(similarity > 0 8) established by DES-RedoxVasc is between
miR-27b and long non-coding RNA, ZFAS1. Xu et al. dem-
onstrated that collagenase-induced intracerebral hemorrhage
(ICH) in the rat brain reduces the expression of the oxidative
stress-responsive miR-27b. It was also shown that overex-
pression of miR-27b reduced expression of Nrf2, SOD1,
Hmox1, and Nqo1 and that miR-27b targets Nrf2 mRNA
directly. They further demonstrated that miR-27b inhibition
promotes the opposite effects, such as activation of the
Nrf2/ARE pathway and reduced OS; these effects are blocked
by Nrf2 knockdown [146]. Thus, miR-27b is reduced to
reestablish redox homeostasis. The dysfunction of this mech-
anism leads to vascular diseases. That is, it was demonstrated
that when miR-27b overexpresses, it induces cardiac dys-
function and hypertrophy in mice [147]. Also, Signorelli
et al. demonstrated that the levels of miR-27b, miR-130a,
and miR-210 are increased in patients with peripheral
artery disease when compared to healthy controls [148].
However, miR-27b has not been linked to ZFAS1. Despite
that, this link may be correct as ZFAS1 is predicted to
bind hsa-miR-27b-3p using the DIANA tool, LncBase
Predicted v.2 [149].

Current research to a certain extent supports this hypoth-
esis, as Pan et al. reported overexpression of ZFAS1 in gastric
cancer (GC) serum and tissue samples and demonstrated
that ZFAS1 knockdown inhibits the proliferation and migra-
tion of GC cells by suppressing cell cycle progression and
apoptosis [150], while Chen et al. demonstrated that

miR-27b is downregulated in GC and show miR-27b to
be a potential GC biomarker. Moreover, they show that
miR-27b functions as a tumor suppressor in GC by target-
ing VEGFC [151]. This shows a possible inverse relation-
ship between ZFAS1 and miR-27b. Moreover, Shin et al.
report the risk of ischemic stroke and coronary heart dis-
ease incidence in GC patients [152]. ZFAS1 was also
determined to be a potential biomarker for coronary artery
disease/acute myocardial infarction [153]. Lyu et al. also
showed ZFAS1 to be upregulated in rats with traumatic
brain injury [154]. This shows that miR-27b has been
linked to OS and vascular disease and that ZFAS1 has
been linked to vascular disease but its possible role in
the fine-tuning of miR-27b in these pathologies have not
been explored.

4. Discussion and Concluding Remarks

DES-RedoxVasc allows for exploration of numerous associa-
tions between different concepts as they are found in the ana-
lyzed literature. Over 5.6 million such associations have been
identified by DES-RedoxVasc. These potential concept
associations are based on the cooccurrence of the concepts
in the text placed relatively close to each other (up to a
200-character distance). Moreover, these associations are
found statistically enriched in the analyzed literature with
FDR < 0 05 and are made of concepts that themselves are
statistically enriched in the same document set with
FDR < 0 05, compared to documents in the background.
Users can evaluate if such association found is meaningful
by inspecting the text from where the association is derived.
Another set of associations is between any of the individually
enriched concepts and statistically enriched concepts that are
semantically similar to them. In total, there are over 10 billion
such associations found in the analyzed documents. Usually,
when similarity between concepts is high, i.e., >0.75, such
associations appear mostly meaningful, which reduces the
number of concept pairs to an estimated 50 million.

Oxidative stress

Oxidative stress

Maintaining
redox control

GSH

DJ-1

DJ-1 Protects from
disease

miR-4639

miR-4639

Hypothesis
“leads to

heart failure”

Figure 3: An overview of how oxidative damage may lead to heart failure.
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Being primarily based on the text mining approach, DES-
RedoxVasc carries all shortcomings of text mining. As we
used dictionaries of terms related to different categories of
concepts, the quality and completeness of these dictionaries
affect the results. If a term that represent a synonym of a
concept or the concept itself is not present in the dictionary,
the system will not be able to identify it in the text. Also, some
terms are “promiscuous” as they are very common and thus

do not convey significant information. That is, promiscuous
terms are terms which have very high connectivity in the
knowledge graph. This is in turn due to their high frequency,
because the more frequent a term is, the greater the probabil-
ity for it to cooccur with more concepts. Usually, promiscu-
ous terms have a broad semantic coverage like “function”
or “disease.” Term ambiguity can also result in term promis-
cuity, such as the use of the term HAND or PDF as a gene
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symbol. Promiscuous terms might have thousands of edges,
where every single edge might refer to thousands of cooccur-
rence hits within the annotation. Consequently, they inflate
the index and the knowledge graph and therefore pose more
demands on computation. More importantly, they affect the
quality of extracted information and any inferences thereof,
because they affect the very topology of the knowledge graph
and act as high centrality hubs, creating short paths between
concepts which are not otherwise associated. For example,
the term “disease” can potentially link most disease concepts
which are not necessarily linked, the same for pathological
mutations, pathological microorganisms, etc., which are all
related to the concept of disease. Removing promiscuous
terms restores the intended topology of the knowledge graph.
Pair enrichment provides another corrective layer for cases
where promiscuous or irrelevant concepts seeped through
the dictionary cleaning phase.

Computationally, to understand the improvements
gained by removing these terms, we refer to the concept of
term frequency distribution and in particular to Zipf’s law,
which establishes that a term frequency and its rank (within
a descending frequency-ordered list of terms within a cor-
pus) obey a simple power law. The main consequence of this
law is that a very small proportion of top-frequency-ranked
terms (usually promiscuous in a biological context) account
for a substantial amount of the text (in our case, the annota-
tion and the knowledge graph). In our latest dictionary clean-
ing process, the removal of 0.1% of such high-frequency
terms resulted in reducing the annotation size by a third.

An additional observation is that the Cardiovascular
Disease Ontology (CVDO) on the other hand does not seem
to resonate well within the knowledge base, having relatively
few connections, despite being conceptually of central
importance. Compared to CVDO, the Heart Failure

Ontology (HFO) is much better connected to the other ontol-
ogies that we used. It is possible that this is the consequence
of relatively incomplete CVDO that may need some
improvements if it is to show the full usefulness in text min-
ing tasks.

Despite these limitations, the examples provided hereby
as “case studies” demonstrate that the KB can be useful and
that the user-friendly interface allows users to easily navigate
and explore information in the KB. The DES-RedoxVasc KB
literature and dictionaries will be updated biannually, and the
KB will be updated accordingly.

Abbreviations

CVS: Cardiovascular system
CVD: Cardiovascular disease
CVDO: Cardiovascular Disease Ontology
EC: Endothelial cells
FDR: False discovery rate
GSH: Glutathione
GCL: Glutamate cysteine ligase
HFO: Heart Failure Ontology
KB: Knowledgebase
lncRNA: Long non-coding RNA
miRNA: MicroRNA
NLP: Natural language processing
ncRNA: Non-coding RNA
Nrf2: Nuclear erythroid 2-related factor 2
OS: Oxidative stress
PMI: Pointwise mutual information
RNS: Reactive nitrogen species
ROS: Reactive oxygen species
RS: Reductive stress
VSMC: Vascular smooth muscle cells.

Figure 5: Using DES-RedoxVasc to find out potential connections between the concepts using semantic similarity.
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