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Kidney transplantation is the preferred treatment for patients with end-stage kidney 
disease, because it prolongs survival and improves quality of life. Allograft biopsy is the 
gold standard for diagnosing allograft rejection. However, it is invasive and reactive, and 
continuous monitoring is unrealistic. Various biomarkers for diagnosing allograft rejection 
have been developed over the last two decades based on omics technologies to over-
come these limitations. Omics technologies are based on a holistic view of the molecules 
that constitute an individual. They include genomics, transcriptomics, proteomics, and 
metabolomics. The omics approach has dramatically accelerated biomarker discovery and 
enhanced our understanding of multifactorial biological processes in the field of trans-
plantation. However, clinical application of omics-based biomarkers is limited by several 
issues. First, no large-scale prospective randomized controlled trial has been conducted to 
compare omics-based biomarkers with traditional biomarkers for rejection. Second, given 
the variety and complexity of injuries that a kidney allograft may experience, it is likely 
that no single omics approach will suffice to predict rejection or outcome. Therefore, in-
tegrated methods using multiomics technologies are needed. Herein, we introduce omics 
technologies and review the latest literature on omics biomarkers predictive of allograft 
rejection in kidney transplant recipients.
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INTRODUCTION

Kidney transplantation (KT) is the best treatment option for 
patients with end-stage kidney disease to prolong survival 
and improve quality of life [1-4]. Since the first KT was con-
ducted in 1954, the surgical technique and immunological 

knowledge have advanced markedly [5,6]. However, due to 
increased life expectancy and organ shortages, loss of graft 
function remains an issue in transplantation [7,8]. A vari-
ety of factors are linked to graft survival. However, acute 
or chronic allograft rejection is the most important risk fac-
tor for graft failure [9-11]. Therefore, to avoid rejection and 
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maintain graft function, personalized immunosuppression 
based on individual monitoring of kidney transplant recip-
ients (KTRs) is required [12-16].

Allograft biopsy and histopathological examination are 
the gold standard for diagnosing allograft rejection in KTRs; 
however, allograft biopsy is an invasive, reactive procedure 
that is challenging to monitor continuously [17]. Moreover, 
there is marked interobserver disagreement in interpreta-
tions of histopathological findings [18]. Other markers of 
rejection include elevation of serum creatinine and protein-
uria, but these are not sensitive or specific for early diagnosis 
of rejection.

Major recent advances in molecular biology have enabled 
highresolution sequence mapping of human structural vari-
ation [19,20]. Omics-based immunological monitoring and 
rejection-predicting technologies for KTRs have attracted in-
terest over the last two decades. In this article, we introduce 
omics technologies for early diagnosis of allograft rejection 
in KTRs and review the related literature.

OMICS TECHNOLOGIES

Omics technologies are based on a holistic view of the 
molecules that constitute an individual [21]. They aim pri-
marily at universal detection of genes (genomics), mRNA 
(transcriptomics), proteins (proteomics), and metabolites 
(metabolomics) [21]. Generally, omics technologies assess 
cellular macromolecules in biological samples (e.g., blood, 
urine, and tissue) in a nonbiased and nontargeted manner 
[21]. Advances in high-throughput technologies combined 
with large-scale data acquisition and computational anal-
ysis enable study of complete sets of molecules with im-
proved speed, high accuracy, and lower cost compared with 
repeated single-molecule experiments [20]. Therefore, the 
omics approach can be applied to disease screening, diag-
nosis, and prognosis prediction, providing insight into the 
pathophysiologic basis of disease [21,22]. Omics technol-
ogies have accelerated biomarker discovery and provided 
insight into the multidimensional biological processes impli-
cated in transplantation [20].

Genomics involves sequencing and analyzing the ge-
nome of an organism or cell (complete set of DNA). The 
human genome contains about 3 billion base pairs and ap-
proximately 30,000 to 40,000 protein-coding genes [23]. 
To analyze the genetic contribution to complex diseases, 

traditionally, genes have been individually analyzed (e.g., 
candidate gene association studies of the associations be-
tween predefined genes and a trait of interest) [24]. Howev-
er, advanced genomic methodologies such as genome-wide 
association studies (GWAS) and whole-genome sequencing 
can simultaneously scan and analyze many genetic variants. 
GWAS scans using single nucleotide polymorphism (SNP) 
array data have the benefit of lower cost compared with 
whole-genome sequencing; however, they have low affinity 
for rare variants.

The transcriptome refers to all transcripts (both coding 
RNAs [mRNA] and noncoding RNAs—long noncoding RNA, 
microRNA [miRNA], small interfering RNA [siRNA], and pi-
wi-interacting RNA [piRNA]) in an individual, and it is the 
template for protein synthesis via a process termed transla-
tion. mRNA plays an intermediary role in protein translation 
[24]. Therefore, according to its spatial and temporal speci-
ficity, the mRNA profile reflects the functions of cells and or-
ganisms under specific physiologic or pathophysiologic con-
ditions [25]. Transcriptomics analyzes the whole set of RNA 
in each cell or organism. This enables identification of active 
and inactive genes [26]. There are two transcriptomic meth-
odologies—microarrays and RNA sequencing. Microarray 
technologies are primarily used to analyze predefined RNA 
targets, whereas RNA sequencing uses deep-sequencing 
technologies to analyze all sequences in a sample. RNA se-
quencing, which uses next-generation sequencing, is now 
widely used for transcriptomics.

The proteome is defined as the set of all proteins in a cell, 
tissue, or organism [27]. Proteomics analyzes the presence, 
activity, and interactions of the proteome, and provides in-
sight into the functional network and relevance of proteins 
[28,29]. This requires the ability to detect thousands of pro-
teins simultaneously, by analyzing the entire proteome of 
a cell, tissue, or organism [30]. Mass spectrometry-based 
proteomics allows identification and quantification of pro-
teins and posttranslational modifications, such as phosphor-
ylation and ubiquitination, in complex biological samples 
[31,32]. There are numerous mass-spectrometric techniques 
for large-scale relative or absolute proteome quantification. 
These techniques differ in the level of proteome quantifica-
tion, accuracy, and reproducibility. Therefore, it is essential 
to select the most suitable mass-spectrometric technique for 
the investigation of pathophysiologic tissue [30].

Metabolomics is the study of the global metabolite profile 
of a cell, tissue, or organism under physiologic or patho-
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physiologic conditions [21]. Metabolomics analyzes chem-
ical processes involving small metabolites (< 1,500 Da) in 
a sample. Metabolites are the final downstream products 
of gene transcription, so changes in metabolites are am-
plified relative to those in the upstream transcriptome and 
proteome [33]. Theoretically, this represents an advantage 
of metabolomics over other omics approaches. Moreover, 
the metabolome, as the downstream product, is the clos-
est to the phenotype of the biological system and can be 
affected by the environment and microbiome [21]. Nucle-
ar magnetic resonance (NMR) spectrometry, gas chroma-
tography-mass spectrometry, liquid chromatography-mass 
spectrometry, and matrix‑assisted laser desorption/ioniza-
tion–time‑of‑flight (MALDI‑TOF) mass spectrometry are 
metabolomic methodologies. NMR spectrometry is useful 
in clinical practice because it does not require separation 
or ionization during sample preparation and yields results 
within a few hours. However, compared with mass spec-
trometry, the sensitivity is low and fewer metabolites that 
can be analyzed [34].

OMICS-BASED BIOMARKERS FOR AL-
LOGRAFT REJECTION IN KIDNEY TRANS-
PLANT RECIPIENTS

Regarding immunological monitoring in KTRs, the most 
widely used biomarker is donor-specific human leukocyte 
antigen (HLA) alloantibodies (DSAs). However, because of 
advances in immunosuppression, the incidence of de novo 
DSA is relatively low (15% to 25%) [35-38]. Furthermore, 
most de novo DSA production cases cause negative allograft 
outcomes several years after the initial occurrence, so may 
be associated with subclinical rejection during the early pe-
riod [24]. Hence, research has focused on identifying non-
HLA biomarkers predictive of allograft rejection using omics 
technologies (Fig. 1). To date, various potential biomarkers 
have been developed using omics technologies, which we 
summarize in the sections below.

Genomic biomarkers of acute rejection
In a GWAS of European KTRs, Ghisdal et al. [39] used a 
DNA-pooling approach to compare 275 acute T cell-medi-
ated rejection (TCMR) cases and 503 hyper-controls (KTRs 

Figure 1. Advantages of omics biomarkers for prediction and treatment of acute rejection. SNP, single nucleotide polymorphism.
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who did not show acute rejection [AR] although they had a 
less favorable HLA match at baseline) from a total of 4,127 
KTRs (Table 1). The DNA-pooling approach decreases the 
number of tests needed and reduces the cost. For valida-
tion, 313 TCMR cases and 531 hyper-controls from 2,765 
KTRs were used. Among 14 candidate SNPs, two had sig-
nificant associations with AR—one locus in PTPRO coding 
for a receptor-type tyrosine kinase essential for B cell recep-
tor signaling and the other encompassing the ciliary gene 
CCDC67.

American investigators validated 75 candidate SNPs re-
portedly associated with AR [40]. They used DNA from two 
multicenter cohorts of KTRs. GWAS data were identified 
and divided into two subcohorts consisting of 2,390 Eu-
ropean American and 482 African-American KTRs, which 
were analyzed separately. Among 75 candidate SNPs, only 
rs2910164, which alters the expression of the miRNA miR-
146a, showed a significant association with AR in the Afri-
can-American cohort.

Steers et al. [41] focused on genomic collision situations, 
wherein transplant recipients carried two copies of a dele-
tion that was not homozygous in the organ donor. They 
conducted a two-stage (discovery and replication) genetic 
association study to uncover high-priority copy number vari-
ants influencing AR. In the 705 discovery cohort, the LIMS1 
locus represented by rs893403 showed a significant associ-
ation with allograft rejection. This was replicated among the 

2,004 donor-recipient pairs after adjustment for the age, 
sex, ethnicity, and HLA status mismatch of the recipient.

GWAS studies have identified different SNPs associated 
with AR. The difference may be associated with the het-
erogeneity and complexity of AR, small size of the cohort, 
and genetic differences among ethnicities [42]. Also, there 
may be variation among transplant centers in the SNPs as-
sociated with AR [43]. Therefore, a large-scale, multicenter 
study including various ethnicities is required to evaluate the 
associations between SNPs and AR.

Transcriptomic biomarkers of acute rejection
The Suthanthiran group has suggested that urine mRNA lev-
els could be used to detect AR [44-46]. They analyzed 4,300 
urine samples from 485 KTRs in the prospective observa-
tional Clinical Trials in Organ Transplantation 04 (CTOT-04) 
study (Table 2) [46]. The combination of the 18S ribosomal 
RNA, CD3ε, and IP-10 mRNA levels in urinary cells showed 
utility as a diagnostic and prognostic biomarker of TCMR. 
The diagnostic signature markedly increased for up to 20 
days before histopathological diagnosis of TCMR.

The CTOT‐08 study was designed to develop molecular 
biomarkers for clinical phenotypes in KTRs [47]. Among 253 
KTRs, the investigators used 530 paired peripheral blood 
samples to discover a novel gene-expression profile predic-
tive of subclinical AR. The classifier consisted of 61 probe-
sets that mapped 57 genes. The gene expression profile was 

Table 1. Genomic biomarkers of acute rejection

Study
Sample 

type
Biomarkers Groups AUC

Validation 
set

Results

Ghisdal et al. [39] Blood PTPRO and 
CCDC67

TCMR (n = 275)
Hypercontrol  
without rejection  
(n = 503)

NA Yes Two SNPs had significant association 
with biopsy-proven acute TCMR.

Oetting et al. [40] Blood rs2910164  
for miR-
146a

TCMR and ABMR  
(n = 492)

No rejection  
(n = 2,380)

NA Yes Among 75 candidate SNPs, only 
rs2910164 that alters the expression 
of miR-146a was a/w AR in the African 
American cohort.

Steers et al. [41] Blood LIMS1 
(rs893403)

TCMR and  
ABMR (n = 800)

No rejection  
(n = 1,909)

0.91  
(IgG3 
subclass)

Yes LIMS1 locus appeared to encode a minor 
histocompatibility antigen and LIMS1 
was a/w AR.

AUC, area under the curve; TCMR, T cell-mediated rejection; NA, not available; SNP, single nucleotide polymorphism; ABMR, anti-
body-mediated rejection; AR, acute rejection; a/w, associated with; IgG3, immunoglobulin G3.
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Table 2. Transcriptomic biomarkers of acute rejection

Study
Sample 

type
Biomarkers Groups

AUC/
sensitivity/
specificity

Validation 
set

Results

Suthanthiran et al. 
[46]

CTOT-04 study

Urine Three-gene signature 
(CD3ε mRNA, IP-10 
mRNA, and 18S rRNA)

TCMR (n = 36)
No rejection in  
biopsy (n = 150)

STA without  
biopsy (n = 202)

0.74/
71%/
72%

Yes It increased up to 20 days 
before histopathologic 
diagnosis of acute 
TCMR.

Friedewald et al. 
[47]

CTOT-08 study

Blood Panel of 57-gene 
signaturea

Subclinical rejection  
(n = 143)

No rejection (n = 239)

0.85/
64%/
87%

Yes It was a/w with clinical 
and histopathologic 
outcomes and with de 
novo DSA.

Roedder et al. [48]
AART study

Blood 17-Gene signature, 
named as kSORTb

TCMR and ABMR  
(n = 187)

No acute rejection  
(n = 254)

Pre-acute rejection  
(n = 65)

Post-acute rejection  
(n = 52)

0.94/
83%/
91%

Yes kSORT predicted 
AR up to 3 months 
before histopathologic 
diagnosis in 62.9% of 
stable KTRs.

Zhang et al. [49]
GoCAR study

Blood 17-Gene signaturec Subclinical rejection at 3 
months (n = 46)

Non-subclinical rejection 
at 3 months (n = 145)

0.98/
NA/
NA

Yes It identified ongoing 
subclinical TCMR and 
correlated with  
long-term risk of graft 
loss.

Christakoudi et al. 
[50]

KALIBRE study

Blood Seven-gene signature 
(IFNG, IP-10, ITGA4, 
MARCH8, RORc, 
SEMA7A, and WDR40A)

TCMR (n = 47)
No rejection (n = 128)

0.84/
67%/
85%

Yes It increased 7 weeks 
before histopathologic 
diagnosis of TCMR 
and decreased after 
treatment.

El Fekih et al. [51] Urine 15-Gene signatured TCMR and ABMR  
(n = 59)

No rejection (n = 133)

0.93/
85%/
94%

Cross-
validation

It effectively discriminated 
AR. Another five-
gene signature could 
distinguish TCMR from 
ABMR.

Seo et al. [52]
ARTKT study

Urine Nine-gene signature 
(CXCL9, CD3ε, IP-10, 
LCK, C1QB, PSMB9, 
Tim-3, Foxp3, and 
FAM26F)

TCMR (n = 38)
ABMR (n = 11)
STA (n = 153)

0.89/
91%/
80%

Yes Expression of nine 
genes were significantly 
different between AR 
and STA with normal 
pathology.

Anglicheau et al. 
[53]

Blood 
and 
graft 
tissue

miR-142-5p, miR-155, 
miR-223, miR-30a-3p, 
miR-10b, and let-7c

TCMR and ABMR  
(n = 12)

No rejectin in biopsy  
(n = 21)

0.73–0.99/
67%–100%/
61%–95%

Yes MicroRNA levels in 
intragraft and PBMCs 
were significantly  
altered in AR; thus,  
they could predict  
graft status.

www.kjim.org


525

Lim JH, et al. Omics-based biomarkers in kidney transplantation

www.kjim.orghttps://doi.org/10.3904/kjim.2021.518

significantly correlated with the clinical and histopathologic 
outcomes, as well as with de novo DSA in two validation 
sets.

The Assessment of Acute Rejection in Renal Transplan-
tation (AART) study group developed the Kidney Solid Or-
gan Response Test (kSORT) to detect KTRs with a high risk 
of AR [48]. They analyzed the gene expression data of 558 
blood samples from 436 KTRs and selected 17 genes (USP1, 
CFLAR, ITGAX, NAMPT, MAPK9, RNF130, IFNGR1, PSEN1, 
RYBP, NKTR, SLC25A37, CEACAM4, RARA, RXRA, EPOR, 
GZMK, and RHEB) that could discriminate AR. kSORT pre-
dicted AR up to 3 months prior to histopathologic diagnosis 

in 62.9% of stable KTRs, so could be used to predict sub-
clinical rejection.

Zhang et al. [49] examined subclinical histologic and func-
tional changes in KTRs from the prospective Genomics of 
Chronic Allograft Rejection (GoCAR) study. They used pe-
ripheral blood RNA from 191 KTRs who underwent surveil-
lance biopsy 3 months after transplant. A 17-gene signature 
set (ZMAT1, ETAA1, ZNF493, CCDC82, NFYB, SENP7, CLK1, 
SENP6, C1GALT1C1, SPCS3, MAP1A, EFTUD2, AP1M1, 
ANXA5, TSC22D1, F13A1, and TUBB1) was identified as 
a candidate biomarker of ongoing subclinical TCMR. After 
extensive validation in an independent cohort of 110 KTRs, 

Study
Sample 

type
Biomarkers Groups

AUC/
sensitivity/
specificity

Validation 
set

Results

Tao et al. [54] Blood miR-99a TCMR and ABMR  
(n = 12)

No rejectin in biopsy  
(n = 11)

Delayed graft function  
(n = 15)

0.75/
NA/
NA

Yes Serum miR-99 
discriminated AR from 
STA and delayted graft 
function.

Lorenzen et al. [55] Urine miR-210 TCMR (n = 62)
No rejection (n = 19)
STA with urinary tract 
infection (n = 13)

0.7/
74%/
52%

Yes Urinary miR-210 level was 
a/w TCMR and predict 
long-term graft function.

Vitalone et al. [56] Graft 
tissue

miR-25, miR-181a, miR-
204, miR-192, miR-10b, 
miR-142-3p, miR-215, 
miR-342-3p, and miR-
615-3p

TCMR and ABMR  
(n = 47)

No rejection in biopsy  
(n = 120)

NA Yes The expression of miRNAs 
significantly a/w  
the intensity of the 
Banff-scored interstitial 
inflammation and 
tubulitis.

AUC, area under the curve; CTOT, Clinical Trials in Organ Transplantation; TCMR, T cell-mediated rejection; STA, stable graft func-
tion; a/w, associated with; DSA, donor-specific human leukocyte antigen alloantibody; AART, Assessment of Acute Rejection in 
Renal Transplantation; kSORT, Kidney Solid Organ Response Test; ABMR, antibody-mediated rejection; AR, acute rejection; KTR, 
kidney transplant recipient; GoCAR, Genomics of Chronic Allograft Rejection; NA, not available; KALIBRE, Kidney Allograft Im-
munological Biomarkers of Rejection; ARTKT, Assessment of immunologic Risk and Tolerance in Kidney Transplantation; PBMC, 
peripheral blood mononuclear cell.
a57 genes: AARSD1, AP2M1, ARHGDIB, ASB6, BTD, C20orf27, C9orf16, CFL1, CIAO1, CNDP2, Cxorf56, DDX39B, EMP3, EXOC4, 
FAM103A1, FCGR2B, GNAI2, HLA-J, HMGXB3, HSPB1, IFNAR1, ILK, KCMF1, KIAA0141, KLHDC4, LOC101928595, LRWD1, MIB2, 
MYO19, MYO1C, MYPOP, OS9, PFN1, PKM, PKNOX1, PTK2B, RBBP9, RBM3, RBM5, RLIM, RPUSD3, RUSC1, SARNP, SH3BGRL3, 
SLC25A19, SLC35D2, SNX19, SNX20, STN1, TMEM62, TPMT, TRAPPC1, TTC9C, TWF2, UCP2, UQCR11, and UQCR11.
b17 genes: CFLAR, DUSP1, IFNGR1, ITGAX, MAPK9, NAMPT, NKTR, PSEN1, RNF130, RYBP, CEACAM4, EPOR, GZMK, RARA, RHEB, 
RXRA, and SLC25A37.
c17 genes: ZMAT1, ETAA1, ZNF493, CCDC82, NFYB, SENP7, CLK1, SENP6, C1GALT1C1, SPCS3, MAP1A, EFTUD2, AP1M1, ANXA5, 
TSC22D1, F13A1, and TUBB1.
d15 genes: CXCL11, CD74, IL32, STAT1, CXCL14, SERPINA1, B2M, C3, PYCARD, BMP7, TBP, NAMPT, IFNGR1, IRAK2, and IL18BP.

Table 2. Continued
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this gene set was confirmed to be associated with subclini-
cal TCMR 3 months after transplant, and to be related to an 
increased risk of long-term graft loss.

Christakoudi et al. [50] developed a multivariable gene-ex-
pression signature targeting TCMR using 1,464 peripheral 
blood samples from 248 patients in the Kidney Allograft Im-
munological Biomarkers of Rejection (KALIBRE) study. They 
selected a parsimonious gene-expression signature—the 
smallest set of genes showing satisfactory predictive perfor-
mance in the development phase. The selected seven-gene 
signature (IFNG, IP-10, ITGA4, MARCH8, RORc, SEMA7A, 
and WDR40A) was confirmed using internal and external 
KT cohorts. The estimated probability of TCMR increased 7 
weeks before histopathologic diagnosis and decreased after 
treatment.

El Fekih et al. [51] isolated urinary exosomal mRNAs of 
192 KTRs (59 rejections) and developed rejection signatures 
based on differential gene expression. After cross-validation, 
a 15-gene signature (CXCL11, CD74, IL32, STAT1, CXCL14, 
SERPINA1, B2M, C3, PYCARD, BMP7, TBP, NAMPT, IFNGR1, 
IRAK2, and IL18BP) discriminated AR with an area under 
the curve (AUC) of 0.93. Moreover, a five-gene signature 
(CD74, C3, CXCL11, CD44, and IFNAR2) could differentiate 
TCMR from active antibody-mediated rejection (ABMR) with 
an AUC of 0.87.

The Korean Assessment of immunologic Risk and Toler-
ance in Kidney Transplantation (ARTKT) study group report-
ed a transcriptomic biomarker of AR using the urinary mRNA 
signature of KTRs [52]. Initially, they searched for candidate 
genes for AR in the Gene Expression Omnibus (GEO) da-
tabase and selected 10 genes based on a meta-analysis of 
four datasets in the GEO database, along with four genes 
from the literature. Among these 14 candidate genes for 
AR, the expression of nine (CXCL9, CD3ε, IP-10, LCK, C1QB, 
PSMB9, TIM-3, FOXP3, and FAM26F) differed significantly 
between AR and stable KTRs in the validation set. The final 
AUC value of the nine-gene signature was 0.84 in the vali-
dation model.

The associations between miRNAs and AR have been an-
alyzed. Anglicheau et al. [53] reported alterations of miRNA 
expression in KTRs with AR. They analyzed the expression 
of miRNAs in allograft tissue and peripheral blood mono-
nuclear cells in 33 KTRs (12 with AR) using the TaqMan 
low-density array. Among the identified miRNAs, miR-142-
5p, miR-155, and miR-223 were increased, and miR-30a-
3p, miR-10b, and let-7c were decreased, in KTRs with AR 

compared to KTRs with stable graft function. Therefore, 
patterns of miRNA expression can serve as biomarkers of 
allograft status.

Tao et al. [54] analyzed miRNA profiles in blood sam-
ples from 33 KTRs (12 with AR; 11 with stable control; 
and 15 with delayed graft function). The TaqMan miRNA 
assay showed that miR-99a, miR-100, miR-151a, let-7a, 
let-7c, and let-7f were altered in the serum of KTRs with 
AR. Among these six miRNAs, miR-99a and miR-100 were 
significantly upregulated in KTRs with AR compared to the 
stable controls. In KTRs with delayed graft function, miR-
99a could discriminate AR from both stable graft function 
and delayed graft function.

Lorenzen et al. [55] profiled the urinary miRNAs of 81 
KTRs (62 TCMR and 19 stable control). The TaqMan miR-
NA assay showed that miR-10a, miR-10b, and miR-210 
were markedly deregulated in urine of KTRs with TCMR. 
Among them, only miR-210 differed between KTRs with 
TCMR compared to stable control KTRs. In addition, a de-
creased miR-210 level was associated with a greater rate of 
decline in the estimated glomerular filtration rate at 1 year 
after transplant. Therefore, the urinary miR-210 level could 
identify KTRs with AR and predict long-term graft function.

Vitalone et al. [56] analyzed the graft tissue of 167 KTRs 
(47 with AR and 120 without rejection) to understand the 
molecular pathophysiology of alloimmune injury. They tran-
scriptionally profiled miRNAs by multiplexed microfluidic 
quantitative polymerase chain reaction. Nine relevant miR-
NAs (miR-25, miR-181a, miR-204, miR-192, miR-10b, miR-
142-3p, miR-215, miR-342-3p, and miR-615-3p) were iden-
tified only in the AR group. The expression levels of these 
miRNAs were significantly associated with histopathological 
interstitial inflammation and tubulitis intensity.

Proteomic biomarkers of acute rejection
Several plasma and urine proteomic studies have revealed 
proteomic biomarkers associated with AR (Table 3). O’Ri-
ordan et al. [57] analyzed the urinary proteome of 73 KTRs 
(34 with AR and 39 with stable graft function). As AR de-
veloped, β-defensin-1 was decreased and α-1-antichymo-
trypsin was increased. Therefore, the ratio of β-defensin-1 
to α-1-antichymotrypsin in urine may be a novel proteomic 
biomarker for AR.

Ling et al. [58] performed a urine proteomic analysis of 70 
samples from 50 KTRs and 20 healthy controls. A panel of 
40 peptides for AR was identified, which discriminated AR 
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in the validation cohort (AUC = 0.96). Moreover, a mecha-
nistic analysis based on peptide sequencing implicated pro-
teolytic degradation of uromodulin and collagens, such as 
COL1A2 and COL3A1.

Ziegler et al. [59] analyzed blood samples from 64 KTRs 
to identify biomarkers of AR. Among the 22 candidate pro-
teins, APOA1, α-1-antichymotrypsin, and an unidentified 
5191 Da peptide were associated with TCMR.

Sigdel et al. [60] used isobaric tags for relative and ab-
solute quantitation (iTRAQ)-based proteomic discovery and 
targeted enzyme-linked immunosorbent assay (ELISA) vali-
dation to discover and validate candidate urine proteomic 

biomarkers from 262 KTRs with biopsy-proven graft injury. 
Among the 69 urine proteins whose abundance differed sig-
nificantly between the AR and stable graft function groups, 
nine (HLA-DRB1, FGG, FGB, FGA, KRT14, HIST1H4B, ACTB, 
KRT7, and DPP4) were associated with stable graft function, 
BK virus nephropathy, and chronic allograft injury (p < 0.01; 
fold increase > 1.5). Among these nine proteins, three (FBG, 
FGG, and HLA-DRB1) were validated as candidate biomark-
ers for AR.

Lim et al. [61] performed a proteomic analysis to identify 
candidate biomarkers for TCMR diagnosis in urinary extra-
cellular vesicles using urine samples collected for the ARTKT 

Table 3. Proteomic biomarkers of acute rejection

Study
Sample 

type
Biomarkers Groups

AUC/
sensitivity/
specificity

Validation 
set

Results

O’Riordan et al. 
[57]

Urine β-Defensin-1 
and α-1-
antichymotrypsin

TCMR and ABMR  
(n = 34)

STA with normal 
biopsy (n = 39)

0.91/
91%/
77%

No β-Defensin-1 was decreased and 
α-1-antichymotrypsin was  
increased as AR developed.

Ling et al.  
[58]

Urine Panel of 
40-peptidesa

TCMR and ABMR 
(n = 20)

STA with normal 
biopsy (n = 20)

BKVAN (n = 10)

0.96/
NA/
NA

Yes It discriminated AR in training and 
validation groups, and highlighted 
the changes in collagen remodeling 
in AR.

Ziegler et al. 
[59]

Blood APOA1, α-1-
antichymotrypsin, 
and the 
unidentified 5191 
Da peptides

TCMR and ABMR  
(n = 16)

No rejection in 
biopsy (n = 48)

0.79  
(4,467 Da) 
and 0.98 

(5,191 Da)/
NA/
NA

Yes APOA1 and α-1-antichymotrypsin 
were decreased and 5191 Da 
peptides were increased in AR.

Sigdel et al.  
[60]

Urine Fibrinogen beta 
(FGB), fibrinogen 
gamma (FGA), 
HLA-DRB1

TCMR and ABMR  
(n = 74)

STA (n = 74)
CAI (n = 58)
BKVAN (n = 38)

0.8/
NA/
NA

Yes Three progeins were highly specific 
for AR and discriminated from STA, 
BKVAN, or CAI.

Lim et al. [61]
ARTKT study

Urine Tetraspanin-1 
(TSPAN-1) and 
Hemopexin (HPX)

TCMR (n = 25)
STA (n = 22)

0.74/
64%/
73%

Yes A total of 17 protein enriched 
in urinary exosome in KTRs 
with TCMR; tetraspanin-1 and 
hemopexin proposed as biomarkers 
in validation.

AUC, area under the curve; TCMR, T cell-mediated rejection; ABMR, antibody-mediated rejection; STA, stable graft function; AR, acute 
rejection; BKVAN, BK virus-associated ephropathy; NA, not available; CAI, chronic allograft injury; ARTKT, Assessment of immunologic 
Risk and Tolerance in Kidney Transplantation; KTR, kidney transplant recipient.
aThe peptides mapped to nine different proteins, eight of which belonged to the collagen family (COL1A1, COL1A2, COL3A1, COL4A3, 
COL4A4, COL4A5, COL7A1, COL18A1) and uromodulin (UMOD).
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study. They performed a proteomic analysis by nanoliquid 
chromatography-tandem mass spectrometry and selected 
five proteins as candidate biomarkers for early diagnosis of 
acute TCMR. Subsequently, they validated the protein levels 
of the five candidate biomarkers by western blot analysis. Of 
them, the tetraspanin-1 and hemopexin levels were signifi-
cantly higher in KTRs with TCMR.

Metabolomic biomarkers of acute rejection
Initially, metabolomic studies used NMR spectrometry, but 
this has been gradually replaced by mass spectrometry for 
blood and urine samples. The Blydt-Hansen group discov-
ered urinary metabolomic biomarkers of TCMR by analyzing 
277 urine samples from 57 KTRs (Table 4) [62]. Among 134 

unique metabolites, the selection of the top 10 most im-
portant metabolites was internally validated (AUC = 0.88). 
They also identified urinary metabolomic biomarkers of 
ABMR [63] by analyzing 396 urine samples from 59 KTRs. 
They found 133 metabolites related to ABMR, and the top 
10 metabolites were selected as a urine metabolomic signa-
ture for ABMR. The urine metabolite signature had an AUC 
of 0.84 for discriminating ABMR, and internal validation 
yielded an AUC of 0.76.

Sigdel et al. [64] analyzed the metabolomic profiles of bi-
opsy-matched urine samples from 310 KTRs (106 AR). They 
identified 266 metabolites; a panel of 11 metabolites (gly-
cine, glutaric acid, adipic acid, inulobiose, threose, sulfuric 
acid, taurine, N-methylalanine, asparagine, 5-aminovaleric 

Table 4. Metabolomic biomarkers of acute rejection

Study
Sample 

type
Biomarkers Groups

AUC/
sensitivity/
specificity

Validation 
set

Results

Blydt-Hansen 
et al. [62]

Urine Classifier using top  
10 metabolitesa

TCMR (n = 19)
No rejection in  
biopsy (n = 38)

0.88/
89%/
77%

Yes The metabolite classifier could 
identify TCMR, and the metabolites 
overlap with those that identify 
borderline tubulitis in pathology.

Blydt-Hansen 
et al. [63]

Urine Classifier using top 10 
metabolitesb

ABMR (n = 10)
No ABMR (n = 49)

0.84/
78%/
83%

No Exploratory analyses identified 
overlapping metabolite signatures 
between ABMR and TCMR, 
suggesting similar pathophysiology 
of tissue injury.

Sigdel et al. 
[64]

Urine Panel of 11 metabolitesc TCMR and  
ABMR (n = 106)

STA (n = 111)
IF/TA (n = 71)
BKVAN (n = 22)

0.99/
93%/
96%

No A panel of 11 metabolites could 
detect AR and another panel of 
four metabolites differentiated AR 
from BKVAN.

Kim et al. [65]
ARTKT study

Urine Panel of five metabolites
(guanidoacetic acid, 
methylimidazoleacetic 
acid, dopamine, 
4-guanidinobutyric acid, 
and L-tryptophan)

TCMR (n = 14)
STA (n = 17)

0.93/
90%/
85%

Yes Among 17 putative metabolomic 
biomarkers, five-metabolite panel 
could effectively discriminate acute 
TCMR from STA.

AUC, area under the curve; TCMR, T cell-mediated rejection; ABMR, antibody-mediated rejection; STA, stable graft function; IF/
TA, interstitial fibrosis and tubular atrophy; BKVAN, BK virus-associated nephropathy; AR, acute rejection; ARTKT, Assessment of 
immunologic Risk and Tolerance in Kidney Transplantation.
aTop 10 metabolites: proline, PC.aa.C34.4, kynurenine, sarcosine, methionine sulfoxide, PC.ae.C38.6, threonine, glutamine, phe-
nylalanine, and alanine.
bTop 10 metabolites: proline, citrulline, PC.aa.C34.4, C10.2, lysine, methionine sulfoxide, hexose, threonine, tetradecanoylcarnitine, 
and acetylornithine.
c11 metabolites: glycine, glutaric acid, adipic acid, inulobiose, threose, sulfuric acid, taurine, N-methylalanine, asparagine, 5-amino-
valeric acid lactam, and myo-inositol.
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acid lactam, and myo-inositol) enabled detection of AR. The 
AUC for discriminating AR from stable graft function was 
0.99, with 92.9% sensitivity and 96.3% specificity.

The ARTKT study group developed a urinary metabolo-
mic biomarker for TCMR [65]. They identified 17 putative 
metabolites that were altered in TCMR compared with sta-
ble graft function, and discovered five urinary metabolomic 
biomarkers (guanidoacetic acid, methylimidazoleacetic acid, 
dopamine, 4-guanidinobutyric acid, and L-tryptophan) of 
TCMR. Their ability to predict TCMR was excellent, with an 
accuracy of 87.0% (AUC = 0.926, sensitivity = 90.0%, spec-
ificity = 84.6%).

Omics biomarkers for chronic allograft injury 
and chronic rejection
There are various omics biomarkers for chronic allograft in-
jury and chronic active antibody-mediated rejection (CAB-
MR) (Table 5). The GoCAR group prospectively analyzed the 

gene-expression profiles of 159 tissue samples from KTRs 
with stable graft function at 3 months after transplantation 
[66]. They identified a set of 13 genes (CHCHD10, KLHL13, 
FJX1, MET, SERINC5, RNF149, SPRY4, TGIF1, KAAG1, ST5, 
WNT9A, ASB15, and RXRA) independently predictive of 
allograft fibrosis 12 months after transplantation. The 13-
gene graft signature was validated in an independent co-
hort (n = 45, AUC 0.87) and two independent expression 
datasets (n = 282, AUC = 0.83; n = 24, AUC = 0.97, re-
spectively).

Li et al. [67] performed a meta-analysis of molecular data-
sets of interstitial fibrosis and tubular atrophy (IF/TA) in the 
GEO database from peripheral blood and allograft biopsy 
samples. They identified a robust typical transcriptional re-
sponse in IF/TA involving 85 significantly differentially ex-
pressed genes compared with non-IF/TA.

The ARTKT study group identified potential urinary ex-
tracellular vesicle protein biomarkers of CABMR [68]. They 

Table 5. Omics biomarkers of chronic allograft dysfunction and chronic rejection

Study Sample type Biomarkers Groups
AUC/

sensitivity/
specificity

Validation 
set

Results

O’Connell et al. 
[66]

GoCAR study

Graft tissue at 
3rd months 
surveillance

13-Gene renal 
tissue signaturea

High CAD score 
(n = 44)

Low CAD score 
(n = 57)

0.97/
NA/
NA

Yes It predicted graft fibrosis 
at 12 months among 
KTRs with normal 
histology at 3-month 
after transplantation.

Li et al. [67] Blood and graft 
tissue

85-Gene signatureb IF/TA (n = 128)
STA (n = 147)

NA No The meta-analysis of 
multicenter independent 
gene-expression data 
sets identified 85 genes 
that were a/w IF/TA.

Jung et al. [68]
ARTKT study

Urine Six proteins (APOA1, 
TTR, PIGR, HPX, 
CP, and AZGP1)

CABMR  
(n = 26)

LGS (n = 57)
Graft function 
matched 
control (n = 10)

0.93, 0.85, 0.76, 
0.73, 0.86, 0.74/

82%, 77%, 71%, 
59%, 71%, 65%/
83%, 75%, 71%, 
58%, 71%, 67%

Yes They were distinguishable 
between CABMR and 
long-term stable KTRs.

AUC, area under the curve; CAD, chronic allograft damage; NA, not available; KTR, kidney transplant recipient; IF/TA, interstitial 
fibrosis and tubular atrophy; STA, stable graft function; a/w, associated with; CABMR, chronic active antibody-mediated rejection; 
LGS, long-term graft survival.
a13 genes: CHCHD10, KLHL13, FJX1, MET, SERINC5, RNF149, SPRY4, TGIF1, KAAG1, ST5, WNT9A, ASB15, and RXRA.
b85 genes: CASP1, CASP8, CBL, CD3D, CD48, CD53, CCR5, CTSS, CYBB, S1PR1, EVI2B, MS4A2, FCGR2A, FCGR2B, FPR3, FYB, 
GPR34, HCK, HLA-DPB1, PRMT2, HSPA9, SP110, IL7R, TNFRSF9, ISG20, JAK3, LY9, LYZ, MCL1, MNDA, NCF2, NCF4, PTGER3, PT-
PRC, PTPRE, RNASE6, SELL, SLC22A5, THRB, TJP1, TLR2, TLR4, TTN, ZNF207, LAPTM5, ST8SIA4, LST1, CD84, BTRC, NMI, CD163, 
AIM2, ARHGAP25, PLXNC1, IGSF6, TNFSF13B, GLIPR1, RAB31, CD300A, SAMHD1, LAMP3, CYTH4, CKLF, C1RL, TLR8, MS4A4A, 
CHST15, TM6SF1, FAR2, ARHGAP15, MS4A7, NLRC4, MCCC2, MS4A6A, RGS18, SMAP2, AMICA1, TMEM71, KIAA2018, MPEG1, 
RNF144B, SCML4, ARHGAP30, PPP1R2P4, and CCR2.
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used a proteomic approach to measure changes in urinary 
extracellular vesicles in urine samples from 93 KTRs (CAB-
MR, n = 26). Six proteins (APOA1, TTR, PIGR, HPX, AZGP1, 
and CP) enabled discrimination of the CABMR and long-
term graft survival groups. AZGP1 was a CABMR-specific 
biomarker that enabled differentiation of the rejection-free 
control group based on age at transplant, time since KT, 
and graft function.

Limitations and future directions
Advances in high-throughput omics technologies have fa-
cilitated the discovery of biomarkers in the transplant field. 
However, there are several barriers to their clinical applica-
tion. The key features of a biomarkers of AR in KTRs are 
noninvasiveness, ease of measurement and interpretation, 
reproducibility, high sensitivity and specificity, good prog-
nostic performance, and cost-effectiveness [69-72]. Pro-
spective randomized controlled trials to assess the efficacy 
and cost-effectiveness of candidate omics biomarkers com-
pared with traditional diagnostic methods are required for 
clinical application of biomarkers. In addition, considering 
the complexity and heterogeneity of rejection, large cohorts 
are needed to overcome the problem of inconsistent omics 
biomarkers among studies. A meta-analysis using the same 
type of data from different cohorts would go some way to 
overcoming this limitation.

Another requirement for the clinical application of om-
ics biomarkers is integration. Noninvasive omics biomarkers 
show promise not only for diagnosis of rejection, but also 
for early diagnosis of histopathological injuries, such as sub-
clinical AR, as well as stratifying patients according to the 
risk of rejection to reduce the need for surveillance biop-
sies. However, rejections (TCMR and ABMR) are heteroge-
neous in terms of severity and underlying pathophysiologic 
mechanisms, so it is difficult to determine the status of an 
individual patient using a single omics method developed 
based on a small sample size. Moreover, the expression of 
a given gene set does not indicate the total amount of pro-
teins produced, their biological activities, or the functions 
of metabolites [73]. Hence, the predictive performances of 
omics biomarkers differ among cohorts [74]. Therefore, to 
assess the pathophysiologic and immunological responses 
associated with AR and long-term stable graft function, 
multidimensional multiomics approaches are needed. Ge-
nomics, transcriptomics, proteomics, and metabolomics 
data are typically produced on an individual basis and ana-

lyzed separately [24]. The application of artificial intelligence 
(AI) through machine-learning algorithms and neural net-
works may be the solution. AI models enable analysis and 
integration of large-scale molecular information [69,75,76], 
including complex multiomics data. This will provide insight 
into the mechanisms of AR and long-term graft survival.

CONCLUSIONS

Omics biomarkers are the cornerstone of precision medi-
cine in KT; they can guide selection of the best treatment 
by integrating traditional clinical information and tailoring 
immunosuppression. Integration of individual omics analy-
ses may be critical for deciphering complex biological and 
immunological systems in transplantation. Therefore, large-
scale prospective studies using multiple omics biomarkers 
are warranted.
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