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REVIEW

Role of glutamine and its metabolite 
ammonia in crosstalk of cancer‑associated 
fibroblasts and cancer cells
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Abstract 

Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment, play an indispensable 
role in cancer initiation, progression, metastasis, and metabolism. The limitations of traditional treatments can be 
partly attributed to the lack of understanding of the role of the tumor stroma. For this reason, CAF targeting is gradu-
ally gaining attention, and many studies are trying to overcome the limitations of tumor treatment with CAF as a 
breakthrough. Glutamine (GLN) has been called a “nitrogen reservoir” for cancer cells because of its role in supporting 
anabolic processes such as fuel proliferation and nucleotide synthesis, but ammonia is a byproduct of the metabo-
lism of GLN and other nitrogenous compounds. Moreover, in some studies, GLN has been reported as a fundamental 
nitrogen source that can support tumor biomass. In this review, we discuss the latest findings on the role of GLN and 
ammonia in the crosstalk between CAFs and cancer cells as well as the potential therapeutic implications of nitrogen 
metabolism.
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Introduction
Glutamine (GLN) is a non-essential amino acid that can 
be synthesized by cells via GLN synthetase (GS). It is 
abundant in the blood in the form of free amino acids. 
Cancer cells absorb and utilize GLN at high rates [1, 2]. 
Previous studies have shown that GLN mainly functions 
as a supplement to TCA cycle and nucleotide biosynthe-
sis [3, 4]. However, GLN plays an important role in all 
aspects of carcinogenesis, such as antioxidant defense, 
chromatin modification/gene transcription, bioenergy, 
transportation of other amino acids across the plasma 
membrane, and the regulation of cell signaling [5]. GLN 
metabolism-related inhibitors have been approved by the 
FDA for the treatment of cancer and other diseases, and 

many of these inhibitors are currently being investigated 
in clinical trials [6].

When GLN is broken down to glutamate, ammonia is 
formed as a byproduct and is generally considered a toxic 
metabolite. However, recent studies on the role of ammo-
nia in tumors have started reporting diverging data; one 
hypothesis is that ammonia is a metabolic waste prod-
uct that inhibit tumor growth, whereas the other is that 
an appropriate amount of ammonia can promote tumor 
growth and support biomass production [7, 8].

The tumor microenvironment (TME) plays an impor-
tant role in the utilization of GLN and ammonia, syn-
thesis and secretion of GLN, sensing of changes in 
the concentration of GLN and ammonia, secretion of 
cytokines that affect GLN metabolism in cancer cells, 
and alterations in tumor cell proliferation and metastasis 
[9]. The TME is a complex combination of both pro-tum-
origenic and anti-tumorigenic components, including 
varieties of immune cells, endothelial cells, mesenchymal 
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stem cells, and fibroblasts (both CAFs and normal fibro-
blasts), as well as the extracellular matrix (ECM). The 
imbalance between ECM synthesis and turnover results 
in vascular dysplasia, disordered collagen formation, and 
abnormal secretion of cytokines [10–13]. Data on these 
elements pave the way for further research on the cross-
talk between cancer cells and cells located in the stroma. 
CAFs are the main producers of ECM and paracrine 
signals that promote the formation of stem cell niches, 
tumor growth, immunosuppression, metastasis, and 
chemoresistance (Fig. 1) [14].

GLN level in the ECM is regulated by both CAFs and 
other cancer cells [15]. The concentration and metabo-
lites of GLN, particularly ammonia, act as signals that 
mediate the metabolic processes of cancer cells and 
CAFs [16]. GLN plays a vital role in tumor develop-
ment because most tumor cells require GLN for growth. 
However, in the traditional sense, ammonia, a metabolic 
waste product, has also been reported to be conducive 
to tumor cell activity [7]. This new finding was possibly 
because the recent research on tumors is not limited to 
cancer cells alone but instead focuses on the complex and 
diverse TME [17]. Therefore, while reviewing the metab-
olism of GLN and ammonia, this article will focus on 
the metabolic processes in which fibroblasts participate, 

providing insights into the development of new treat-
ment modalities for tumors.

Role of GLN in cancer cells
Although most cancer metabolic pathways are associ-
ated with aerobic glycolysis [18], GLN, as a non-essential 
amino acid, also has a cancer-promoting effect in many 
tumors [19]. In some cancers, such as pancreatic and 
breast cancers, GLN is one of the most rapidly utilized 
nutrients after glucose [20, 21]. Davidson et al. reported 
that both lung cancer cells and normal lung cells utilize 
minute quantities of exogenous GLN [22]. Different lev-
els of GLN are utilized in different cancers [22–24]. In 
hyperglutamine-dependent cancer cells, GLN is used to 
synthesize amino acids, proteins, lipids, and nucleotides 
and regulate cancer cell metabolism [25]. Here, we dis-
cuss the role of GLN in cancer cells as well as the mecha-
nism underlying its metabolic regulation.

GLN transport
Usually, GLN is transported into cancer cells mostly 
by alanine-serine-cysteine-transporter-2 (also called 
SLC1A5) followed by SLC6A14 and SLC38A5 [26]. 
According to the Cancer Cell Line Encyclopedia project 
and other studies, SLC1A5 is overexpressed in many 

Fig. 1  Origins and functions of CAFs. The main origin of CAFs include epithelial cells, mesenchymal stem cells, mesothelial cells, normal fibroblasts, 
cancer cells, adipocytes and so on. The influence of CAFs on tumor cells includes various aspects like drug resistance, tumor proliferation, 
metastasis, invasion, migration, immunomodulation, and angiogenesis
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solid cancers, such as colon, gastric, lung, and pros-
tate cancers [27]. SLC1A5 is mainly involved in GLN 
import into cells, leading to cancer cell proliferation [28]. 
c-MYC, RNF5, and microRNA-137 have been confirmed 
to regulate SLC1A5 expression, but other mechanisms 
regulating SLC1A5 still need to be investigated [29–31]. 
GLN transported into cells via SLC1A5 can be directly 
used in cell metabolism or can be exchanged for leucine, 
valine, and other essential amino acids via the L-type 
amino acid transporter (also called SLC7A5) for indirect 
utilization in cells [32]. SLC7A5 is an external transporter 
of GLN that regulates the balance of the GLN flux [33]. 
GLN, when used in cell metabolism, can be catalyzed to 
glutamate via mitochondrial glutaminase (GLS), cyto-
solic enzymes, and other glutamate-producing enzymes. 
Glutamate may also be transported out of the cell by 
the SLC7A11 antiporter in exchange for cysteine [34]. 
SLC7A11 mainly regulates the redox status, ferropto-
sis, and intercellular signaling, leading to an increase in 
resistance to treatments such as chemotherapy and radi-
otherapy [35]. SLC7A11 expression is promoted by many 
oncogenes, such as KRAS and PTEN [36, 37]. Tumor sup-
pressors, such as P53 activating transcription factor 3 and 
signal transducer and activator of transcription 3, inhibit 
SLC7A11 expression and transcription (Fig. 2) [38–40].

Oncogenic regulation of GLN metabolism
Advances in research and deeper understanding of tumor 
have shown that the metabolism of tumor cells is regu-
lated by various genes. Recent studies have found that 
Myc, mTOR, p53, and mitogen-activated protein kinase 

(MAPK) are the major oncogenes associated with GLN 
metabolism [41].

MYC is a proto-oncoprotein that regulates the uptake, 
utilization, and decomposition of GLN [42]. In some 
types of human and mouse cancers, MYC induces the 
overexpression of glutamate ammonia ligase (GLUL), 
also called GS, which is responsible for de novo GLN 
synthesis. Cell and animal experiments in mammary 
epithelial cancer, pancreatic ductal neoplasia, T-cell 
lymphoma, and lung cancer cells have reported that 
MYC promotes GS expression to increase cell prolifera-
tion capacity [43, 44]. MYC overexpression is beneficial 
for GLN utilization as it transforms the substrate of the 
tricarboxylic acid cycle from glucose to GLN [41]. How-
ever, it promotes the utilization of GLN as an amino acid 
substrate by stimulating the synthesis of asparagine and 
other amino acids [45]. In addition, MYC promotes GLN 
uptake by transactivating the GLN transporters SLC1A5 
and SLC7A5/SLC3A2. Moreover, it suppresses the tran-
scription of GLS repressor microRNAs-23a/b to increase 
the expression of GLS, thereby promoting GLN utiliza-
tion [42, 46, 47]. Furthermore, three other key enzymes 
involved in GLN utilization are phosphoribosylpyroph-
osphate (PRPP) amidotransferase, carbamoyl phosphate 
synthetase II, and CTP synthetase, which are all directly 
modulated by MYC at the transcriptional level [48]. 
Interestingly, Wise et al. found that although PI3K/AKT 
and MYC both regulate the uptake of GLN, the former is 
not a necessary factor in the process of MYC-mediated 
GLN uptake [45].

The mammalian target of rapamycin (mTOR) sign-
aling pathway senses changes in the extracellular 

Fig. 2  Glutamine metabolism between CAFs and cancer cells. CAFs can provide cancer cells with Lac, Gln and other nutrients into TCA cycle and 
urea cycle, and then promote the growth and development of tumor cells.The black pointed arrow heads indicate material transportation. The blue 
blunt arrowheads indicate inhibitory interactions. Arg ariginine, α-KG α-Ketoglutaric acid, Cit citrate, Lac lactose, Glc glucose, Glu glutamate, GSH 
glutathione, Orn ornithine, PYR pyruvate
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environment and regulates the collective homeostasis 
response [49]. It has been previously found that GLN 
stimulates mTOR signaling. The amino acid pool main-
tained by GLN in cancer cells is an important factor 
in the stimulation of mTOR signaling [50]. GLN is the 
rate-limiting factor in mTOR activation [51]. Cancer 
cells absorb GLN through SLC1A5 and efflux it through 
SLC7A5 in exchange for leucine and other essential 
amino acids (EAAs). The exchanged leucine stimulates 
mTOR complex 1 (mTORC1) through the Ras-related 
GTPase (RAG) complex [52]. GLN promotes its own 
decomposition by binding with leucine, thus activat-
ing mTORC, affecting cell growth and autophagy [53]. 
mTORC1 downregulates SIRT4 by reducing the sta-
bility of the proteasome-mediated cAMP response 
element binding 2 and increasing the expression of glu-
tamate dehydrogenase (GDH), thus resulting in GLN 
supplementation [54–56]. In addition, SLC1A5 silenc-
ing in hepatocellular carcinoma can prevent tumor 
growth and expansion by inhibiting mTOR signal trans-
mission during the translation process [57].

The acidic TME leads to p53-mediated metabolic 
reprogramming, which enhances GLN metabolism 
[51]. GLS2 (liver-type glutaminase) has a different role 
in distinct cancers. GLS2 regulation by p53 has been 
confirmed in both non-tumor and tumor cells [58, 59]. 
The GLS2 gene contains a p53 consensus DNA-binding 
element that promotes interaction between the GLS2 
promoter and the p53 gene [55]. Subsequently, P53 pro-
motes GLS2 expression, both in stress and non-stress 
conditions, to break down GLN and produce more glu-
tathione and NADH. This results in lowering of intra-
cellular reactive oxygen species (ROS) levels in cells, 
ultimately targeting energy metabolism and apoptosis 
[60–62].

The MAPK pathway is another major player in can-
cer. Yuan et al. revealed that GLN regulates the mTOR/
S6 and MAPK pathways to increase the activities of both 
GLS and GDH [63]. GLN activates the MAPK pathway 
to promote proliferation, metastasis, and differentiation 
of human dental pulp cells [64]. Contrastingly, in mac-
rophages, the MEK/ERK pathway is not a regulator of 
GLN metabolism [65, 66]. MAPK plays different roles 
in GLN metabolism in various cell types, which may be 
because of the unique responses of different types of 
cells at various nutrition levels [64, 67]. Tumor cells have 
more potential to proliferate when they are rich in nutri-
ents, whereas immune cells do not show major changes; 
this is because of the differing metabolic characteristics 
of the cell types [68]. Therefore, in GLN research, we 
should consider the functional differences among cell 
types under physiological conditions, before studying the 
metabolism differences for GLN (Fig. 3).

Role of ammonia in cancer
Ammonia is another metabolite that is produced when 
GLN is decomposed by GS. In earlier studies, ammo-
nia was found to be a toxic metabolic waste product of 
nitrogenous compounds, such as GLN [69–71]. However, 
ammonia is usually metabolized into urea through the 
Krebs cycle and excreted from the body. High concentra-
tions of ammonia may cause autophagy in cancer cells 
[16].

However, Spinelli et al. reported that growth inhibition 
of breast cancer cells owing to a GLS inhibitor ceased 
when ammonia was artificially added [7]. As previously 
reported, ammonia supports human liver cancer cell 
growth in GLN-free media [72]. Physiological concentra-
tions of ammonia in the plasma of healthy human adults 
range from 0 to 50 μM. However, it can be present at up 
to 150 μM in patients with hyperammonemia [71]. When 
researchers altered ammonia concentrations in breast 
cancer cells from 0 to 1 mM, the uptake of GLN or glu-
cose and the expression of GS, GDH, and carbamoyl 
phosphate synthetase I (CPS1) ammonia-assimilating 
enzymes did not change [71], indicating that supraphysi-
ological concentrations of ammonia may not interfere 
with the growth of breast cancer cells; however, they 
may stimulate breast cancer proliferation and growth 
and conversion to biomass [7]. Conversely, a study on 
colon cancer showed that accumulation of ammonia to 
a concentration of 10  mM downregulates the biosyn-
thesis of polyamine and reduces the proliferation of can-
cer cells. P53, which is considered the most frequently 
mutated gene in human tumors, represses the urea cycle 
to suppress ureagenesis and the elimination of ammo-
nia, thereby inhibiting tumor growth [8]. The difference 
between the two findings may be owing to the differences 
in the concentration of ammonia. An appropriate con-
centration of ammonia can therefore promote the prolif-
eration of cancer cells.

However, it is difficult to replace GLN with ammonia 
as the only nitrogen source for cancer cell metabolism. 
Studies by Moreno-Sánchez et  al. on a variety of can-
cers, such as ovarian, colon, breast, and prostate can-
cers, revealed that a moderate concentration of ammonia 
(0.1–10  mM) increases the proliferation of cancer cells. 
However, when GLN was removed from the medium, the 
growth rate of HeLa and MDA-MB-231 cell lines sharply 
declined [73]. The addition of NH4Cl (1–10 mM) could 
not rescue these two cell phenotypes. This shows that 
GLN remains an indispensable nutrient for cancer pro-
gression with a strong metastatic ability. Unlike tumor 
cells, fibroblasts are more sensitive to changes in ammo-
nia concentration. When the concentration of ammonia 
was increased to 1  mM in the medium, it became too 
toxic for both mouse and human fibroblasts [73, 74].
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The ability of ammonia assimilation in tumor cell lines 
with stronger metastatic ability was higher than that in 
non-metastatic tumors. GDH mRNA and protein expres-
sion in metastatic tumors was higher than that in non-
metastatic tumors [75, 76]. Research on breast cancer 
indicated that GDH downregulation suppressed ammo-
nia utilization and addition of carbamoyl phosphate syn-
thetase I and GLN synthetase does not rescue this effect. 
In addition, cancer cells express more GLS1 (kidney-
type glutaminase) and GDH than stromal cells [77, 78]. 
In another study, ammonia significantly increased the 
expression of GDH and GLS in metastatic hepatocellular 
carcinoma Hep3B cancer cells [54]. Thus, the utilization 
of ammonia in cancer cells is closely related to GDH.

Researchers have shown that an H+ channel-like 
membrane transporter (SLC4A11), which is sensitive 
to ammonia, is expressed in both cancer cells and fibro-
blasts. SLC4A11 is located in the inner mitochondrial 
membrane of fibroblasts and is sensitive to ammonia. 
This sensitivity enables the enhancement of electron 
transport chain activity, GLN-dependent oxygen con-
sumption, and regulation of ATP levels by reducing 

ROS production. In GLN-addicted colon cancer cells, 
SLC4A11 knockdown downregulated GLN catabolism, 
ROS production, and cell proliferation [79]. Therefore, 
ammonia acts as a regulator of mitochondrial oxidative 
stress and promotes GLN catabolism.

Function of GLN and ammonia in tumor cell 
nucleotide synthesis
GLN is a material supplier for N-3 and N-9 of adenine 
and guanine, which is limited by PRPP amidotransferase, 
which transfers the amino group to the N-glycosidic 
bond in purine nucleotides [80].

There are two main methods for the de novo synthe-
sis of pyrimidine. The most common way is to synthesize 
carbamoyl phosphate with GLN as a raw reagent under 
catalysis by carbamoyl phosphate synthetase II (CPS2). 
Aspartate transcarbamylase transfers the carbamoyl 
group to the amino group of aspartic acid to form car-
bamoyl aspartate. Carbamyl aspartic acid is dehydrated 
and cyclized to produce dihydroorotic acid, which is then 
dehydrogenated to form orotic acid (pyrimidine deriva-
tive). Orotic acid interacts with PRPP to produce orotic 

Fig. 3  Oncogenic regulation of GLN metabolism. Driven by oncogenes and ammonia concentration, CAFs can secrete nutrients such as Glu and 
cytokines, thus promoting the metabolic changes of tumor cells and the growth and development of cancer cells. The red pointed arrow heads 
indicate activation interactions. The black pointed arrow heads indicate material transportation. The blue blunt arrowheads indicate inhibitory 
interactions
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acid nucleotides, which are decarboxylated to form uri-
dine acid [81].

Using inorganic ammonia as a raw material is another 
way to produce pyrimidine. CPS1 in the mitochondria is 
used to catalyze the synthesis of carbamoyl phosphate. 
In previous research, CPS1 was found to be the initiating 
enzyme of the urea cycle, which plays a role in the con-
version of ammonia ions to the less toxic urea, enabling 
its excretion through the kidneys [7, 82]. Kim et al. dem-
onstrated that carbamoyl phosphate catalyzed by CPS1 
can be used to synthesize pyrimidine. The suppression 
of CPS1 in lung cancer cells leads to pyrimidine synthe-
sis disorder and inhibits tumor growth and proliferation. 
Addition of exogenous pyrimidine can reverse this DNA 
damage and rescue growth; however, the process of 
inhibiting tumor growth is unrelated to the accumulation 
of ammonia [82].

Bidirectional crosstalk between cancer associated 
fibroblasts and cancer cells in GLN and ammonia 
metabolic pathways
GLN not only plays an important role in tumor cells 
but is also a very important component of the TME as 
a whole. In addition to the uptake and secretion of GLN, 
the excretion and utilization of ammonia are closely 
related to various components of the TME, especially 
CAFs. Here, we review the roles of GLN in the transport 
between cancer cells and CAFs and the metabolic regula-
tion of GLN as a signaling molecule between cells.

Transport and metabolism of GLN and ammonia in cancer 
cells and CAFs
As mentioned earlier, cells depend on exogenous GLN as 
an N donor. Ammonia, which is metabolized using GLN, 
also plays an important role in regulating the metabolism 
of tumor cells and CAFs in the TME.

CAFs are stimulated by the ammonia in the TME 
that is secreted by cancer cells, triggering the activation 
of autophagy-related signals. In addition, the ammo-
nia taken up by the CAFs in the TME can reduce mito-
chondrial viability. Together, these two processes cause 
CAFs to secrete high levels of GLN into the TME. Sub-
sequently, GLN is taken up by cancer cells and metabo-
lized to α-Ketoglutaric acid (α-KG) via the TCA cycle to 
ultimately increase mitochondrial activity [9]. Simulta-
neously, GLN stimulates TIGAR activation and inhibits 
autophagy in cancer cells. The transportation processes 
of GLN are different in different cancers. For example, 
pancreatic ductal adenocarcinoma (PDAC) is a cancer 
with rich stromal cells and poor blood vessel formation 
and does not have sufficient GLN supply through the 
serum [83]. However, PDAC cells use micropinocytosis 
to swallow extracellular proteins and utilize GLN and 

other amino acids using lysosomes [83–85]. Another 
route for cancer cell uptake of GLN from the TME is via 
extracellular vesicles that are released from neighboring 
cells. A study by Zhao et  al. showed that CAFs-derived 
exosomes provided exosomal cargo and disrupted mito-
chondrial oxidative metabolism. CAFs-derived exosomes 
increase GLN reductive carboxylation for biosynthesis 
in prostate cancer cells by inhibiting the electron trans-
port chain [56]. At the same time, tumor cells, especially 
epithelial cancer cells, utilize GLN and convert it to both 
ammonia and glutamate. Among these, ammonia leads 
to positive feedback and thus promotes CAFs autophagy 
and support the entry of GLN and other compounds as 
raw materials in the metabolic pathway [86]. However, 
compared with CAFs, cancer cells have a stronger resist-
ance to autophagy induced by elevated ammonia levels 
[16, 86]. Autophagy in CAFs is more common than that 
in normal fibroblasts in lung cancer [87]. Moreover, some 
studies have shown that autophagy and senescence mark-
ers are highly expressed in stromal cells in breast and 
lung cancers. Higher matrix autophagy leads to more 
severe tumor phenotypes, such as the overexpression of 
Beclin-1 or the loss of Cav-1 in fibroblasts [47]. Similarly, 
other studies demonstrated that downregulation of Cav-1 
in fibroblasts induced a four-fold increase in tumor size 
[87–89]. In addition, peroxisome proliferator-activated 
receptor γ (PPARγ) is an antidiabetic target that has a 
controversial role in cancer therapy. PPARγ is overex-
pressed in breast CAFs, which promotes autophagy and 
senescence by activating the HIF1-α and NF-κB path-
ways. This subsequently promotes the secretion of GLN 
and other metabolic materials into the TME to enhance 
the regulatory potential of cancer cells. However, over-
expression of PPARγ in cancer cells also leads to mod-
est inhibition of angiogenesis, which suppresses tumor 
growth [90].

Under some conditions, the release of GLN is not asso-
ciated with autophagy. Analyses of gene and protein lev-
els in ovarian cancer stroma have shown that expression 
levels of enzymes that catalyze the synthesis of intracel-
lular GLN, such as glutamic-oxaloacetic transaminase ½ 
and branch chain amino acid transaminase 1, are higher 
in CAFs than in normal fibroblasts (NAFs). Half of the 
glutamate in CAFs, which is the raw material of GLN, is 
synthesized by the intracellular GLN metabolic pathway, 
and the other half is transferred from the TME by trans-
porters. Subsequently, patient-derived CAFs secrete GLN 
into the TME at a rate of 25  pmol/K cells/h, whereas 
NAFs do not. Cancer cells can also promote GLN secre-
tion using CAFs. CAFs synthesize GLN at the maximum 
rate when co-cultured with cancer cells [91]. However, 
on culturing cancer cells that lack GLN, CAFs synthe-
size more GLN using asparagine and aspartate as raw 
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materials to restore the proliferation of cancer cells [73]. 
This GLN synthesis can be suppressed by exogenous GS. 
However, it cannot be suppressed by a GLS inhibitor or 
GLS siRNA, or even chloroquine, indicating that CAFs 
autophagy induced by cancer cells lead to CAFs provid-
ing nutrition to cancer cells. In conclusion, the transport 
of GLN and ammonia between CAFs and cancer cells in 
the TME can be affected by autophagy [92, 93].

Decomposition and utilization of GLN and ammonia 
by tumor fibroblasts are regulated by tumor cells
Breast cancer cells activate MYC in CAFs by secreting 
exosomal microRNA-105, which induces an increase in 
GLN and glucose metabolism, thus promoting the uti-
lization of lactic acid and ammonia for detoxification 
and leading to the sustainable growth of tumors [94]. 
High MYC expression in cancer cells promotes micro-
RNA-105 secretion, which in turn acts on CAFs to stimu-
late MYC activation, thus extending the effects of MYC 
originating from cancer cells. CAFs activated by micro-
RNA-105 significantly increased the catabolism of both 
GLN and glucose while increasing the expression of GLS 
and SLC1A5 [94]. The levels of glutamate and lactate 
increased significantly, resulting in accelerated extracel-
lular acidification. Two-dimensional NMR spectroscopy 
showed that labeled glutamate and acetate exhibited 
remarkably increased secretion by CAFs and could be 
involved in fueling cancer cells. Simultaneously inducing 
glycolysis and GLN decomposition in CAFs can enhance 
the metabolic flexibility of cancer cells, increase the use 
of alternative nutrients, and enhance the survival ability 
under single nutrient deprivation conditions. Simulta-
neously microRNA-105 could significantly increase the 
utilization of ammonia to synthesize GLN; thus, when 
nutrient levels are low and metabolic byproducts accu-
mulate, these CAFs detoxify by converting metabolic 
waste products (including lactic acid and ammonia) into 
energy-rich metabolites [42, 91]. When nutrition is ade-
quate, the CAFs, reprogrammed by microRNA-105, can 
enhance glucose and GLN metabolism to provide fuel for 
neighboring cancer cells. In addition, breast cancer cells 
showed higher metastasis and migration abilities when 
co-cultured with CAFs. Therefore, microRNA-105-medi-
ated stromal cell metabolic reprogramming promotes the 
continuous growth of tumors by regulating the shared 
metabolic environment [94].

To better understand the transmission of GLN and 
ammonia between tumor cells and CAFs, a study estab-
lished mathematical models on this metabolic transmis-
sion of GLN and ammonia. This research group found 
that it was better to achieve the effect of decompos-
ing tumor cells and utilize GLN-enriched CAFs to con-
sume part of the ammonia to form a metabolic circuit 

within 48  h [95]. However, this group only performed 
mathematical modeling for breast cancer cell lines and 
did not consider many other factors, such as surround-
ing endothelial cells and immune cells. In future studies, 
the mathematical model should be improved in relation 
to metabolism, thereby reducing the workload in actual 
experiments. It reduces the tenuous links of the experi-
ment; any conclusions drawn from the model can then be 
verified with actual experiments. This may be an effective 
evaluation method in the field of metabolic studies.

Effects of GLN and ammonia on the movement 
and transformation of tumor cells and CAFs
GLN can be used as an inducer of tumor metastasis. 
CAFs perceive the GLN concentration in the environ-
ment and actively metastasize to high GLN regions while 
secreting proteases and cytokines to promote the migra-
tion of cancer cells behind CAFs as helpers. Roberts 
et  al. found that cancer cells cultured in low GLN were 
far more tolerant than CAFs. GLN level at the center of 
breast cancer tumors was lower than in the peripheral 
area [96]. By simulating the GLN distribution gradient 
in breast cancer cells, CAFs were found to transfer from 
low-GLN areas to high-GLN areas, i.e., CAFs tended to 
migrate to the periphery of the tumor. When receiving 
the low GLN signature, CAFs activate TRAF, a ubiquitin 
ligase regulating AKT pathway [97]. TRAF regulates the 
polarized distribution of AKT2 with the concentration 
of GLN, which may then lead to the directional migra-
tion of CAFs. CAFs also drive cancer cell migration by 
stimulating the TGF-β-Snail1 axis, which is activated 
by cytokines derived from CAFs. Cancer cells do not 
migrate to the high GLN area when cultured alone; how-
ever, when co-cultured with CAFs, cancer cells begin to 
migrate, indicating that CAFs and GLN play a significant 
role in breast cancer metastasis [98].

In addition, GLS plays an important role in the pheno-
typic changes in the endothelial–mesenchymal transi-
tion (EMT) of tumor cells and CAFs. TGF-β is a crucial 
factor that promotes tumor proliferation and growth 
[99]. Silencing GLS during EMT, induced by TGF-β, can 
reverse this process. Moreover, GLS overexpression is a 
key factor for TGF-β-induced CAFs to develop a myofi-
broblast phenotype. Therefore, GLN metabolism is indis-
pensable in TGF-β-promoting cancer [66, 100, 101].

Clinical application of GLN and ammonia
Detection of GLN and ammonia utilization for cancer 
diagnoses
Fluorodeoxyglucose-positron emission tomography 
scanning is an imaging technology based on the utiliza-
tion of glucose, which shows the area utilizing more glu-
cose compared to the surrounding areas, thus indicating 
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the possible cancer focus [102]. However, some cancers 
cannot be detected by positron emission tomography. 
The survival of tumor cells inevitably requires a lot of 
energy, and these cells will have found other ways for 
energy supply. GLN is a potential alternative fuel, but 
tumor imaging agents based on GLN are still being devel-
oped [103].

Therapeutic strategies utilizing GLN and ammonia 
regulation
Consistent with the varied effects of GLN in different 
tumors, it can have distinct effects in different areas of 
the human body. Current GLN treatments mainly cover 
the following aspects: reduction in the plasma GLN con-
centration, inhibition of GLN uptake by tumor cells, use 
of GLN analogs to decrease tumor cell metabolism, and 
inhibition of key GLN metabolism enzymes in tumor 
cells. l-Asparaginase, an essential chemotherapy com-
ponent in pediatric acute lymphoblastic leukemia, acts 
by breaking down GLN; however, in the treatment of 
adult pancreatic carcinoma, l-asparaginase shows una-
voidably serious toxicity [24, 104]. Phenylacetate and 
benzoate have been approved by the FDA for use in the 
treatment of patients with congenital urea cycle disorders 
[105]. The combination injection of sodium phenylac-
etate and sodium benzoate showed remarkable lowering 
of plasma ammonium levels, but no advances have been 
made for its application in cancer therapy [105]. This may 
be because lowering blood GLN levels may cause serious 
gastrointestinal side effects [106].

Suppression of GLN uptake in cancer cells
One major component that supports cancer cells in 
the uptake of GLN is SLC1A5. Therefore, downregula-
tion of SCL1A5 can reduce growth and proliferation of 
cells [28]. SLC1A5 is highly expressed in many types of 
cancers, such as breast, pancreatic, and colon cancers 
[107–109]. L-g-glutamyl-p-nitroanilide is an inhibitor of 
SLC1A5 that leads to GLN starvation in cells and inhib-
its GLN-dependent mTOR activation, thus suppressing 
cancer progression [9, 63, 110–112]. Moreover, deletion 
of SLC1A5 and SLC7A11 in mice does not lead to any 
obvious phenotypes or death [113, 114]. Therefore, both 
SLC1A5 and SLC7A11 are potential drug targets for can-
cer therapy. A few ongoing clinical trials are experimen-
tally targeting the SLC7A11 receptor(NCT03965689) 
with sulfasalazine, a common drug in the treatment of 
rheumatic and inflammatory bowel diseases; this therapy 
has been reported to reduce cell proliferation in mice and 
several cell lines [115].

Administration of GLN analogs is another way to target 
the GLN pathway, such as the incorporation of antime-
tabolites in both DNA and RNA. GLN analogs interfere 

with the synthesis of both purines and pyrimidines. 
The GLN analog 6-diazo-5-oxo-L-norleucine (L-DON) 
showed promising preclinical data on its efficacy as an 
antimetabolite and as a GLS inhibitor; however, it was 
unsuitable for clinical use because of its excessive toxic-
ity (neurotoxicity, myelosuppression, nausea, and vomit-
ing) [116]. To enhance the effect of L-DON and reduce 
toxicity, it was co-administrated with PEGylated GLS. As 
expected, GLN depletion by the action of GLS resulted in 
a lower distribution of L-DON, leading to an improved 
toxicity profile. Despite this progress, this therapeutic 
approach needs further evaluation [117]. Because of the 
similarity of GLN metabolism between normal cells and 
cancer cells, GLN therapy often has unacceptable side 
effects. Thus, further research on therapeutic options 
targeting GLN metabolism will have two main strate-
gies: on the one hand identifying the differences in glu-
tamine metabolism between tumor cells and on the other 
hand, increasing the efficacy and reducing the side effects 
by dual targeting of cancer cells and CAFs, based on the 
characteristics of the TME.

Many recent clinical trials have focused on GLS and 
GDH inhibitors, such as compound 968, CB839, and 
BPTES. However, fatal side effects have been the major 
limitation in GLN catabolism therapy. Moreover, com-
pound 968 and BPTES showed inhibitory potential in 
cell cultures [118]. Although the selective GLS inhibitor, 
CB839, is under clinical investigation, most compounds 
stagnated in clinical trial phases 1 and 2 (Table 1). CAFs 
play important roles in the metabolism of GLN and 
ammonia [7]. Additionally, animal experiments have 
shown that a combination therapy targeting GLS in can-
cer cells and GLUL in CAFs is better than using only a 
single target. This indicates that a combination therapy 
targeting CAFs along with an inhibitory drug may be a 
novel strategy for tumor treatment [91].

Blocking ammonia reuse
CPS1 has been a target of several clinical investigations 
in patients with adrenal disease. Till date, there are no 
known reports on its application in cancer therapy. 
Celiktas et al. found that a combination of chemotherapy 
agents and CPS1 knockdown in vitro greatly reduced cell 
viability in lung adenocarcinoma [119], suggesting that 
CPS1 is a new target for cancer therapy and thus empha-
sizing the need for CPS1 inhibitors. Yao et al. developed 
a high-throughput screening enzyme assay for CPS1 
inhibitor candidates and identified H3B-120 as a prom-
ising compound. They further evaluated determined the 
mechanism by which H3B-120 competes with ATP dur-
ing synthesizing carbamoyl phosphate synthesis. H3B-
120 almost completely inhibited the activity of CPS1 but 
had no effect on CPS2, aspartyl transcarbamylase, and 
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dihydroorotase, which catalyze the first three steps in the 
de novo pyrimidine synthetic pathway [120]. Therefore, 
we believe that further studies on CPS1 inhibitors are 
warranted.

Cancer‑associated drug resistance via GLN metabolism
Tumor drug resistance is a major challenge in any 
tumor treatment. Studies have shown that increased 
drug resistance is generally associated with CAFs [121], 
partly because of the regulation of GLN metabolism 
by CAFs, leading to drug resistance [86]. In the treat-
ment of prostate cancer, androgen deprivation therapy 
(ADT)-induced GLN secretion by CAFs is a major cause 
of ADT resistance. The uptake of GLN by epithelial cells 
had a similar effect to that of a positive feedback mecha-
nism. L-GLN increased the expression of SLC1A5 and 
SCL38A2 in a time-dependent manner, and SLC38A4 
was also expressed in a GLN-dependent manner. GLN 
uptake promoted both GLS and GLS2 mRNA expres-
sion after 6  h of stimulation, which promoted the use 
of GLN by tumor cells while stimulating downstream 
mTOR signaling to promote tumor progression. In addi-
tion, GLN secreted by CAFs induce tumor proliferation 
and differentiation into a more invasive PCA pheno-
type, namely PCA neuroendocrine differentiation. GLN 

secretion is sufficient and necessary for this to occur. 
Studies have shown that in human prostate cancer tis-
sue, RASAL3 methylation levels in CAFs were much 
higher than those in NAFs. Ras activated macropino-
cytosis in CAFs and subsequently increased their GLN 
secretion. Finally, CAFs significantly increased the levels 
of aminoamide and glutamic acid in cancer cells. A few 
Krebs cycle intermediates, such as succinate, fumarate, 
and malate, were significantly elevated and increased 
the energy metabolism in cancer cells. The signifi-
cant increase in the level of GLN-derived aspartic acid 
in epithelial cells co-cultured with CAFs indicates the 
abundance of a key oxidized precursor of purines and 
pyrimidines, which further supports cancer cell prolifera-
tion [122]. ADT acts by precisely promoting the increase 
in GLN secretion caused by the apparent silencing of 
RASAL3, thus increasing drug resistance [123]. There-
fore, prostate cancer treatment that involves controlling 
the CAF-mediated increase in TME GLN level is a prom-
ising tumor intervention method.

Radiotherapy is a routine method of tumor treatment, 
but studies have found that radiation can induce CAFs 
and promote the utilization of GLNs [124, 125]. Moreo-
ver, the basic properties of α-SMA and collagen did not 
change significantly after irradiation. However, it caused 

Table 1  Clinical research of targeting GLS [127]

TNBC triple negative breast cancer, NSCLC non-small cell lung cancer, CRC​ colorectal carcinoma, AML acute myeloid leukemia, ALL acute lymphocytic leukemia

Mainly targets ClinicalTrials.
gov 
Identifier

Phase First posted Drug Combination drugs

TNBC, NSCLC, renal cell carcinoma NCT02071862 1 2014 CB-839 (Telaglenastat) –

CRC​ NCT03263429 1/2 2017 CB-839 Panitumumab and irinotecan

AML NCT03047993 1/2 2017 CB-839 Azacitidine

Hematological tumors NCT02071888 1 2014 CB-839 –

Clear cell renal cell carcinoma, melanoma, NSCLC NCT02771626 1/2 2016 CB-839 Nivolumab

NSCLC, CRC​ NCT03965845 1/2 2019 CB-839 Palbociclib

Clear cell renal cell carcinoma, TNBC NCT03875313 1/2 2019 CB-839 Talazoparib

NSCLC NCT04265534 2 2020 CB-839 Pembrolizumab

TBNC NCT03057600 2 2017 CB-839 Paclitaxel-carboplatin

Metastatic prostate cancer NCT04824937 2 2021 CB-839 –

AML, ALL NCT02071927 1 2018 CB-839 Azacitidine

Ovarian cancer NCT03944902 1 2019 CB-839 Niraparib

Advanced renal cell carcinoma, metastatic renal 
cell carcinoma

NCT03428217 2 2018 CB-839 Cabozantinib

Malignant peripheral nerve sheath tumors NCT03872427 2 2019 Telaglenastat hydrochloride –

Leptomeningeal neoplasm, metastatic lung 
non-small cell carcinoma, metastatic malignant 
neoplasm in the brain

NCT04250545 1 2020 Telaglenastat hydrochloride –

Plasma cell myeloma NCT03798678 1 2019 Telaglenastat hydrochloride Carfilzomib dexamethasone

Astrocytoma NCT03528642 1 2019 Telaglenastat hydrochloride Temozolomide

NSCLC NCT03831932 1 2019 Telaglenastat hydrochloride Osimertinib
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DNA double-strand breaks, p53 accumulation, and cell 
cycle arrest in CAFs. IGF1, a paracrine factor released by 
radiotherapy-treated CAFs, induces IGF1R/InsR phos-
phorylation in cancer cells, leading to Akt activation. The 
activated Akt pathway then stimulates mTOR and p70S6 
kinase to participate in protein synthesis and cell growth, 
inducing the promotion of cancer cell survival. IGF1R 
signaling stimulates an early increase in glucose uptake 
and lactate release, followed by a decrease in extracellular 
GLN; moreover, GLN metabolism and transport genes 
reduce transcription, which accelerates GLN absorption 
and utilization, resists the damage caused by radiation, 
and stimulates cancer cell proliferation and metastasis of. 
Therefore, some patients who are not sensitive to radio-
therapy may be protected by CAFs, which, in turn, pro-
mote the utilization of GLN in tumor cells to resist injury 
[126].

Conclusion
GLN and ammonia play important roles in both bio-
synthesis and signal transduction. Accumulating evi-
dence has shown that GLN and ammonia levels are also 
regulated by CAFs. CAFs not only provide nutrients and 
stimulation for cancer cells but also provide essential 
physical support that collectively adapts to the metabolic 
needs of cancer cells; thus, they participate in tumorigen-
esis. Hence, the metabolic interplay between CAFs and 
cancer cells is considered an area of vulnerability for GLS 
therapy. Therefore, targeting the GLN pathway in cancer 
is not a new idea for cancer therapy, but dual targeting of 
cancer cells and CAFs is a more promising way to treat 
cancer.

Thus, CAFs represent a new opportunity for the study 
of ammonia metabolism in tumor cells. CAFs, being the 
largest group of cells in the TME, show a remarkable dif-
ference in ammonia sensitivity compared to tumor cells, 
thus implying that the regulation of inorganic ammo-
nia metabolism in tumors is closely related to CAFs. 
Although research on ammonia metabolism is increas-
ing, we are only at the tip of the iceberg.
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