
ORIGINAL RESEARCH
published: 01 October 2019

doi: 10.3389/fbioe.2019.00238

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 October 2019 | Volume 7 | Article 238

Edited by:

Orazio Vittorio,

University of New South

Wales, Australia

Reviewed by:

Clara Mattu,

Politecnico di Torino, Italy

Shiyong Song,

Henan University, China

*Correspondence:

Jingxin Mo

jingxin.mo@hotmail.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Nanobiotechnology,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 01 July 2019

Accepted: 11 September 2019

Published: 01 October 2019

Citation:

Li M, Mao L, Chen M, Li M, Wang K

and Mo J (2019) Characterization of

an Amphiphilic Phosphonated

Calixarene Carrier Loaded With

Carboplatin and Paclitaxel: A

Preliminary Study to Treat Colon

Cancer in vitro and in vivo.

Front. Bioeng. Biotechnol. 7:238.

doi: 10.3389/fbioe.2019.00238

Characterization of an Amphiphilic
Phosphonated Calixarene Carrier
Loaded With Carboplatin and
Paclitaxel: A Preliminary Study to
Treat Colon Cancer in vitro and
in vivo

Meiying Li 1,2†, Liujun Mao 3†, Meirong Chen 4, Mingxin Li 2, Kaixuan Wang 2 and Jingxin Mo 1*

1Clinical Research Center for Neurological Diseases of Guangxi Province, Affiliated Hospital of Guilin Medical University,

Guilin, China, 2 School of Pharmacy, Guilin Medical University, Guilin, China, 3Department of Further-Education, Affiliated

Hospital of Guilin Medical University, Guilin, China, 4Department of Graduate, Affiliated Hospital of Guilin Medical University,

Guilin, China

The inadequacy of available detection methods and a naturally aggressive progression

have made colon cancer the third most common type of cancer, accounting for ∼10%

of all cancer cases. The heterogeneity and genomic instability of colon cancer tumors

make current treatments unsatisfactory. This study evaluated a novel nanoscale delivery

platform comprising phosphonated calixarenes (P4C6) co-loaded with paclitaxel (PTX)

and carboplatin (CPT). The nanoparticles showed average hydrodynamic sizes of 84

± 8 nm for empty P4C6 nanoparticle and 119 ± 13 nm for PTX-CPT-P4C6. The

corresponding zeta potentials were −40.8 ± 8.8 and −35.4 ± 4.2mV. The optimal

CPT:PTX ratio was 5.22:1, and PTX-CPT-P4C6 with this ratio was more cytotoxic against

HT-29 cells than against Caco-2 cells (IC50, 0.4 ± 0.02 vs. 2.1 ± 0.3µM), and it induced

higher apoptosis in HT-29 cells (56.6 ± 4.5 vs. 44.9 ± 3.44%). PTX-CPT-P4C6 inhibited

the invasion and migration of HT-29 cells more strongly than the free drugs. It also

inhibited the growth of HT-29 tumors in mice to the greatest extent of all formulations,

with negligible side effects. This research demonstrates the potential of P4C6 to deliver

two chemotherapeutic agents to colon cancer tumors to provide synergistic efficacy than

single drug administration.

Keywords: phosphonated calixarene, paclitaxel, carboplatin, nanomedicine, colon cancer

INTRODUCTION

Colorectal cancer (colon cancer) is the third most common type of cancer worldwide and a leading
cause of cancer death, making up about 10% of all cancer cases (den Bakker et al., 2018). In
2012, its global mortality rate was estimated at more than 600,000 per year, and its incidence has
increased over the last 25 years (Yodkeeree et al., 2009). Colon cancer manifests as the formation
of adenomatous polyps and malignant cells in the colon (Basu et al., 2018). Its naturally aggressive
progression, in combination with a lack of accurate screening and detection methods, means that
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patients are typically diagnosed at advanced stages, and they
therefore respond inadequately to available treatments (Blind
et al., 2018). Chemotherapies are essential due to the high risk
of relapse after surgery, yet most drugs for treating advanced-
stage colorectal cancer, such as cisplatin, are relatively ineffective
and frequently induce adverse side effects (Rabik and Dolan,
2007; Robella et al., 2019), such as nephro-(Zhu et al., 2019),
hepato-(Zhang X. et al., 2019), and cardiotoxicity (Dasari and
Tchounwou, 2014). These considerations highlight the need for
new therapeutic approaches for this disease.

Nanomedicine is an emerging, dynamic branch of
therapeutics that continues to gain prominence as a viable
treatment alternative for many cancers, including colon cancer
(Zhang Q. et al., 2019). Nanomedicine encompasses the
application of nanotechnology (construction of functional
structures on the nanometer scale) to the treatment, diagnosis,
monitoring, and control of biological systems (Yang et al.,
2015; Li et al., 2019; Wei et al., 2019). This field has seen the
development of a number of drug delivery platforms, including
polymer-drug conjugates (Li and Wallace, 2008; Karolczak-
Bayatti et al., 2019), liposomes (Paasonen et al., 2010; Shen and
Ye, 2019), micelles (Dehghan Kelishady et al., 2014; Alliot et al.,
2019), nanoshells (Huschka et al., 2012; Russo et al., 2019),
and dendrimers (Modi et al., 2014; Zhao et al., 2017). The
overarching aim of nanomedicine development is to design more
specific drug delivery and targeting therapies as alternatives to
conventional therapies.

Paclitaxel (PTX) and carboplatin (CPT) are first-line cancer
chemotherapy (Barcelos et al., 2019). PTX (MW 853.9 g/mol) is
a hydrophobic molecule that suppresses dynamic instability of
microtubules and thereby inhibits mitosis (Nogales and Wang,
2006). CPT (MW 371.3 g/mol) is a second-generation analog
of the platinum complex called carboplatin (Zhang et al., 2016).
CPT reacts with genomic DNA to yield a variety of cross-linked
adducts within and between DNA strands as well as between
DNA and proteins, which interfere with DNA transcription
(Rabik and Dolan, 2007; Thibault et al., 2018). When used
together, PTX and CPT can show effective synergistic anti-
cancer activity, yet they also frequently cause toxicity that reduces
quality of life (Tourell et al., 2017). Toxicities associated with CPT
involve mainly myelosuppression, principally thrombocytopenia
(Nunes et al., 2018). PTX toxicity arises not only from the drug
itself but also from the high concentration of the Cremophor
EL vehicle, which is required to solubilize the poorly aqueous
PTX into an injectable solution. The most common toxicities
associated with Cremophor EL include acute hypersensitivity
reactions, which are recognizable as flushing, rash, dyspnea and
tachycardia (Bhatt et al., 2019; Bressand et al., 2019).

Here we developed a novel nanoscale delivery platform
that allows co-delivery of PTX and CPT in a formulation
that reduces the drugs’ toxic effects and potentially improves
efficacy. The platform comprises amphiphilic phosphonated
calixarene (P4C6) assembled into a supramolecular cone. The
P4C6 molecule consists of calix[4]arene with four ionizable
phosphonic acid groups attached to the upper rim and four six-
carbon alkyl moieties attached to the lower rim (Figure 1). The
alkylated analogs of phosphonated calix[4]arenes are amphiphilic
molecules that can self-assemble via interactions between the

polar head groups and hydrophobic interactions between the
alkyl chains (Mo et al., 2015, 2016, 2017; Chen et al., 2017). In this
way, P4C6 molecules self-assemble into a liposomal structure,
with the hydrophilic PO−3

3 groups extending into the aqueous
environment and the internal hydrophobic alkyl chains forming
the layers of liposome. Through a combination of liposomal
and host-guest drug-loading techniques, our laboratory has
succeeded in loading hydrophobic PTX into the core of P4C6
nanoparticles and hydrophilic CPT into the anionic “bowl” of
individual P4C6 molecules (Mo et al., 2015, 2016, 2017).

In the present study, we characterized the size of empty
and drug-loaded P4C6 carriers over a range of biologically
relevant pH values, determined the optimized ratio between
PTX and CPT, and evaluated nanoparticle cytotoxicity against
colon cancer cell lines. Finally, we evaluated the ability of the
nanoparticles to inhibit colon cancer tumor growth in mice.

MATERIALS AND METHODS

Materials
All materials and reagents were purchased from commercial
sources and used as received. CPT, dimethyl sulfoxide (DMSO),
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
(MTT) and trypan blue were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Phosphate-buffered saline (PBS), fetal bovine
serum (FBS), penicillin/streptomycin, trypLE express enzyme,
McCoy’s 5A media and Ham’s F-12K (Kaighn’s) nutrient mix
were purchased from Life Technologies (Carlsbad, CA, USA).
Paclitaxel was sourced from 21 CEC PX Pharm Ltd., (East Sussex,
UK); chloroform and hydrochloric acid, from APS Chemicals
(Canning Vale, WA, Australia); and sodium hydroxide, from
Ajax FineChem (Scoresby, VIC, Australia). P4C6was synthesized
in our lab to a purity of >95%, as confirmed by HPLC
(Mo et al., 2015).

Cell Culture
The two human colon cancer cell lines Caco-2, which show
features of colonic epithelial cells, and HT-29, which resemble
colonic crypt cells, were obtained from the American Type
Culture Collection (ATCC). Caco-2 cells were grown in McCoy’s
5A medium supplemented with FBS (10% v/v) and penicillin-
streptomycin (1% v/v). HT-29 cells were grown in Ham’s F-
12K (Kaighn’s) medium supplemented with FBS (10% v/v) and
penicillin-streptomycin (1% v/v). When cells reached 80–100%
confluence, they were trypsinized with trypLE express enzyme,
centrifuged at 300 g for 3min in a 2-16PK refrigerated centrifuge
(Sigma Laborzentrifugen, Osterode am Harz, Germany), and
split 1:4 in fresh medium.

Synthesis of Compound P4C6
P4C6 was synthesized as described previously (Mo et al.,
2015). Briefly, n-hexyl groups were attached to the lower
rim of calix[4]arene reaction with bromohexane and sodium
hydride in DMF, the so-called Duff reaction enabled formylation,
and the formylated compound was reduced to alcohol on
the upper rime of calix[4]arene by sodium borohydride.
The alcoholic group was chlorinated by thionyl chloride,
phosphorylated by triethylphosphite and finally deprotected by
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FIGURE 1 | Calixarene cone formation creates a bowl-shaped cavity for CPT and an internal core for PTX, giving rise to a dual-loaded nanoparticle (PTX-CPT-P4C6).

bromotrimethylsilane. The chemical structure of the resultant
P4C6 was confirmed by 1H NMR (Mercury 400, Varian, Palo
Alto, CA; Figure S1).

Preparation of PTX-CPT Mixture
PTX and CPT were precisely weighed and dissolved, respectively,
in 1% DMSO or pure water to a final concentration of 1 mg/ml.
These stock solutions were mixed to obtain different ratios of
PTX:CPT for subsequent experiments.

Preparation of PTX- and/or CPT-Loaded
P4C6 Nanoparticles and Empty P4C6
Nanoparticles
PTX- and/or CPT-loaded P4C6 nanoparticles were prepared as
we described previously (Mo et al., 2017). Briefly, P4C6 (150mg)
was mixed with PTX (5mg) in 50mL of ethyl acetate in a
150-mL round-bottom flask. The flask was left on a rotary
evaporator (Buchi) overnight in a 40◦C water bath to eliminate
ethyl acetate. The resulting thin film was rehydrated at 40◦C for
30min in 30mL of deionized water containing CPT (10mg), after
which the suspension was sonicated for 10min using a probe
sonicator (Qsonica L.L.C, Newtown, CT, USA; 500W, 220V) at

EE (%) =
amount of paclitaxle

(

or carboplatin
)

in nanoparticle pellet
(

µg
)

amount of paclitaxel
(

or carboplatin
)

in nanoparticle dispersion
(

µg
) × 100%

50% strength. The solution was passed through a 0.5-µm filter
(Millipore) to remove insoluble material, and the resulting
PTX-CPT-P4C6 nanoparticles were freeze-dried and stored

at −20◦C until experiments. PTX- or CPT-loaded P4C6
nanoparticles or empty P4C6 nanoparticles were prepared
following the same procedure as above but leaving out PTX
and/or CPT.

Physicochemical Characterization of
Nanoparticles
Each batch of nanoparticles was characterized using dynamic
light scattering (DLS) to determine particle size and size
distribution, and by electrophoretic light scattering to measure
zeta potential. Measurements were made with a 4-mW He-
Ne laser at 633 nm and with a measurement angle of 173◦

(Zetasizer Nano S, Malvern Instruments, Worcestershire, UK).
For particle size calculations, we used the refractive index
(1.330) and viscosity (0.887) of water at 25◦C, and we used
its dielectric constant (78.5) for zeta potential measurements.
Average values for nanoparticle size and zeta potential were
calculated by the equipment, and the polydispersity index was
also measured. The concentrations of PTX and CPT were
determined using a method based on liquid chromatography and
time-of-flight mass spectrometry (LC/TOF MS) as described in
Supplementary Information (Mo et al., 2014). The entrapment
efficiency (EE) was calculated from the following equation:

The drug loading (DL) of PTX or CPT in the freeze-
dried nanoparticles powder was calculated using the
following equation:
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DL (%) =
amount of paclitaxel

(

or carboplatin
)

in freeze− dried nanoparticle(µg)

amount of freeze− dried nanoparticle(µg)
× 100%

The EE and DL of PTX and CPT were determined from three
separately prepared nanoparticles, and were expressed as the
mean± standard deviation.

For transmission electron microscopy, nanoparticles were
diluted 1:30 (v/v) in MilliQ water. One drop of the diluted
dispersion was deposited onto copper-coated carbon grids
(Polysciences, Inc., Warrington, PA, USA). The grids were
dried at ambient temperature for 3 days, then images were
collected using a JEM2100 transmission electron microscope
(JEOL, Akishim-Shi, Tokyo, Japan) at 120 kV and an 11Mpix
Orius digital camera (Gatan, Pleasanton, CA, USA).

Assessment of Nanoparticle Stability
Particle size and zeta potential measurements were taken at 0, 24,
48, and 72 h after preparation, during incubation in media of pH
from 2 to 10. Each dispersion was adjusted to the specified pH
by drop-wise addition of HCl to acetate buffer solution (pH 2–6)
or NaOH to phosphate buffer solution (pH 7–10), and the pH of
the samples was measured using a SevenEasy pH meter (Mettler
Toledo, Greifensee, Switzerland). Dilution stability of 0.3µM
PTX-CPT-P4C6 was assessed by dilution with 0.9% saline for up
to 100 times. The particle size distribution profiles, polydispersity
index (PDI) and zeta potential values of the corresponding
samples were immediately characterized by DLS.

Nanoparticle Cytotoxicity in vitro
Caco-2 and HT-29 cells were seeded onto 96-well plates at
a concentration of 10,000 cells/well together with 200 µl of
McCoy’s 5A medium or Ham’s F-12K (Kaighn’s) medium,
respectively. The cells were incubated for 24 h at 5% CO2

and 37◦C, before the medium in each well was replaced
with an equal volume of medium containing the appropriate
concentration of samples. Plates were then incubated in a
humidified atmosphere containing 5% CO2 at 37◦C for 2 or
48 h. For experiments involving 2-h exposure, sample-containing
mediumwas aspirated after 2 h, and replaced with 200µl of fresh,
drug-free culture medium. The cells were then incubated another
46 h, and finally analyzed in the MTT assay. For experiments
involving 48-h exposure, cells were processed in the MTT assay
immediately after the 48-h incubation.

MTT was dissolved in PBS at a concentration of 5 mg/ml.
Each well of cells was incubated with 20 µl of this mixture
for 3 h, excess MTT was aspirated and DMSO was added
(200 µl/well), and plates were incubated for 15min at ambient
temperature away from light. Plates were then analyzed at 595 nm
on a Multiskan RC Microplate Reader (Thermo/LabSystems,
Champaign, IL, USA). Cell survival percentages relative to
control cells exposed to medium without any nanoparticle
or drugs were plotted as a function of nanoparticle or drug
concentration on a logarithmic scale. A dose-response curve
was generated using three-parameter, non-linear inhibition dose-
response fitting in Prism 6.05 (GraphPad Software, La Jolla, CA,

USA). The half-maximal inhibitory concentration (IC50) was
determined based on this curve.

The chemomodulatory effect of carboplatin (CPT) to
paclitaxel (PTX) within colon cancer cells was determined using
combination analysis between PTX and CPT as previously
described (Chen et al., 2017). Briefly, exponentially growing
HT-29 and CaCo-2 cells were seeded in 96-well plates (2,000
cells/well) and exposed to fixed concentrations of PTX and CPT
(molar ratio of 5.22:1) for 2 and 48 h. Cells were subsequently
subjected to MTT assay as described in the previous section.
Combination index (CI-value) was calculated and used to define
the nature of drug interaction (synergism if CI-value <0.8 as;
antagonism if CI-value>1.2; and additive if CI-value ranges from
0.8 to 1.2). CI value was calculated from the formula:

CI value =
IC50 of drug (PTX) combination

IC50 of drug (PTX) alone

+
IC50 of drug (CPT) combination

IC50 of drug (CPT) alone

Effects of Nanoparticles on Apoptosis and
Cell Cycle Distribution in vitro
Caco-2 and HT-29 cells were seeded in 6-well plates with 2ml
of McCoy’s 5A medium or Ham’s F-12K (Kaighn’s) medium,
respectively. After allowing cells to adhere for 24 h, the medium
was replaced with 2ml P4C6 (200µM), PTX-CPTmixture (5µM
PTX and 26.1µM CPT) or PTX-CPT-P4C6 (0.3µM PTX and
1.57µM CPT). Negative controls are Caco-2 and HT-29 cells
cultured as the same procedure as above without any treatment.
The plates were incubated in a humidified atmosphere containing
5% CO2 at 37

◦C for 48 h (FormaTM Series II Water-Jacketed CO2

Incubator, Thermo Fisher Scientific, Waltham, MA, USA).
The cells were then prepared for flow cytometry using a FITC-

Annexin V/Dead Cell Apoptosis Kit (Sigma-Aldrich) according
to the manufacturer’s protocol. Briefly, harvested cells from each
well were washed with 1ml of PBS, centrifuged (300 g for 3min)
and the pellet was resuspended in 100 µl 1X annexin-binding
buffer, together with 5 µl of FITC and 1 µl of propidium iodide
(PI; 100µg/ml). The sample was incubated for 15min at ambient
temperature, then an additional 400 µl of 1X annexin-binding
buffer was added. For cell cycle distribution analysis, the treated
and untreated cells were washed and re-suspended in 1mL of PBS
containing 50µg/mL RNAase A (Sigma-Aldrich) and 10µg/mL
propidium iodide (PI) (Sigma-Aldrich) for 20min. The samples
were kept on ice until analysis. Flow cytometry was performed
on a FACS Calibur Flow Cytometer (Becton Dickinson, Franklin
Lake, NJ, USA) and the data were analyzed using CellQuest
Pro (Becton Dickinson) to determine levels of apoptosis and
distribution in the cell cycle.

Cell Migration and Invasion in vitro
In vitro cell invasion assays (also known as the Boyden transwell
chamber assay) were conducted using 24-well cell culture plates
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with polycarbonate inserts (Millipore) with pore diameters of
8µm. In brief, cells (5 × 104) in 300 µL serum-free DMEM
were seeded onto the upper chambers for 24 h for cells attached,
then 800 µL DMEM with 10 % serum was added to the lower
chambers. After incubation for another 24 h with 300 µL serum-
free DMEM containing P4C6 (1.73 µg), PTX-CPT mixture
(0.077 µg of PTX, 0.174 µg) or PTX-CPT-P4C6 (0.077 µg of
PTX, 0.174 µg of CPT, and 1.73 µg of P4C6), the supernatant
containing treatments was aspirated. Fresh medium was then
added and cells were incubated a further 48 h. Cells that had not
penetrated the filter were wiped away with cotton swabs, and cells
that had migrated to the lower surface of the filter were counted
in five randomly selected fields at 40× magnification using a
light microscope (Olympus, Japan). Each assay was performed
in triplicate.

Effects of different formulations on HT-29 cell migratory
activity were examined in a wound healing assay. Cells were
cultured in six-well plates in a 5% CO2 incubator for 24 h until
completely confluent. The cell monolayer was scratched with a
200-µL pipette tip to inflict a wound, cells were washed twice
in PBS to remove floaters, and the medium was replaced by
2mL 0.5% FBS DMEM containing P4C6 (11.54mg) or PTX-
CPT mixture (0.51mg PTX, 1.16mg CPT) or PTX-CPT-P4C6
(0.51mg of PTX, 1.16mg of CPT and 11.54mg of P4C6). After
another 24 h of incubation, the supernatant was aspirated and
replaced with fresh medium without any nanoparticles or drugs,
and the cultures were incubated another 96 h. Migration of cells
from the leading edge was analyzed using light microscopy.
Relative gap area was measured using imageJ software (NIH,
USA), and the ratio of gap area for each group at 96 h relative
to the gap area in each group at 0 h was plotted.

Anti-tumor Effects of Nanoparticles in vivo
Female Balb/c nude mice aged 5–6 weeks were obtained from the
Model Animal Research Center of Nanjing University (Nanjing,
China). All animal experiments were approved by the Ethics
Committee of Guilin Medical University (ethics number YXLL-
2016-088). HT-29 cells (2 × 106 in 100 µL PBS) were injected
subcutaneously into the upper right thigh of mice. Treatments
with different formulations were initiated when tumors had
reached a volume of 200 mm3. Mice were randomly divided into
four groups (5 per group): the empty P4C6 nanoparticles group,
8.73 mg/kg P4C6; the PTX-CPT group, 1.27 mg/kg PTX-CPT
(0.39 mg+0.88mg); the PTX-CPT-P4C6 group, 10 mg/kg PTX-
CPT-P4C6 (containing 0.39mg PTX, 0.88mg CPT, and 8.73mg
P4C6) and control group, 0.9% saline. These treatments were
administered by oral gavage once every other day after body
weight and tumor volume had been recorded. Tumor volumewas
calculated according to the following equation.

Tumor volume (mm3) = 0.5 ×long axis (mm)

× [short axis (mm)]2

Tumors were not allowed to grow beyond 3,000 mm3, in
accordance with our institutional animal care guidelines. Once
the maximum tumor volume was reached, the animal was
euthanized with pentobarbital.

The mice were euthanized on day 12 of drug administration.
Tumor tissues were removed completely and weighed. Tumors,
livers, and kidneys were fixed in formalin, embedded in paraffin,
thin-sliced, and stained with hematoxylin-eosin for histological
analysis. Blood was collected from the postcaval vein, centrifuged
at 1,006 g for 10min, and the serum supernatant was assayed for
aspartate aminotransferase and blood urea nitrogen levels using
a blood autoanalyzer (CDC Technologies, OH, USA).

For staining with Annexin V and PI, the tumors were cut into
slices 5.0µm thick, placed on slides, washedwith PBS three times,
then incubated with binding buffer containing Annexin V and
PI for 15min at 25◦C in the dark. Finally, samples were washed,
stained for nuclei using DAPI (5mM), and examined by confocal
microscopy (Leica TCS SP5, Germany).

To further determine the degree of apoptosis-like cell death,
terminal deoxynucleotidyl transferase-mediated dUTP end-
labeling (TUNEL) (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) was performed. Tumor sections of different
treatment groups were processed according to the manufacturer’s
protocol, and examined using a light microscope (ECLIPSE 80i,
Nikon, Tokyo, Japan).

Statistical Analyses
Data were presented as mean± SD. Variance analysis and t-tests
were used to assess the significance of differences. Differences
were considered significant at three levels: ∗p < 0.05, ∗∗p <

0.01, and ∗∗∗p < 0.001. All batches were produced in triplicates
otherwise mentioned. Each experiment was repeated twice.

RESULTS

Physicochemical Characterization of
Nanoparticles
In the dual-loaded formulation of PTX-CPT-P4C6, EE and DL
were 87.66± 6.07 and 3.88± 0.86% for PTX, and 56.6± 3.88 and
8.79± 0.28% for CPT. In the single-loaded formulations of PTX-
P4C6 and CPT-P4C6, rather higher EE and DL were observed as
91.28 ± 11.07 and 4.93 ± 0.51% for PTX, and 58.85 ± 5.06 and
11.5± 2.8% for CPT (Table 1).

Average hydrodynamic diameter and polydispersity index
were 84 ± 8 nm and 0.22 ± 0.01 for empty P4C6 nanoparticles,
compared to 119 ± 13 nm and 0.21 ± 0.01 for PTX-CPT-P4C6

TABLE 1 | Characterization of various nanoparticle formulations by DLS and

LC/TOF MS.

Formulations Particle size

(nm)

PDI Zeta

potential

(mV)

Loading

efficiency

(%)

Empty P4C6

nanoparticles

84 ± 8 0.22 ± 0.01 −40.8 ± 8.8 N/A

PTX-CPT-

P4C6

119 ± 13 0.21 ± 0.01 −35.4 ± 4.2 3.88 ± 0.86

(PTX)

8.79 ± 0.28

(CPT)

PTX-P4C6 121 ± 13 0.26 ± 0.05 −39.8 ± 9.2 4.93 ± 0.51

CPT-P4C6 130 ± 18 0.22 ± 0.07 −36.6 ± 6.8 11.5 ± 2.8

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 October 2019 | Volume 7 | Article 238

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Li et al. Calixarene Carrier to Treat Colon Cancer

FIGURE 2 | Particle size distribution (nm) as determined by dynamic light scattering: (A) empty P4C6 nanoparticles and (B) PTX-CPT-P4C6; Transmission electron

micrographs of (C) empty P4C6 nanoparticles and (D) PTX-CPT-P4C6. Scale bar, 200 nm.

(Figure 2). Loading P4C6 with both PTX and CPT significantly
increased mean particle size (p ≤ 0.01). Zeta potential was not
significantly different between empty P4C6 nanoparticles (−40.8
± 8.8mV) and PTX-CPT-P4C6 (−35.4± 4.2mV). Compared to
dual-loaded P4C6 nanoparticles, loading P4C6 with either PTX
or CPT would slightly increase the corresponding nanoparticle
sizes and loading efficiencies as well. In all nanoparticle
formulations, their PDI and zeta potentials were of no
comparative differences (Table 1).

Transmission electron microscopy showed empty P4C6
nanoparticles and PTX-CPT-P4C6 nanoparticles to be uniformly
round (Figures 2C,D) and to have diameters consistent with
those determined by dynamic light scattering.

Nanoparticle Stability
Figure 3 shows average size of empty P4C6 nanoparticles and
PTX-CPT-P4C6 nanoparticles during 72-h storage at ambient
temperature in the dark. Neither mean particle size nor zeta
potential of PTX-CPT-P4C6 changed significantly during storage
(Figure 3). In contrast, empty P4C6 nanoparticles did not
change significantly in size, but their zeta potential decreased
significantly between 24 and 72 h (p ≤ 0.05).

It can be observed from Figure S2 that there were no
significant changes in the mean particle size of PTX-CPT-P4C6
upon dilution with 0.9% saline (up to 100 times, p > 0.05). At
the same time, the polydispersity index and zeta potential slightly
increased with multiple times dilution, though the difference
is negligible.

To assess nanoparticle stability across a pharmaceutically
relevant pH range, the pH of empty P4C6 nanoparticles and
PTX-CPT-P4C6 dispersions was gradually adjusted to specific
values (pH 2–10). In no case did mean particle size or size

distribution vary substantially at pH values up to 10 (Figure 4A).
Similarly, zeta potential did not vary significantly over this pH
range (Figure 4B).

Nanoparticle Cytotoxicity in vitro
Empty P4C6 nanoparticles showed an IC50 of 2050.8 ± 2.2µM
against HT-29 cells and 1340.9 ± 1.5µM against Caco-2 cells
(Figure 5).

Next, we determined the IC50 of combinations of CPT and
PTX mixed in three molar ratios, 5.22:0.5, 5.22:1, and 5.22:2.
Our goal was to optimize the ratio of the two drugs in the
dual-drug delivery platform PTX-CPT-P4C6. Of the three ratios
tested, the ratio 5.22:1 was the most cytotoxic to HT-29 and
Caco-2 cells (Figure S3, Table 2), so this ratio was used in all
subsequent experiments.

The therapeutic efficacy of this molar ratio was confirmed
in two ways. First, PTX-CPT-P4C6 formulated with this ratio
showed significantly lower IC50 at 24 h than the simple PTX-
CPT mixture prepared with that ratio (Table 3). Second, dose-
response curves showed significantly lower IC50 for PTX-CPT-
P4C6 than for PTX-CPT mixture at 2 and 48 h (Figure S4,
Table 3).

Under 48 h incubation period, cytotoxicity of CPT was weaker
in CaCo-2 cells compared to HT-29 cells with IC50s of 16.2± 2.9
and 13.1 ± 2.1µM, respectively. However, CPT synergistically
improved the cytotoxic profile of PTX against both colon
cancer cell lines. Under 48 h incubation period, CPT significantly
decreased the IC50s of PTX from 13.9 ± 2.1 and 20.8 ± 3.8µM
to 0.4 ± 0.02 and 2.1 ± 0.3µM in HT-29 and CaCo-2 cells,
respectively. The combination indices for PTX and CPT (molar
ratio of 5.22:1) within HT-29 and CaCo-2 cells were 0.15 and
0.37, respectively (Table 3).
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FIGURE 3 | Changes in different nanoparticles during 72-h storage in terms of (A) size as measured using dynamic light scattering and (B) zeta potential as measured

using electrophoretic light scattering.

Effects of Nanoparticles on Apoptosis and
Cell Cycle Distribution in vitro
The induction of apoptosis by PTX-CPT-P4C6 was confirmed
in flow cytometryic analysis (Figures 6A,C), where proportions
of apoptotic Caco-2 and HT-29 cells were much higher after
treatment with 0.3µM PTX-CPT-P4C6 nanoparticles (44.9 ±

3.44 and 56.6 ± 4.5%) than after treatment with 0.3µM PTX-
CPT (10.4 ± 1.05 and 15.1 ± 1.9%). In other words, loading the
two drugs into P4C6 nanoparticles increased their pro-apoptotic
efficacy about 4-fold in Caco-2 cells and HT-29 cells.

Treating Caco-2 cells with 0.3µM PTX-CPT-P4C6 for 48 h
led to arrest of 48.2 ± 6.24% of cells in the G2/M-phase,
compared to 30.4 ± 3.27 or 34.1 ± 2.79% of cells after treatment
with empty P4C6 nanoparticles or the same concentration of
PTX-CPT (p < 0.05; Figure 6B). Similarly, treating HT-29 cells
with 0.3µMPTX-CPT-P4C6 led to arrest of 50.4± 5.51% of cells
in G2/M-phase, compared to 33.9 ± 4.08 or 36.7 ± 3.53% with
free P4C6 nanoparticles or PTX-CPT (p < 0.05; Figure 6D).

These two sets of experiments suggest that apoptosis
induction and mitotic arrest help explain the observed ability
of micelle-encapsulated PTX and CPT to inhibit tumor
cell proliferation.

Effects of Nanoparticles on Invasion and
Migration of HT-29 Cells in vitro
To observe the effects of different formulations on the invasion of
HT-29 cells in a three-dimensional setting, the Boyden transwell
chamber assay was performed. The number of invasive cells
in the PTX-CPT-P4C6 group (64 ± 14 cells per field of view)
was significantly lower than that in the PTX-CPT group (219
± 34; Figures 7A,B). Similarly, in the wound healing assay, the
wounded area in the PTX-CPT-P4C6 group was 83.9 ± 7.2% of
the original area after 96 h, compared to 57.1± 5.4% in the PTX-
CPT group and 35.7 ± 4.2% in the empty P4C6 nanoparticles
group (Figures 7C,D).
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FIGURE 4 | Effects of pH on different nanoparticles (A) size and (B) zeta potential.

FIGURE 5 | Viability of (A) Caco-2 and (B) HT-29 cells after 24 h treatment with different concentrations of empty P4C6 nanoparticles. Viability was measured in the

MTT assay.

Effect of Nanoparticles on HT-29 Human
Colon Cancer Xenografts in vivo
The in vivo antitumor efficacy of the PTX-CPT-P4C6 was
investigated on HT-29 human breast tumor-bearing nude mice.
Animals were treated by oral gavage with PBS or different drug
formulations every 2 days, when tumor volume were measured

(Figures 8A,B). Tumor growth was significantly suppressed
by PTX-CPT and PTX-CPT-P4C6, compared to 0.9% saline

and empty P4C6 nanoparticles (Figures 8B,C). Hematoxylin-
eosin staining of tumor tissue revealed more extensive tumor

cell necrosis and larger numbers of shrunken and fragmented

nuclei in PTX-CPT-P4C6 tumors than in other tumors
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(Figure 8D). PTX-CPT-P4C6 nanoparticles caused the greatest
tumor inhibition, and tumors from these animals showed the
greatest levels of early apoptosis (based on annexin V staining)
and late apoptosis (based on PI staining; Figure 8E). Coincided
with annexin V-PI assay, results of TUNEL staining confirmed
PTX-CPT-P4C6 could cause highest level of apoptosis of HT-29
colon cancer cells among all treatment groups (Figure 8F).

Preliminary Evaluation of Nanoparticle
Toxicity
Mice were treated by oral gavage with PBS or different drug
formulations every 2 days, when body weight was also measured
(Figure 9A). No deaths or significant loss of body weight relative
to healthy controls occurred with empty P4C6 nanoparticles,
PTX-CPT, or PTX-CPT-P4C6. Aspartate aminotransferase and
blood urea nitrogen levels after all treatments were similar
to those in controls (Figures 9B,C), as was morphology of
kidney and liver tissue based on hematoxylin-eosin staining
(Figure 9D). No significant glomerular damage was observed
in kidney sections, and broken hepatic cords were not seen in
liver tissue. Negligible leukocyte migration to kidney or liver
was observed.

DISCUSSION

Functional modification of calixarenes at the upper and/or lower
rims makes it possible to derive a variety of molecules with

TABLE 2 | IC50 values of the PTX-CPT mixture prepared in different drug ratios.

Molar ratio CPT:PTX Against Caco-2 cells Against HT-29 cells

IC50 (µM) IC50 (µM)

5.22:0.5 8.5 ± 0.8 15.9 ± 1.5

5.22:1 7.2 ± 1.4 2.1 ± 0.4

5.22:2 8.2 ± 3.1 3.0 ± 1.3

Values are mean ± SD in terms of PTX concentration.

tunable physicochemical properties and selectivity for guest
molecules (Arena et al., 2000). They are also attractive for
drug delivery because they can increase the poor solubility of
many anticancer drugs, prolong the circulation of drugs by
protecting them from premature interaction with host molecules,
and improve drug penetration into the target tissue (Ngandeu
Neubi et al., 2018). The present study focused on a phosphonated
calix[4]arene (P4C6) capable of co-loading two commonly used
anticancer agents, CPT and PTX: the CPT occupies an external
bowl-shaped cavity, while PTX is solubilized between the bilayers
of liposome.

The size, size distribution and zeta potential of nanoparticles
are critical determinants of their toxicity (Shah and
Dobrovolskaia, 2018) and bio-distribution (Graham et al.,
2017). The average hydrodynamic diameters of all nanoparticles
in this study can avoid renal excretion and evade detection by
the mononuclear phagocytic system (Devarajan et al., 2010).
All formulations showed low polydispersity, suggesting mono-
disperse populations and narrow size distribution. Nanoparticles
remained stable for at least 72 h over a broad range of pH values
and multiple times dilution. These results suggest that these
drug-loaded nanoparticles can remain intact until reaching
the colon.

We formulated PTX-CPT-P4C6 nanoparticles with a
CPT:PTX mass ratio of 8.79:3.88% per 1 g of nanoparticle, which
corresponds to a molar ratio of 5.22:1. Screening a few ratios of
CPT:PTX showed 5.22:1 to bemost effective in cytotoxicity assays
in vitro. We performed these assays using Caco-2 cells, which
are heterogeneous human epithelial colorectal adenocarcinoma
cells (Schreck and Melzig, 2018) used most often as a confluent
monolayer rather than individual cells (Ellens et al., 2018);
the monolayer can, under certain conditions, form a polarized
epithelial cell monolayer (Gibaud and Attivi, 2012). Therefore
Caco-2 was used here to mimic normal colorectal epithelial
cells (Beloqui et al., 2016). The most common form of colon
cancer is adenocarcinoma (Beloqui et al., 2016; Yueh et al., 2016),
so we selected HT-29 adenocarcinoma cells as a colon cancer
model. These cells are frequently used in tumorigenicity studies

TABLE 3 | IC50 values (µM) for empty P4C6 nanoparticles, PTX- and/or CPT-P4C6 nanoparticles and the simple PTX and/or CPT mixture when the two drugs were

mixed in the molar ratio CPT:PTX = 5.22:1.

Caco-2 HT-29

Treatments 2h exposure 48h exposure 2h exposure 48h exposure

IC50 (µM) IC50 (µM) IC50 (µM) IC50 (µM)

Empty P4C6

nanoparticles

1204.0 ± 94.6 635.1 ± 58.4 806.9±61.5 187.8 ± 14.2

PTX 326.4 ± 28.6 20.8 ± 3.8 117.4 ± 13.4 13.9 ± 2.1

PTX-P4C6 126.2 ± 21 16.4 ± 0.5 79.1 ± 6.4 9.9 ± 1.4

CPT 213.5 ± 18.6 16.2 ± 2.9 140.1 ± 15.9 13.1 ± 2.1

CPT-P4C6 110.2 ± 14.6 12.7 ± 1.6 87.6 ± 6.2 10.9 ± 0.8

PTX-CPT 110.2 ± 21.5 6.2 ± 0.5 62.8 ± 8.4 1.7 ± 0.3

PTX-CPT-P4C6 25.2 ± 3.7 2.1 ± 0.3 4.6 ± 0.3 0.4 ± 0.02

CI-index (CI-value) Synergism (0.44) Synergism (0.37) Synergism (0.62) Synergism (0.15)

Data are mean ± SD.
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FIGURE 6 | Effects of empty P4C6 nanoparticles, PTX-CPT and PTX-CPT-P4C6 on (A,C) apoptosis and (B,D) cell cycle distribution in Caco-2 and HT-29 cultures.

Negative control cultures were left untreated. *p < 0.05 (Student’s t-test).

FIGURE 7 | Effects of empty P4C6 nanoparticles, PTX-CPT and PTX-CPT-P4C6 on invasion and migration of HT-29 cells. (A) HT-29 cells were treated with different

formulations in serum-free medium for 24 h in Boyden transwell chambers. Cells that reached the bottom of membranes were counted. Negative control cultures were

left untreated. Scale bar, 100µm. (B) Quantitation of the transwell assay. Each bar represents the mean ± SD of three independent observations. (C) Cells were

scratched with a pipette tip, washed twice in PBS and photographed at 0 h, then treated with empty P4C6 nanoparticles, the mixture PTX-CPT, or PTX-CPT-P4C6.

Negative control cells were left untreated. The experiment was allowed to proceed until the gap was nearly covered by migrated cells in negative control cultures

(96 h). At the end of the experiment, migration was photographed under a phase-contrast microscope, and the gap area was measured using ImageJ software. Scale

bar, 200µm. (D) Quantitation of the wound healing assay. Each bar represents the mean ± SD of three independent measurements. *p < 0.05 (Student’s t-test).
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FIGURE 8 | Anti-tumor effects of different formulations in vivo. (A) Schematic diagram showing the HT-29 xenograft model and the timing of drug administration. (B)

Tumor growth during treatment with empty P4C6 nanoparticles, PTX-CPT and PTX-CPT-P4C6. Negative control cells were treated with 0.9% saline. (C) Photographs

of excised HT-29 tumors removed on day 19. (D) Hematoxylin-eosin staining of tumor tissues removed on day 19. Magnification, ×400. Arrows indicate shrunken or

fragmented nuclei. (E) Staining of tumor tissue on day 19 to detect early apoptosis (annexin V) and late apoptosis (propidium iodide, PI). (F) Immunohistochemical

analysis of the degree of apoptosis in tumor tissues by TUNEL staining. Magnification, ×400. All results are from three independent experiments. Values are mean ±

SD. *p < 0.05 (Student’s t-test).
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FIGURE 9 | Preliminary toxicity evaluation of PTX-CPT-P4C6 in vivo. Assays were performed after 12 d of treatment. (A) Body weight during treatments. (B,C) Levels

of aspartate aminotransferase (AST) and blood urea nitrogen (BUN). (D) Hematoxylin-eosin staining of kidney and liver sections. Magnification, ×200.
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(Al-Saffar et al., 2018; Guerrero et al., 2018; Liu et al., 2018) and
can form well-differentiated adenocarcinoma consistent with
primary colon cancer in nude mice (Handali et al., 2018). We
found PTX-CPT-P4C6 nanovesicles to suppress proliferation of
HT-29 cells more than Caco-2 cells. The reasons and implications
of this require further investigation.

Calixarenes are formed by the reaction of para-substituted
phenol with formaldehyde. Calixarenes are aromatic macrocyclic
compounds, which can form host-guest complexes with different
small molecules after macrocyclic modification (Mo et al., 2015).
The host-guest complexes formed between various calixarene
derivatives and quaternary ammonium compound (such as
trimethyllysine) have been well studied (Georghiou et al., 2018;
Buldenko et al., 2019; Xu et al., 2019). Daze et al. found that
p-sulfonated calix[4]arenes can specifically bind trimethylated
lysine of different amino acids, non-methylated lysine and
trimethylated lysine (Daze et al., 2012). The binding of cationic
proteins or polypeptides with these host macrocyclic molecules
is quite common (Adhikari et al., 2014; Cinà et al., 2017). Allen’s
group found that the affinity of p-sulfonated calix[4]arenes with
H3K9Me3 was significantly higher than that of H3K9Me0 (Allen
et al., 2014).

Our lab has been engaging in research on the use of
phosphonated calix[4]arenes as carrier to improve the anti-
cancer efficacy. In previous study, we found that P4C6 had a
suitable size of cavity to accommodate cationic drug carboplatin
to form host-guest complex. Then the amphiphilic phosphonated
calix[4]arenes were obtained by properly modifying the lower
rim of phosphonated calix[4]arenes with n-alkyl groups.
The resultant drug-loaded vesicles can improve carboplatin
accumulation within the tumor site. In another project, we
loaded curcumin by P4C6 to form a core-shell structure micelle.
Compared with free curcumin, the drug-loaded micelles can
significantly reduce the number of CD44+/CD133+ cancer
stem cells in triple-negative breast cancer mice model. The
mechanism was that drug-loaded micelles can reduce the
expression of β-catenin in the nucleus. In the third study, we
found, compared to free drugs, drugs loaded P4C6 showed
stronger apoptosis induction as well as invasion and self-renewal
capacity suppression in human ovarian cancer SKOV-3 cells. It
was further found that the molecular mechanism of the above
drugs-loaded nanoparticles may be through preventing JMJD3
(epigenetic regulator) binding with H3K27me3 (suppressor
of transcription), thereby protecting the lysine trimethylation
of H3K27me3 and antagonizing the effect of JMJD3, finally
promoting the differentiation of ovarian cancer stem cells by
reducing the transcription of the oncogene HER2. Through the
above researches, we found that P4C6 loaded with different
anticancer drugs can produce synergistic effect. P4C6 seems
to be able to downregulated JMJD3 expression to modulate
the H3K27me3 epigenetic mark of the promoters of HER2
and MYCN.

CONCLUSION

The present study describes a new phosphonic acid calixarene
derivative consisting of a single amphiphilic compound, P4C6,

which can encapsulate CPT in the calixarene cavity and
PTX among the hexane tails. The optimized PTX-CPT-
P4C6 nano-formulation shows efficient drug loading, small
size, and low polydispersity. The nanoparticles were taken
up efficiently by two colon cancer cell lines and showed
greater cytotoxicity than a simple mixture of the two drugs.
This cytotoxicity was associated with apoptosis induction,
cell cycle arrest and suppression of invasion and migration.
PTX-CPT-P4C6 inhibited HT-29 adenocarcinoma cells, which
represent the most common form of colon cancer. PTX-
CPT-P4C6 showed the greatest inhibition of HT-29 tumors
in mice, with negligible side effects. Therefore, the PTX-
CPT-P4C6 nano-formulation holds promise for improving
the efficacy of PTX and CPT combination therapy against
colon cancer.
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