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ABSTRACT
Older adults are at disproportionately high risk of severe influenza-related outcomes and represent the 
main target of the annual influenza vaccination. The protective effect of seasonal influenza vaccination on 
the observed mortality indicators is controversial. In this ecological study, spatiotemporal patterns of 
pneumonia- and influenza-related mortality registered in the Italian elderly over seven (2011–2017) 
consecutive seasons were explored and the epidemiological association between the observed local 
pneumonia- and influenza-related mortality and influenza vaccination campaign features were modeled 
by using both fixed- and random-effects panel regression models. The descriptive spatiotemporal analysis 
showed a clear North–South gradient, where northern regions tended to report more pneumonia- and 
influenza-related deaths. After adjustment for potential confounders, it was found that each 1% increase 
in influenza vaccination coverage rate would be associated (P < .001) with a 1.6–1.9% decrease in 
pneumonia- and influenza-related mortality. Moreover, each 1% increase in the use of MF59®- 
adjuvanted trivalent influenza vaccine would be associated (P < .05) with a further 0.4% decrease in 
pneumonia- and influenza-related mortality. This study supports the increase in annual influenza vaccina-
tion in Italy and suggests that a higher level of use of the adjuvanted influenza vaccine in the elderly may 
be beneficial.
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Introduction

Worldwide, influenza is one of the leading infectious disease in 
terms of both incidence and mortality rates.1,2 Seasonal influenza 
vaccination represents the most effective public health interven-
tion able to reduce the burden of disease.2,3 Indeed, the World 
Health Organization’s (WHO) most recent position paper2 has 
listed several priority targets for annual influenza vaccination: 
pregnant women, children aged 6 months to 5 years, the elderly, 
subjects with specific chronic conditions, healthcare workers, 
and international travelers. Among these, the elderly is probably 
the most recognized target group; indeed, as per the European 
Center for Disease Prevention and Control (ECDC),4 all 
European Union (EU) Member States recommend seasonal 
influenza vaccination for older adults.

Influenza vaccine (IV)-induced immunogenicity and/or pro-
tection is often poor in the elderly as a result of 
immunosenescence.5 In order to circumvent this unmet need, 
alternative IV formulations have been developed. The first 
worldwide available IV specifically developed for the elderly 
was that formulated as a standard-dose egg-based subunit triva-
lent IV including MF59® (Seqirus UK Ltd.) adjuvant (adjuvanted 
trivalent influenza vaccine; aTIV).6 Italy was the first country to 
adopt aTIV in 1997,6 where it was still available during 2020/21 
influenza season. Other historically or currently commercialized 
IVs may also address immunosenescence, including (i) 
virosomal;7 (ii) intradermal8 and (iii) high-dose IVs.9

The rationale for this study was primarily driven by a gap 
in the understanding of association between influenza vacci-
nation coverage (IVC) rates and influenza-associated mortal-
ity. For instance, a previous Italian ecological study10 did not 
find any meaningful association between the IVC rate and 
influenza excess mortality over time. However, the study by 
Rizzo et al.10 did not distinguish between different types of 
available IVs at that time. Indeed, in the paper by Rizzo et al.,10 

dating back to 2006, it has been stated that “In Italy, more 
immunogenic vaccine with novel adjuvants has been intro-
duced since 1997 . . . but it is too early to evaluate their 
population impact.” On the other hand, a more recent study11 

conducted in the Province of Treviso (northeastern Italy) 
found that the risk of all-cause death was significantly lower 
(by 33–39%) in the vaccinated elderly (as compared with 
unvaccinated subjects) in three consecutive seasons 
(2014/15–2016/17). Of note, aTIV was the most frequently 
administered IV in Treviso.11

In the context of Italian fiscal federalism single regions, the 
autonomous provinces of South Tyrol and Trento (henceforth 
referred to as “regions”) are granted a certain level of freedom 
to achieve their own public health goals.12 Regarding influenza 
immunization, each year the Italian Ministry of Health issues a 
circular on the prevention and control of influenza;13 each 
region may then fully adopt the national recommendations 
or provide its own circular/recommendations.12,14
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Diversity in the adopted policies may result in both (i) the 
so-called “jeopardization”12,14 of IVC rates [up to double dif-
ference reported in the observed 2019/20 season IVC rates 
among older adults aged ≥65 years15 and (ii) different patterns 
of use for the available types of IV.12,14

The primary aim of this study was to explore spatiotemporal 
patterns of pneumonia- and influenza (P&I)-related mortality 
observed in Italian older adults aged 65 years or above. 
The second goal was to investigate the epidemiological associa-
tion between the observed local P&I mortality among subjects 
aged ≥65 years and IVC rates and IV policy patterns.

Materials and methods

Overall study design

This is a typical ecological study: we investigated officially 
registered P&I-related mortality in the elderly (defined here 
as subjects aged ≥65 years) at the level (i.e., unit) of Italian 
provinces (N = 110) and/or regions (N = 21) over seven con-
secutive post-pandemic seasons (2010/11–2016/17). In other 
words, we analyzed population groups and not single indivi-
duals. Both exploratory and analytical approaches were 
considered.

Readers interested in both strengths and limitations of the 
ecological study design are invited to read the paper by 
Morgenstern;16 moreover, the limitations specific to this 
exploratory study will be discussed later in the manuscript.

In this paper, we considered only the post-pandemic period 
(i.e., starting from season 2010/11). This choice was based on 
the fact that the pandemic 2009 A/H1N1 (A/H1N1pdm09) 
virus completely replaced the so-called seasonal A/H1N1 (A/ 
H1N1s) that circulated before 2009.17,18 Data for 2018 onwards 
were not considered since no officially reported P&I-related 
mortality estimates were available at the time of data extraction 
(as of December 2020).19,20

Data sources

Most data came from the official Italian data flows publicly 
available from the Italian Ministry of Health 15, National 
Institute of Health,18 National Institute of Statistics,19,20 and 
National Institute for Environmental Protection and 
Research.21 Data regarding quotas for different types of IV 
were provided by Seqirus S.r.l., Italy (company database of 
regional demands for individual types of IV, i.e., data on tender 
allotments). The variables considered and corresponding data 
sources are reported in Supplementary Material, Table S1.

Study outcome

The study outcome was the country-/province-/region- 
and year-specific estimate of P&I-related mortality in older 
adults aged ≥65 years as per the European Shortlist for 
Causes of Death (N = 65 causes) compatible with the three 
most recent International Classification of Diseases (ICD) ver-
sions for influenza (ICD-8: 470–474; ICD-9: 487; ICD-10: J10– 
J11) and pneumonia (ICD-8: 480–486; ICD-9: 480–486; ICD- 
10: J12–J18) codes.20,22 For this reason, we extracted the readily 

available dataset20 on the P&I mortality rate (per 10,000 inha-
bitants) until the last available year of 2017 for the whole 
country, regions, and provinces.

Spatiotemporal analysis of pneumonia- and influenza- 
related mortality

Depending on data availability,20 the spatiotemporal analysis 
could be conducted at the level of single provinces (N = 110). 
For this reason, first we visually explored the observed pro-
vince-specific P&I mortality rates separately by year. This was 
done by plotting choropleth maps.

Moran’s I global spatial autocorrelation coefficients23 were 
then computed in order to measure the overall clustering 
pattern of the observed mortality rates. The interpretation of 
Moran’s I is similar to that of Pearson’s r correlation coeffi-
cient: positive statistically significant I values indicate geo-
graphic patterns of spatial clustering, negative significant 
I estimates show clustering of dissimilar values, while non- 
significant values at α < 0.05 indicate complete spatial random-
ness. Considering that Italy has the two Islands of Sicily and 
Sardinia, for Moran’s I statistics the k nearest neighbor spatial 
weights matrix was used.24 As a “rule-of-thumb”25 we set the 
value of k as the square root of the total number of observations 
(N = 110); this means the k-value used was 10.

Providing that all and year-specific global I coefficients were 
statistically significant, we then further investigated the local 
indicators of spatial association (LISA).26 Choropleth maps 
were created to visualize the four types of clusters/outliers, 
namely hot-hot (hotspots), i.e., observations that signified pro-
vinces with a higher than average mortality rate surrounded by 
provinces with a higher than average mortality rate, while 
cold–cold (coldspots) signified provinces with a lower than 
average mortality rate surrounded by provinces with a lower 
than average mortality rate. Low–high and high–low outcomes 
represented outliers: these were provinces with low/high aver-
age mortality rates surrounded by provinces with high/low 
average mortality rates, respectively.

The spatiotemporal analysis was performed in R stats 
packages, version 2.15.2.27

Spatiotemporal analysis of pneumonia- and influenza- 
related mortality

The independent variables of interest were regional IVC rates 
and the proportion of aTIV doses to the total number of IV 
doses put into tender allotments. During the study period, IVC 
was recommended and fully reimbursed for all subjects aged 
≥65 years, people ≥6 months affected by certain health condi-
tions and some other categories. The Italian Ministry of Health 
routinely report region- and season-specific IVC rates for both 
the general population and older adults aged ≥65 years.15 Data 
on province-specific IVC rates are not publicly available. 
Therefore, the unit of this analytical part of the analysis was 
a region (N = 21). The primary predictor of interest was IVC in 
older adults aged ≥65 years. However, a higher IVC rate in 
younger age groups may exercise some protective effect on the 
elderly owing to the phenomenon of herd protection. Indeed, 
some studies underlined the important role of children and 
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adolescents in spreading influenza virus in their households28– 

30 and therefore to their grandparents. A model by Fumanelli et 
al.31 has suggested a significant social interaction between 
Italian elderly and younger individuals. For this reason and 
in order to account for the possible effects of herd protection, 
we also included a variable of IVC in subjects aged <65 years.

Another independent variable of interest was the propor-
tion of potential aTIV users to the total number of IV doses put 
into tender allotments, and the data from the Seqirus Italy 
tender department. According to the latest Italian official 
recommendations,13 aTIV may be used only for people aged 
≥65 years. Therefore, we hypothesized that the higher local use 
of aTIV may be associated with better health-related outcomes 
among the Italian elderly.

To establish an association (or lack of association) 
between the region- and year-specific P&I mortality rates in 
the elderly and predictors of interest (i.e., IVC rates and share 
of aTIV doses) panel regression analysis was undertaken. 
Briefly, the panel considered 21 spatial units (i.e., regions) 
followed over seven consecutive post-pandemic years and 
therefore consisted of 21 × 7 = 147 observations. However, 
an important assumption has to be highlighted here. P&I 
mortality data are routinely reported for the whole calendar 
year,19,20 while the IV campaign usually starts in mid- 
October/November and almost all IV doses are administered 
by the end of December32. In Italy, according to the Italian 
National Institute of Health, most laboratory-confirmed 
influenza deaths occur between January and March,32 and 
influenza-like illness (ILI) peaks were usually reached in late 
January or February (Supplementary Material, Table S2).18 

Moreover, considering the time lag of 2–6 weeks between IV 
administration and the peak of the vaccine-induced immune 
response,33 it is more likely that IV administered in autumn/ 
winter of a year t-1 will mainly exercise its effect (if any) on 
bacterial influenza-related complications (that are the most 
frequent35,36 and require some time to be developed) leading 
to death in the first months of the following year t.

Both the fixed-effects (FE) and random-effects (RE) meth-
ods were applied. The FE approach may be useful in the 
context of causal inference: while standard regression tech-
niques provide biased estimates of causal effects in case there 
are unobserved confounders, FE regression may provide 
unbiased estimates in this situation.32,34 In other words, in 
our models, region-level FEs were included to absorb unob-
served region-level heterogeneity in the observed P&I mor-
tality rates not explained by other covariates in the model.37 

Indeed, unobserved effects are typical in ecological and social 
research.38 By contrast, the RE approach assumes that 
region-specific effects are not correlated with independent 
variables.39 In any case, the Hausman’s specification test was 
applied40 to formally differentiate between FE and RE mod-
els; the null hypothesis of this test is that the RE model 
estimates are consistent and efficient.

The following socioeconomic, environmental, and virologi-
cal variables were selected as potential confounders: public 
health expenditure per capita (€), population density (inhabi-
tants per km2), average winter temperature, and the predomi-
nant influenza virus (sub)type(s). The reasons for inclusion of 
these variables are described below.

Public health expenditure per capita represents a proxy 
measure of regional welfare and is commonly used in health- 
related econometric studies.41–44 Indeed, this parameter varies 
substantially among the Italian regions20,44 and has been found 
to be a significant predictor of regional measles, mumps, and 
rubella (MMR) vaccination uptake in Italy.44

As per environmental factors, we selected two potential 
confounders, namely: population density and mean winter 
temperature regimens. The empirical idea for the former vari-
able was that a higher population density would be associated 
with a higher virus transmission.37,45 In fact, the population 
density in Italy is highly non-homogeneous.20 Second, single 
Italian regions lay in different climatological areas with highly 
different daily temperature paradigms; this fact could have 
direct implications on the influenza-related outcomes since 
the so-called “cold waves” usually interfere with the mortality 
rate.46 Moreover, Lytras et al.47 have concluded that in Greece 
the winter excess mortality rates attributable to cold tempera-
tures were substantially higher than those attributable to influ-
enza. Therefore, we proxied the cold waves in a given year and 
region as an average minimum temperature observed in the 
winter period. In our analysis, the winter period started at week 
40 of the previous year and ended at week 20 of the next year, 
as per the FluMOMO model.48

Finally, circulation patterns of influenza virus (sub)types 
(A/H1N1pdm09, A/H3N2 and B) may determine the magni-
tude of influenza-related outcomes. For instance, in Italy the 
predominance of the A/H3N2 subtype was associated with 
significantly higher excess mortality in the elderly.10 The pre-
dominance of a single virus (sub)type over other (sub)types 
was a priori set to 50% of the total national detections. This 
assumption was however, formally proved by performing 
a single-proportion z-test. Moreover, the adopted classification 
rule was compared with the previously published Italian 
studies,49,50 meeting full agreement. Otherwise [i.e., when the 
most prevalent virus (sub)type was detected in <50% cases], the 
overall virological picture was dubbed as co-circulation 
(Supplementary Table S2).

As recommended,37,51 in all panel regression models per-
formed, the continuous variables (i.e., P&I mortality rates, 
public health expenditure per capita, population density, and 
average winter temperature) that were not percentages were 
transformed using natural logarithms (loge). The regression 
coefficients are therefore interpreted as elasticities. For 
instance, the model coefficient for IVC rate should be inter-
preted as the percent change in P&I mortality rate associated 
with a 1% change in coverage.37,51

The following panel model specification was considered: 

loge PI mort 65þð Þi;t ¼ b1 IVC 65þð Þi;t

þ b2 IVC 65ð Þi;t þ b3 aTIVð Þi;t

þ b4loge PHexpð Þi;t þ b5 loge Densð Þ½ �i;t

þ b6 loge Tempð Þ½ �i;t þ b7 Virusð Þi;t

þ α ið Þ þ εi;t;

for i = 1 . . . 21 and t = 2011 . . . 2017, where “P&I_mort_65 
+” is P&I mortality rate in subjects aged ≥65 years; bs are 
regression coefficients; α is the unobserved time-invariant 
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regional effect (in FE model) or constant intercept (in RE 
model); i is a region; t is a year; ε is the error term; “IVC_65 
+” is IVC in subjects aged ≥65 years; “IVC_<65” is IVC in 
subjects aged <65 years “PHexp” is public health expenditure 
per capita; “Dens” is population density; “Temp” is average low 
winter temperature; “Virus” is a dummy variable indicating the 
predominant virus (sub)type.

Taking into account a high probability of heteroscedas-
ticity and/or autocorrelation, all models considered also 
the Arellano’s heteroscedasticity-autocorrelation (HAC) 
robust standard errors (SEs). We performed the model 
diagnostics by applying the Breusch–Godfrey test for 
panel models to detect serial correlation for the errors 
and Pesaran cross-sectional dependence (CD) and 
Breusch–Pagan Lagrange multiplier tests for CD in the 
constructed panel models.52,53

All the modeling was made in R stats packages.27

Results

Exploratory spatiotemporal analysis of pneumonia- and 
influenza-related mortality in the Italian older adults aged 
≥65 years

Over seven years (2011–2017), a total of 71,876 P&I-related deaths 
were reported in older adults aged ≥65 years. There was some 
variability in terms of P&I-related mortality rates observed 
between years. The highest rates were observed in years 2017 
(10.05 per 10,000) and 2015 (8.78 per 10,000). In the remaining 
years the mortality rate was lower and 6.7 < 8 per 10,000 (Figure 1).

We then explored choropleth charts by mapping province- 
specific P&I-related death rates. A clear north–south gradient 
(especially in 2011, 2015, and 2017) was evident: compared 
with central and southern provinces, those located in the 
Northern Italy displayed higher P&I mortality rates 
(Figure 1). As shown by Moran’s Is, a significant (P < .001) 
clustered pattern of the observed mortality rates took place in 
all years with the I–value ranging from 0.28 to 0.36.

The LISA analysis (Supplementary Material, Figure S1) con-
firmed the north-south gradient: most hotspots and coldspots 
were located among northern and southern provinces, respec-
tively. The few outliers detected (mainly cold–hot) were located in 
Sicily.

Association between pneumonia- and influenza-related 
mortality and influenza vaccination patterns

The total panel was composed of 147 observations and was 
balanced (i.e., no single space-time observations were missing). 
Table 1 reports principal descriptive statistics of the continuous 

variables of interest. During the study period, an average IVC in 
the elderly was 55.0%. Two significant drops in IVC were 
observed: the first occurred in 2012 (from 62.7% to 54.2%), 
the second in 2014 (from 55.4% to 48.6%). During the study 
period, only one region reached the recommended target of 75% 
(Umbria in the 2010/11 season). The proportion of aTIV use was 
highly non-homogeneous with a range of 0–76% (Table 1).

For what concerns the seasonal dummy variables, seasons 
2011/12, 2013/14 and 2016/17 were dominated by A/H3N2, 
season 2010/11 by A/H1N1pdm09, seasons 2012/13 and 2015/ 
16 by B type, while the remaining 2014/15 season was ascribed 
by a co-circulation of A/H1N1pdm09 and A/H3N2 
(Supplementary Table S2).

Results of FE and RE panel regression models are reported 
in Table 2. In the FE model, both IVC rate in the elderly, 
proportion of aTIV use, and average winter temperature were 
negatively associated with the observed P&I mortality rate in 
the Italian elderly. In particular, both FE and RE models pre-
dicted that each 1% increase in IVC rate in the elderly would be 
associated (P < .001) with a 1.6–1.9% decrease in P&I mortality. 
Analogously, each 1% increase in aTIV use would be associated 
(P < .05) with a 0.4% decrease in P&I mortality. By contrast, the 
co-circulation of type A virus subtypes was a significant posi-
tive predictor. No statistically significant association was 
observed for other independent variables. The output of the 
RE model was similar to that of the FE model. However, the 
Hausman’s test suggested (P < .001) that the FE model should 
be retained. The model diagnostics justified the use of both 
HAC robust standard errors (Table 2).

Discussion

This study confirms that annual influenza vaccination in the 
elderly reduces overall P&I mortality rates and therefore that 
increased immunization rates are desirable. From the ecological 
and policy-making perspectives this study has also confirmed the 
usefulness of aTIV in preventing P&I-related mortality in the 
elderly Italian population. This is in line with a recently proposed 
concept of the appropriate use of IVs in Italy.54

The protective effect of IV on (excess) mortality is still con-
troversial. For instance, Rizzo et al.10 and Simonsen et al.55 have 
not documented any meaningful temporal association between 
IVC rate and winter excess mortality in Italy and the United 
States, respectively. By contrast, available meta-analyses of 
observational studies56,57 suggest a significant reduction in mor-
tality among vaccinated individuals. Contrary to the previous 
Italian time-trend study by Rizzo et al.,10 we were able to 
demonstrate a protective effect of IVs on P&I mortality. The 
reasons for this discrepancy are likely to be multiple. First, 
two different and non-overlapping time periods with both 

Table 1. Summary statistics of the continuous independent variables considered.

Description Mean SD Median Min Max Ref

IVC in subjects aged ≥65 years, % 54.3 8.2 54.2 33.9 75.2 15

IVC in subjects aged <65 years, % 4.9 2.2 4.4 1.6 14.5 15,20

aTIV regional allotments to total vaccine doses, % 28.3 18.0 28.6 0 76.3 Seqirus data
Public health expenditure per capita, € 1,885 148 1,854 1,652 2,283 20

Population density, inhabitants per km2 178.0 110.5 162.7 38.8 429.1 20

Average low winter temperature, °C 6.9 2.7 6.8 1.0 12.9 21

aTIV: MF59®-adjuvanted trivalent influenza vaccine; IVC: influenza vaccination coverage.
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different circulating viruses and available IVs were assessed. 
Second, two different proxy outcomes to quantify influenza- 
related mortality were used. Third, in the present study both 
time and space were incorporated in the analysis; this may 
provide additional benefits in countries like Italy with its 
“jeopardized” pattern of IVCs.58

Our second main finding was that regions using a higher 
proportion of aTIV showed significantly lower P&I mortality in 
the elderly independent of IVC, virus circulation pattern, and 
other potential confounders. In the elderly population aTIV has 
systematically been shown to be both more immunogenic59 and 
effective60 than standard-dose non-adjuvanted IVs. In particular, 

Figure 1. Choropleth maps of pneumonia- and influenza-related mortality rates (per 10,000) in older adults aged ≥65 years, by year. *Data from four provinces of 
Sardinia Region (Olbia-Tempio, Ogliastra, Medio-Campidano, Carbonia-Iglesias) were not available for year 2017.
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meta-analysis by Nicolay et al.59 has shown that the use of aTIV 
was associated with significantly higher seroconversion rates and 
geometric mean titers against both vaccine antigen strains and 
heterologous strains, independently from the (sub)type analyzed. 
Analogously, the systematic review by Domnich et al.60 concluded 
that the available observational studies had usually displayed 
a greater effectiveness of aTIV against various influenza-related 
outcomes, as compared with non-adjuvanted counterparts. In this 
regard the ecological study design may confirm findings coming 
from primary experimental or observational research and may 
therefore be useful in the decision-making process.

The main strength of this study lies in the methodology 
adopted. While a limited number of time-space observations 
does not allow the model to be adjusted for “anything we want 
to” as well as the fact that some potentially useful data may be not 
available, the FE panel models provide unbiased estimates 
in situations when unobserved confounders are present (as in 
the case of this study).38

Apart from the well-known general limitations of ecolo-
gical studies (ecological fallacy in primis),16 specific limita-
tions apply to this study that must be considered. First, 
owing to data availability, the final regression models could 
be performed at the regional level only. A more space- 
detailed (e.g., provincial or local health unit level) evalua-
tion is warranted. Second, the data on market share of 
single IVs come from regional tender allotments and there-
fore may not exactly correspond to effective IV administra-
tion. However, we believe that this limitation had a limited 
impact on the results since it is unlikely that the wastage/ 
non-utilization rate differs among single IVs. Third, 
although we have no reason to believe that the automatic 
coding of causes of death may differ between regions, we 
could not completely rule out the between-region differ-
ences in reporting quality. However, this limitation may 
have only a small impact on the study results since the 
Italian National Institute of Statistics performs quality 
checks on a regular basis. Moreover, the FE panel model 
adopted may absorb this eventual heterogeneity.

To conclude, our analysis supports the increase in annual 
influenza vaccination in Italy and suggests that a higher IV 
uptake in the Italian elderly population would be beneficial. 
The use of aTIV in older adults is advised to reduce the burden 
of seasonal influenza disease.
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Proportion of aTIV −0.004 0.001 (0.013)* 0.001 (0.003)** −0.004 0.001 (0.014)* 0.001 (0.006)**
Public health expenditure per capita (€ 1.000) −0.714 0.656 (0.28) 0.869 (0.41) 0.287 0.574 (0.62) 0.906 (0.75)
Population density −2.215 1.592 (0.17) 1.940 (0.26) 0.145 0.103 (0.16) 0.109 (0.19)
Average low winter temperature −0.299 0.097 (0.003**) 0.072 (<0.001***) −0.341 0.084 (<0.001***) 0.071 (<0.001***)
Predominance of A/H1N1pdm Ref Ref
Predominance of A/H3N2 0.036 0.043 (0.40) 0.029 (0.21) 0.053 0.045 (0.24) 0.028 (0.062∙)
Predominance of B −0.059 0.055 (0.29) 0.040 (0.14) −0.033 0.057 (0.56) 0.039 (0.40)
Co-circulation A/H1N1pdm09 and A/H3N2 0.108 0.068 (0.11) 0.049 (0.030*) 0.153 0.071 (0.033*) 0.047 (0.001**)
R2, % 41.6 38.4
Hausman test, P <0.001***
Breusch-Pagan test, P <0.001*** <0.001***
Pesaran test, P <0.001*** <0.001***
Breusch-Godfrey/Wooldridge test, P <0.001*** <0.001***

P< .10; *P< .05; **P< 0.01; ***P< .001; aTIV: MF59-adjuvanted trivalent influenza vaccine; HAC SE: heteroscedasticity and autocorrelation robust standard errors; IVC: 
influenza vaccination coverage.
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