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Abstract
Many analytical approaches to single-case data assume either linear effects 
(regression-based methods) or instant effects (mean-based methods). 
Neither assumption is realistic; therefore, these approaches’ assumptions 
are often violated. In this article, we propose modeling curvilinear effects to 
appropriately parametrize the characteristics of singe-case data. Specifically, 
we introduce the generalized logistic function as adequate function for this 
situation. The merits of the proposed procedure are demonstrated using 
data previously used in single case research that represent typical single 
case data. We provide the function with auxiliary graphical options to 
demonstrate the model parameters. The function is freely available in the 
R package “userfriendlyscience.” The proposed procedure is a new way to 
analyze single case data, which may provide applied single case researchers 
with a new tool to better understand their data and avoid applying methods 
with violated assumptions.
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Single case designs (SCDs) are increasingly recognized as important tools in 
behavior modification research and other fields, enabling researchers to 
model changes in psychological or behavioral variables over time (Franklin, 
Allison, & Gorman, 2014). Common approaches to analysis of SCDs are 
based on comparing means before and after an intervention or modeling the 
slope of a change using regression-based techniques (Manolov & Moeyaert, 
2017a). These techniques have the advantage that they are familiar to many 
researchers and are readily available in statistical packages. However, the 
models underlying these most commonly employed analysis techniques have 
assumptions that are often violated. Specifically, an intervention effect on a 
psychological construct typically manifests neither as a discontinuous shift 
from one value to another (the model underlying comparison of means), nor 
a linear unbounded change over time (the model underlying linear regres-
sion). Instead, intervention effects often reflect a shift in a psychological con-
struct where both the initial and the final values are more or less stable over 
time. Accurate modeling of this shift provides more information about treat-
ment effects than comparison of means or estimating the slope of a change. 
In this article, we introduce a technique for such modeling as well as freely 
available user friendly functions implemented in R (R Core Team, 2018). We 
illustrate this technique through the use of two data sets and provide a brief 
tutorial to make these techniques widely accessible.

SCDs are important because they provide a means to determine the effec-
tiveness of interventions at an individual level (Barlow, Nock, & Hersen, 
2009). Much methodological research has been devoted to effect size mea-
sures in SCD because an accurate effect size supports the development of 
evidence-based interventions (Parker et al., 2005; Parker & Hagan-Burke, 
2007; Parker, Vannest, & Davis, 2011). An effect size can be considered 
accurate if it provides a reliable indication of, for instance, the improvement 
of a patient after or during treatment. The type of effect size is closely related 
to what type of analysis of SCDs is chosen (Lenz, 2015; Vannest & Ninci, 
2015). Two basic classes of analyses can be distinguished: first parametric 
regression-based methods, including multilevel analysis (Baek et al., 2014), 
and second nonparametric methods. A recent overview of analysis techniques 
for SCD is given by Heyvaert and Onghena (2014).

Comparison of means before and after an intervention represent the most 
straightforward analysis, but the underlying model holds that a change mani-
fests as an instantaneous shift from one stable value to another, which is often 
not realistic. In addition, this analysis cannot infer from the data when such a 
shift may occur: The user must specify which data points to aggregate in each 
mean. Thus, although this approach’s familiarity may partly explain its prev-
alence, this analysis’ assumption of instantaneous change from one otherwise 
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stable value to another is rarely realistic, and it yields little information about 
the treatment.

More advanced regression-based approaches for analyzing SCDs usually 
(but not necessarily) consider a linear model, and, therefore, can accommo-
date incremental change, no longer imposing an instantaneous shift of the 
criterion from one value to another. For example, in a pre–post design, the 
piecewise regression (PWR) model (Center, Skiba, & Casey, 1985; Huitema 
& McKean, 2000) can be used to model a linear trend separately for two 
phases: one before the intervention and one during or after the intervention. 
This model then compares the intercepts and slopes between both phases of 
the design, and intervention effects are derived from the differences in slopes 
and intercepts. Although many more sophisticated PWR models exist, for 
example, piecewise splines (e.g., Friedman, 1991), these more complex 
methods remain relatively uncommon, perhaps, ironically, because their 
sophistication renders them less accessible to many researchers. The com-
monly used two-phase method suffers from the problem that it assumes that 
the change manifests in a linear fashion: the slope only changes once and then 
remains the same. This is unrealistic for two reasons.

First, in many situations, for instance, when the effects of a therapy are 
monitored, the criterion is measured by some sort of questionnaire or other 
operationalization that has a limited range. The observed or measured 
improvement of clients in a therapeutic setting is, therefore, artificially con-
strained by the scale of the instrument. A 7-point Likert-type scale is an 
example of such an instrument. If clients rate how they feel with a maximum 
score of seven, there is no further room for improvement. The score of seven 
in this example constitutes a ceiling in the therapy effect. Likewise, such an 
instrument has a floor, which is the minimum value of the scale. A straight 
line would break through the ceiling (or floor, when the criterion decreases 
over time), unless the therapy has no effect.

Second, treatments and interventions in the clinical and health psychology 
practice are often protocolled, and as a consequence, have a natural limit as to 
their effectiveness. This is the case because they are designed based on knowl-
edge of the behavior, cognitions, or affective associations that are targeted. If 
implemented properly, they will affect the areas of human psychology for 
which they were designed, thereby improving the target behavior or condition. 
However, no psychological theory or combination of theories explain behav-
ior or psychopathology completely. Therefore, evidence- and theory-based 
interventions and treatments are necessarily limited in terms of the effect they 
can have: at most, they can have the maximum achievable effect in all areas 
they target, and they do not target the whole of human psychology. This char-
acteristic manifests as a constraint for treatment effectiveness. For example, 
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an exposure therapy treatment for an anxiety disorder based on inhibitory 
learning (Craske, Treanor, Conway, Zbozinek, & Vervliet, 2014) cannot be 
expected to address dysfunctional self-regulation patterns that may have 
emerged over the course of the anxiety disorder. Theory-based treatment, 
being based on theory, and theory by definition dealing only with a bounded 
aspect of reality, necessarily is constrained in its maximum effectiveness. 
Such a constraint on effectiveness means that the association between time in 
treatment and treatment effectiveness is unlikely to be linear: change is likely 
to slow as treatment approaches its maximum possible effect.

Thus, treatment effects realistically manifest as a shift in the targeted 
construct(s) from a more or less stable level to a new more or less stable level. 
This shift likely decelerates as the treatment reaches its maximum possible 
effect. This underlying model is neither accurately captured by comparison of 
means, nor by a two-phase PWR model. Using more sophisticated spline 
regression models can address this, but these suffer from two disadvantages. 
First, they are often not accessible to researchers without more advanced sta-
tistical training (which may partly explain the prevalence of the mean com-
parison and two-phase PWR models despite their relative inadequacy). 
Second, they are relatively unparsimonious and require estimating a large 
number of parameters compared with the small number of data points often 
available in SCD data sets.

In this article, we present a technique that addresses both these points: it is 
freely available and designed to be easily accessible and usable for a wide 
variety of researchers and potentially practitioners, and it estimates the same 
number of parameters as a two-phase PWR model. Specifically, this model is 
based on an optimization function applied to a generalized logistic model. 
This enables the estimation of effects in a pre–post SCD design when the 
criterion is constrained (e.g., has a floor or a ceiling). We will first present an 
example of the model and show its mathematical characteristics. Then we 
present two clinical examples in which we compare the proposed model with 
the PWR model. Finally, we discuss some possibilities for future research.

The Problem With Ceilings

This distribution shown in Figure 1 illustrates a likely model for an interven-
tion process, with the x axis representing time (e.g., in days) and the y axis an 
outcome (where higher values are more desirable). The first five measure-
ments were taken before the intervention. Although five points are too few to 
obtain reasonably tight confidence intervals (CIs), this small number is often 
seen in practice. The values show variability around the fitted line, which is 
essentially a plateau. Once the intervention commences, however, each 
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session has (on average) some effect to improve the outcome. In this ideal 
situation, once all targeted areas have been improved, no additional effects 
can be expected: therefore, after roughly 20 days, the intervention no longer 
has any effect and another plateau is reached.

A simple model assuming a linear relationship seems to predict these data 
rather well, see Figure 2. The deviance (sum of the squared residuals) of the 
linear model is Dlm = 34.3, with R2 = .80. This is partly due to the fact that 
the pre-intervention and stability phases are rather short in this example.

However, the residuals from the “straight-line” model seem to show a 
cyclic or auto-correlated pattern, as Figure 3 clearly shows. One of the 
assumptions for unbiased parameter in linear regression estimates is homoge-
neity of the residuals and in this example this assumption is violated. This is 
an indication that the “straight-line”model is not the correct model to describe 
these data.

Despite the high squared multiple correlation, the line misses some impor-
tant information, in particular the strong increase in scores somewhere 

Figure 1. Example with generated data from generalized logistic model for t = 6 
to 30 (B = .4, x0 = 10, v = 1).
Note. Random data generated for first five and last five points, normally distributed as 
respectively, N (1.5, 0.5) and N (6.5, 0.2).
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between the 15th and 20th point. It is good practice to test the model assump-
tions. When these assumptions are violated, another model should be fitted to 
the data.

Consequences for Tests of the Intervention Effect

To test the effect of the intervention, a naive approach is to compare the two 
means before and after (or during) the intervention. The effect size of the 
intervention in this approach is Cohen’s (1992) d or simply the difference 
between the two means divided by the pooled standard deviation (Rosenthal, 
1978). In this example d = 1.80, with 95% CI = [0.8, 2.8], a large effect, 
which corresponds with the visual inspection of the data.

However, claiming an intervention effect because the means in both 
phases are different is not correct (Huitema & McKean, 2007). When there 
appears to be a trend in the data (e.g., scores increase over time, independent 
of the intervention) simply comparing the means of the outcomes in the two 
phases may lead to wrong conclusions (Center et al., 1985). The trend, instead 
of an intervention effect, may be responsible for the different means in the 

Figure 2. Example with generated data from generalized logistic model with linear 
fit added (b0 = 1.07; b1 = 0.17; R2 = .80).
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two phases. Therefore, it is important to incorporate a trend effect in a 
research model for SCD data.

To adequately model such trends, a PWR model (Center et al., 1985; 
Huitema & McKean, 2000) can be used. PWR models two linear trends, sep-
arately for both phases. That is, the intercepts and slopes of two regression 
lines are compared before and after the intervention. See Figure 4 for an 
illustration. This model is given by

 y e   = + + + − +( )b b D b t b D t k0 1 2 3 ,  (1)

where y is a vector of length n, n is the total number of measurements, e is a 
vector with random independent error, D is a dummy which distinguishes the 
intervention phase (D = 1) from the pre-intervention (“control”) phase  
(D = 0), and t is the variable representing time. The index t is measured in 
relevant time units (e.g., day or week number). Variable k indicates the final 
measurement in the pre-intervention phase and should be chosen such that 
the values (t–k) start with zero in the intervention phase. If t is simply taken 
as the observation rank number, the observations are assumed to be measured 
at equal time intervals and k represents the number of measurements in Phase 
A (nA), and t runs from 0 to (n–1).

Figure 3. Residuals from linear model of example data.
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In the PWR model, b0 is the score at T = 0 (1.8 in this example), b1 can be 
interpreted as the change in level between Phase A and B, not confounded 
with possible trend effects. This effect, 0.58 with 95% CI = [–1.6, 2.7], is 
represented by the (short) green line; it is the difference between the pre-
dicted scores of both regression lines at the first measurement of the second 
phase. The trend in the baseline Phase A is captured by b2 (–0.06 with 95%  
CI = [–0.7, 0.6]) and the change in trend from Phase A to Phase B by b3 (0.24 
with 95% CI = [–0.4, 0.9]). In this example, the parameter of interest is b3, 
the change in slope. The postintervention line has a slope of about .18. The 
very large CIs around b1, b2, and b3 are due to the relatively high heterogene-
ity when estimating the regression intercept and slope in Phase A, illustrated 
by the wide purple zone in Figure 4. As there are only five data points, high 
levels of heterogeneity can be expected. This shows the dangers of having too 
few baseline points. The deviance of this piecewise model is Dpw = 33.7, 
which is slightly better than the linear model.

When only a level effect is present in the data, as assumed by the mean 
comparison approach and shown in another example in Figure 5, the b1 (4.18) 

Figure 4. Piecewise regression on example data with trend effect.
Note. The blue line indicates (the start of) the intervention. The green line represents the 
level effect.
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parameter would be of primary interest. The change from the slope in the pre-
intervention phase (b2 = −0.04) to the flat line in the postintervention phase 
is as expected 0.05 (b3). Cohen’s d is 7.9 with 95% CI = [5.2, 10.5] in this 
example (note that in these simulated examples, we generated exaggerated 
effects to clearly illustrate the patterns in the data).

For this PWR method, the following effect size is defined (Parker & 
Brossart, 2003):

 ES   PWR = − −( ) ( )R R Rm
2

0
2

0
21/ ,  (2)

Where R m
2  represents the squared multiple correlation coefficient of the 

PWR model and R20 , the squared multiple correlation coefficient of a model 
with intercept and trend parameters only. This latter “null” model ignores the 
phase differences, so the resulting effect size can be viewed as the explained 
variance in the dependent variable unaccounted for by the null model. Parker 
and Brossart (2003) warned that classical guidelines concerning the strength 
of effect sizes are not valid for new analytic techniques like the ones that are 

Figure 5. Piecewise regression on example data with instantaneous phase effect.
Note. The blue line indicates (the start of) the intervention. The green line represents the 
level effect.
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suggested for SCD. This means that effect sizes are primarily useful for com-
parison between studies with similar designs and for evidence 
accumulation.

In many situations, it is not only important to know that there exists an 
effect and how strong it is, but also at what point in time the improvement due 
to the intervention started, how fast the change occurred, and when the 
improvement stabilized. For such questions, it is better to fit a curve to the 
data, which has the form of a sigmoid function, because it reflects the empiri-
cal process more accurately and allows for more flexibility.

The Generalized Logistic Model

A sigmoid function can be defined in many ways. Here we choose the gener-
alized logistic (GL) function, which is defined as follows:

 
y t A

A A

e

B
T B

B t t v

( ) = +
−( )

+( )− −( )1 0

1
.
 (3)

This model has the advantage that it is parametrized relatively straightfor-
wardly: the analysis estimates the initial plateau and the postintervention pla-
teau as well as when the change starts and stops. Specifically, the variable y(t) 
is the outcome at moment t (where t is either a valid time measurement, for 
example, in seconds or days since the first measurement, or a rank, such as  
t = 1, . . ., n). The parameters AB and AT are the asymptotes that indicate, 
respectively, the minimum (floor) and maximum (ceiling) of the curve. The 
parameter B is the growth rate, indicating how steep the curve is. The param-
eter v indicates near which asymptote the maximum growth occurs and t0 (the 
inflection point) corresponds to the time point at which the curve is at its 
midpoint (when v = 1). For the parameter values: AB = 0, AT = 1, B = 1,  
v = 1, and t0 = 0, this function simplifies to the well-known logistic function.

The generalized logistic function was fitted on the example data (Figure 
6) with the R function nlsLM() from the package minpack.lm (Elzhov, 
Mullen, Spiess, & Bolker, 2016). The resulting curve fitted the data well:  
R2 = .85 and the deviance Dgl = 26.3, which indicates a better fit to the data 
compared with the simple linear regression and PWR models. The parame-
ters obtained from this analysis were t0 = 17.0, B = 0.20, AB = 1.2, AT = 7.0 
(and v was fixed to 1). From this analysis, we learn that the process starts at 
1.2 and ends at 7.0.

At about measurement 17 (12 measurements after the intervention started), 
the rate of increase in scores is largest. The growth rate is 0.2.
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A general effect size could be defined in line with Cohen’s d as follows:

 ES = - / SDc T BA A y( ) ( ) ,  (4)

where SD(y) is the SD of y from a particular subject. Instead of the means 
in both phases, the estimated floor and ceiling are used in this formula. For 
this example, ESc = 2.75. Alternatively, the theoretical or empirical range of 
the scale of the measurement instrument could be used in the denominator as

 ES = - / range .r T BA A y( ) ( )  (5)

This effect size indicates the proportion of the scale that is improved 
according to the floor and ceiling of the fit function: in this case, ESr = .96. 
The growth rate parameter can also be viewed as measure of effect size. An 
example of six different growth rates is shown in Figure 7. It does not indi-
cate how large an effect is, but how fast the effect is reached. From a practical 
perspective, it is conceivable that a smaller effect (as measured by ESc or ESr) 
that is reached relatively quickly is preferable over a larger effect that takes a 
long time to be achieved.

Figure 6. Generalized logistic function fitted to the example data.
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The function genlog() has been built around the optimizing function 
nlsLM() to run the GL model with sensible starting values and minimum and 
maximum constraints for the parameters (see the appendix or the Open 
Science Framework repository at https://osf.io/8gcjz/ for a small tutorial, 
where function piecewiseRegr() is also explained). Sensible starting values 
and constraints are necessary to avoid convergence problems of the algo-
rithm. The genlog() function also contains the option to plot the result (e.g., 
Figure 6) using the ggplot2 package (Wickham, 2009), and it is implemented 
in the userfriendlyscience package (Peters, 2018).

The AT is constrained around the maximum value of the scores of the 
dependent variable: [max(y)-3, max(y)], AB is constrained around the mini-
mum value of the scores: [min(y), min(y) + 3]. The growth parameter is 
constrained between −2 and +2. Finally, the inflection point (t0) is con-
strained between the last-but-two baseline measurement and the last-but-five 
measurement.

Default starting values for the parameters are for t0 = nA + 4, for AB = 
min(y), for AT = max(y), and for B = 0. All of the constraints and starting 
values can easily be changed if the data require other values.

Figure 7. Examples of growth rates for fixed v = 1, x0 = 10, bottom = 1 and 
ceiling = 7.
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Empirical Examples

Example 1: Singh Data

In their extensive review paper about SCD and methodologies to analyze 
them, Manolov and Moeyaert (2017a) analyzed a data set from Singh et al. 
(2007), see Figure 8. In this article, we will also use these data to illustrate the 
GL model and compare the results with those presented in the Manolov and 
Moeyaert paper. The data were obtained from three individuals measuring 
their verbal and physical aggression before and after an intervention, which 
consisted of mindfulness training for controlling aggressive behavior. The 
individuals were diagnosed with several mental disorders such as depression, 
schizoaffective disorder, borderline personality, and antisocial personality. 
These data are considered representative for single case data in the literature 
(Shadish & Sullivan, 2011).

In Table 1, the results are presented of the three effect size statistics and 
the deviance obtained from the GL analyses and these are compared with the 
effect size measures of the PWR analysis and Cohen’s d (see also Manolov & 
Moeyaert, 2017b). Cohen’s d only compares the level effect between the two 
phases, PWR compares both level and linear trend, and GL fits a curved 
effect.

The question we want to answer in this example is whether the most 
important characteristics in Figure 9 are captured by the fit measures. Does 

Table 1. Comparison of Fit Measures and Effect Sizes Between GL, PWR, and 
Cohen’s d.

Level GL

R2

PWR

 
Cohen’s 

d R2 D ESc ESr D ESPWR

Physical aggression
 Jason 3.53 .92 2.4 2.76 0.99 .81 6.0 .42
 Michael 2.53 .85 3.3 2.66 1.00 .70 6.4 .19
 Tim 1.29 .40 23.4 2.94 1.00 .57 16.8 .26
Verbal aggression
 Jason 3.38 .85 44.1 3.20 1.00 .91 24.8 .52
 Michael 2.14 .67 20.3 3.42 0.93 .61 24.1 .25
 Tim 0.87 .20 75.4 3.77 1.00 .31 65.4 .11

Note. GL = generalized logistic regression model; PWR = piecewise regression model;  
D = deviance.
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Figure 8. Representation of the six data sets obtained from Singh et al. (2007).
Note. The vertical gray line distinguishes the pre- and postintervention phase.

Figure 9. Data from Singh et al. (2007) analyzed with the GL model.
Note. The vertical blue line distinguishes the pre- and postintervention phase. The vertical 
purple line indicated the inflection point (t0) and the yellow horizontal lines indicate the floor 
and ceiling values. GL = generalized logistic regression model.
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the information obtained from fitting the GL model provide us with another 
kind of insight compared with the PWR or Cohen’s d. The answer for this 
question, we look at the fit values and effect sizes (Table 1) and to the param-
eter estimates (Table 2) of both analysis techniques.

From visual inspection, we learn that Jason has made the biggest improve-
ment, both with respect to verbal and physical aggression. However, this 
effect is based on only three measurements in the baseline phase. First we 
notice that the R2 (Table 1) indicates that the GL model can very well sum-
marize Jason’s data: it is even larger than the large R2 of the PWR model. 
Despite the low number of data points in the first phase, the effect in Jason’s 
data is well captured by the growth rate, see Table 2. Aggressive behavior 
improves (i.e., decreases) most quickly shortly after the intervention com-
mences, as indicated by the inflection point parameter. This is supported by 
the visual inspection, in particular for physical aggression.

Both Tim’s aggression behaviors are fitted less well than the other sub-
jects’ behaviors. This is true for GL and PWR, but GL fits slightly worse than 
PWR as can be seen from the R2 and the deviances in Table 1. PWR shows 
rather large trend and level ES for Tim, contrary to GL that indicates that the 
growth rate is much less than that of the other persons. In all cases, the floor 
and ceilings parameters are in line with what should be expected when we 
visually inspect the data.

ESc is difficult to interpret: there seems no obvious relation with the visual 
characteristics. The GL model shows only small differences between the 
effect sizes of the three subjects, contrary to Cohen’s d and the PWR model. 
Especially the effect sizes for Tim are small according to PWR and Cohen’s 

Table 2. Comparison of the Model Parameters Between GL and PWR Model.

GL PWR

 IP Growth rate Level change Trend change

Physical aggression
 Jason 4.4 −1.24 −2.09 −0.14
 Michael 5.3 −0.73 −0.50 +0.19
 Tim 5.8 −0.18 −1.85 −0.59
Verbal aggression
 Jason 5.6 −0.34 −7.15 −1.62
 Michael 3.1 −0.47 +0.27 +0.87
 Tim 5.0 −0.09 −2.20 −0.69

Note. GL = generalized logistic regression model; PWR = piecewise regression model; IP = 
inflection point.
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d, but the GL model finds an effect size that appears even somewhat larger 
than for the other two subjects.

The ESr for physical aggression is equal for Jason and Tim, which argu-
ably makes sense when we look at the data. However, PWR indicates that the 
effect for Jason is much larger than for Tim. The difference can be explained 
by measurements 6 to 8 which are rather high and are in the postintervention 
phase. For PWR, this decreases the effect size, whereas for GL this merely 
moves the inflection point further away from the phase shift. This differential 
influence on the analysis outcome is important to take into consideration 
when deciding which approach to use.

Example: Sex Therapy Data

The data for this example were obtained from a study about the effectiveness 
of sex therapy (van Lankveld, Leusink, & Peters, 2017). The data are from a 
single person who provided scores on several variables at 38 time points dur-
ing a year. The measurement points were not equally spaced in time. During 
the baseline period, a measurement was obtained every few days, after which 
the intermeasurement intervals were gradually increased to up to a month at 
the end of the study. Because dates were available for each measurement, it 
was possible to take these differential intervals into account when modeling 
the treatment effects.

In this example, we will show three of the eight variables that were mea-
sured in this study, specifically self-esteem, intimacy toward the partner and 
experience of masturbation. The GL and PWR model were used to analyze 
these variables. The relevant output of the GL analysis of the three variables 
is presented in Table 3.

For the variable self-esteem, the deviance compared with the PWR is 
slightly better (Dpw = 18.6), while the R2 is slightly smaller ( R pw

2  = .28). 
For intimacy, the deviance and R2 are very similar to those of the PWR solu-
tion (3.3 and 0.32, respectively). For experience of masturbation the deviance 

Table 3. Result of the Analyses of the Sex Therapy Data by the GL Model.

D R2 ESc ESr

Growth 
rate IP Base Top

Self-esteem 19.51 .25 2.82 0.39 0.02 2.5 2.5 4.9
Intimacy 3.22 .34 2.26 0.14 0.14 4.6 4.6 5.5
Experience masturbation 2.10 .15 0.74 0.05 2.00 5 5.0 5.3

Note. GL = generalized logistic regression model; D = deviance; IP = inflection point.
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and R2 are somewhat worse compared to the PWR solution (0.9 and 0.64 
respectively). We may conclude that PWR en GL fit the data equally well.

The therapy effect size for self-esteem is larger than for the other two 
variables. Figure 10 demonstrates the results graphically. We zoomed in on 
the small effects for intimacy and masturbation experience (note the small 
range on both y axes) to illustrate the sigmoid curve. Although the effect is 

Figure 10. Analyses of self-esteem, intimacy, and experience of masturbation in 
sex therapy study.
Note. Left side presents the PWR and the right side presents the GL model. GL = generalized 
logistic regression model; PWR = piecewise regression model.
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small, the GL suggests that an effect takes place immediately at the start of 
the therapy. After the initial improvement the function flattens and during the 
rest of the therapy period no further improvements are made.

For self-esteem, the GL model does not appear to be appropriate, as the 
fitted curve is almost a straight line. The PWR model seems more appropriate 
here although the fit values are also quite low.

In analyzing these data, we found that changing the start and boundary 
values may influence the outcomes. A small change in start values may result 
in a different curve. This implies that the optimization process for fitting the 
GL suffers from local minima. To explore the influence of local minima one 
should run a sensitivity analysis. This can be done by simply setting different 
start values and then inspect the fit and effect sizes. The analysis yielding the 
largest fit with the data should then be taken as the preferred one. In the appen-
dix, we provide visual tools to inspect how the default and tweaked values for 
the start values of the parameters influence the resulting estimates.

Discussion

This article discusses a new method to analyze experimental single case data 
based on a generalized logistic model. The underlying assumption of this 
method is that intervention effects represent the shift of an individual’s scores 
from one plateau to another, and that the individual’s scores are limited by 
floors and ceilings, which are caused by the measurement instrument and by 
natural limits of the process under study. This implies that the linear models 
to estimate the intervention effect are at best suboptimal because their 
assumptions are violated, and, relatedly, they fit the data poorly. The general-
ized logistic model seems better equipped to deal with these floor and ceiling 
aspects of the measurement instruments. Another new aspect in this model is 
the estimation of the onset and the end of the intervention effects.

To test the proposed method we built the R function genlog around a gen-
eral existing optimizing function, with this new function providing sensible 
default starting values and constraints. Running the genlog function yields 
parameter estimates and also provides visualization of the data and the fitted 
function. Together with the function we proposed two simple effect size mea-
sures derived from Cohen’s d. In addition, we argued that the growth param-
eter of the function could serve as an additional effect size measure, indicating 
the speed of the intervening process. How to qualify the effect size we pro-
posed as large or small is a question that remains to be addressed (see also 
Manolov, Gast, Perdices, & Evans, 2014). Visual inspection of the data was 
used here to gauge the plausibility of our effect sizes. More studies are neces-
sary to obtain a better understanding of these effect sizes.
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Based on a well-known single case data (Singh et al., 2007), we illustrated 
the generalized logistic model. The Singh data are also discussed in Manolov 
and Moeyaert (2017a) and used to compare a wide variety of single case 
methods. The model was applied to these data and compared with the PWR 
model. The generalized logistic model provided sensible outcomes that seem 
to add to the understanding of the intervention process. Based on these analy-
ses, we recommend that one should combine the result of the model fit with 
that of the estimated growth parameter and the second effect size, which is 
based on the range of the data, to obtain informative outcomes.

A second example (van Lankveld et al., 2017) also illustrated that the gen-
eralized logistic model can be helpful in analyzing the data. On the contrary, 
this example also made it clear that in some situations given start and bound-
ary values can be very influential. The parameter estimates of the generalized 
logistic model are not robust in the sense that they depend on parameter con-
straints and starting values. With relatively few data points and four param-
eters to estimate this is not surprising. Fixing the top and ceiling values after 
visual inspection can improve the robustness of the remaining parameters. 
We also recommend to run sensitivity analyses to explore to what extent the 
outcomes depend on the start values of the optimization process.

For valid interpretation of the GL results, we recommend to first inspect 
the deviance and the R2. If the R2 is low and the deviance is high, the curve 
cannot fit the data well and all ES values are most likely rather meaningless. 
Keep in mind that in SCD, the R2 values are usually larger than in “classical” 
regression situations with large N, as there are a limited number of data points 
in SCD.

When the data contain many discontinuities, for instance scores go up and 
down several times, other approaches, such as PWR splines, are flexible 
alternatives for fitting the data. Splines are more general, because they could 
fit discontinuities, which might be a necessary property for fitting data that 
show complex patterns. However, for the generalized logistic model we 
assume situations, such as therapy situations, in which there is a more or less 
gradual increase (cq decrease) in behavior or attitude. Furthermore, flexible 
cubic splines need more parameters to estimate than the GL model, which 
may become problematic when there are only a small number of data points 
as is common in single case research (James, Witten, Hastie, & Tibshirani, 
2013). Finally, the interpretation of the coefficients from the spline approach 
is more complex than for the GL model.

With multiple single case data (i.e., replicated n-of-1 designs), future 
research should focus on whether this model can be incorporated in a multi-
level context. In Baek et al. (2014), the integration of single case results by 
multilevel analyses is discussed. It is shown by these authors how the PWR 
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model can be incorporated in a multilevel framework. Moeyaert, Ugille, 
Ferron, Beretvas, and Van den Noortgate (2014) found empirical evidence 
that the fixed effects in three level analyses of single case studies are unbi-
ased, a result that was found earlier in two level analysis (Ferron, Bell, Hess, 
Rendina-Gobioff, & Hibbard, 2009). It was also found by combining more 
than 30 studies that the mean squared error was hardly influenced by the 
small SCDs. It is expected that this finding generalizes to the model we have 
proposed in the present study. Combining many studies has the additional 
advantage that the estimated model parameters will show more robustness 
(i.e., be less dependent on the starting values).

In this article, we have presented another tool to add to the already wide 
collection of SCD approaches (Manolov & Moeyaert, 2017b). It is based on 
the idea that most effects of interventions have a natural limit. Based on this 
simple premise, we have proposed a model that would represent this idea. 
The software we have presented is Free and Open Source Software, imple-
mented in the popular statistical environment R, and easy to apply, with some 
additional support in a short tutorial (see the appendix and https://osf.
io/8gcjz/?view_only=5b7a3c11bf8d4fe7a85410ad0a3d1447)
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