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Abstract

Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood
lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies
is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with
large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we
hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an
example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on
gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 59 UTR in human
subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter
assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on
gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory
haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial
lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant
associated with HDL-C (rs2000813) is in linkage disequilibrium with a 59 UTR variant (rs34474737) that decreases LIPG
promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant
with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory
variants are important contributors to the allelic spectrum in complex trait loci.
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Introduction

Numerous studies have associated low levels of high density

lipoprotein cholesterol (HDL-C) with an increased risk of

developing coronary heart disease (CHD) [1,2,3,4,5,6,7]. HDL-

C levels are approximately 50% heritable [8]. Genome-wide

association studies (GWAS) for lipid traits have identified many

genes previously associated with HDL metabolism and numerous

novel loci [9,10,11,12,13,14]. However, the identification of the

causal variants in these loci has proven difficult. Resequencing

studies have not identified common coding variants that explain

the associations. Such results may suggest that causal coding

variants are rarer than anticipated [15] or lie in the gene

regulatory regions. Furthermore, many of the variants identified

by GWAS are embedded in gene deserts. Although a portion of

these associated variants may tag less-common variants with

strong phenotypic effects, some noncoding variants are likely to be

causal themselves [16]. Nevertheless, combining the variation
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explained by all of the common variants identified to date leaves

missing heritability [17] that may be explained, at least in part, by

rare variants.

Several HDL-C candidate genes, including those with known

physiological relevance to HDL-C metabolism, have been

characterized though targeted gene-resequencing approaches

[18]. Through these studies, the exons of HDL-C candidate genes

(ABCAI, APOAI, LCAT) [19] and other mechanistically implicated

genes (ANGPTL4, LIPG) [20,21] have been sequenced in

individuals at the extremes of the HDL-C phenotypic distribution.

Rare coding loss-of-function variants were shown to segregate with

the phenotype in a manner consistent with the known physiolog-

ical role of the gene product in increasing or decreasing HDL-C

levels. Causality of the identified variants was shown through a

combination of in vitro functional studies and computational

methods. Because the occurrence of each rare variant was too low

to test its association in our sequencing cohorts, individual variants

in each phenotypic extreme were grouped together (‘‘collapsed’’),

and the total number of rare variants in the sequenced region was

compared between cohorts. This method of rare variant

association analysis, known as the cohort allelic sums test (CAST)

[22,23], has been instrumental in showing that rare loss-of-

function variants modulate HDL-C levels in humans. However,

few studies to date have utilized this approach to study rare

regulatory variants, which do not always segregate with the

phenotypic extremes of continuous traits as stringently as

deleterious nonsynonymous variants. Additionally, the functional

validation of identified variants in regulatory regions can be

challenging, especially for unknown promoter or regulatory

elements.

In the last decade, several HDL-C candidate genes have been

identified, including many with large regulatory regions implicated

in association studies. These findings, combined with the fact that

HDL-C exists as a continuously distributed trait, make HDL-C

candidate genes well-suited for understanding how rare regulatory

variants influence complex traits. One HDL-C candidate gene

associated in GWAS is LIPG [9,10,11,12,13,24,25], which encodes

endothelial lipase (EL), a conserved plasma phospholipase

expressed from endothelial cells [26,27]. Compared to other

plasma proteins, EL exhibits preferential HDL phospholipolysis

activity in vitro [28]. Somatic overexpression of EL in mice causes a

dose-dependent reduction in plasma HDL-C levels [29], whereas

targeted deletion of LIPG [30] or inhibition of EL using polyclonal

antibodies [31] raises HDL-C levels in vivo.

We recently identified rare loss-of-function coding variants in

subjects with high HDL-C through a resequencing study of

subjects at the extremes of the HDL-C phenotypic distribution

[20]. Here, we expand our initial resequencing effort to include

regulatory variations, thereby further characterizing the allelic

spectrum of LIPG. Our findings show that both rare and common

variations in regulatory regions of LIPG affect LIPG expression,

plasma EL protein concentrations, and HDL-C levels.

Results

Identification and functional assessment of novel rare
LIPG regulatory variants

We sequenced a portion of the promoter and the 59 UTR

(1755-bp immediately upstream of the transcription start site) in

388 unrelated individuals. Of the sequenced individuals, 195

individuals had extremely high HDL-C levels ($95th percentile;

HHDL Sequencing Cohort) and 193 had low HDL-C levels

(#25th percentile; LHDL Sequencing Cohort). A summary of the

characteristics of the participants in the sequencing cohorts

appears in Table 1. Through this study, we identified a total of

22 rare and common LIPG regulatory variants in the region

sequenced (Figure 1).

25 individuals from our sequencing cohorts harbored a rare

variant (minor allele frequency [MAF],1%) in the proximal

promoter or 59 UTR of LIPG. Of these 25 individuals, 16 were in

the HHDL and 9 were in the LHDL Sequencing Cohort (Table 2).

The main characteristics of each of these participants are

summarized in Table S1. Of the 17 individual rare LIPG

regulatory mutations we identified, 10 were found only in

individuals with high HDL-C, 5 occurred only in individuals with

low HDL-C, and the remaining 2 occurred in individuals from

both cohorts. We did not find a disproportionate frequency of rare

regulatory variants between the HHDL and LHDL cohorts

(P = 0.2142, Table 3).

We also searched for these variants in the 1000 Genomes

Project database (451 participants; [32]) and found that only the 2

variants present in both cohorts, 2303 A.G and 2324 A.G,

occurred in individuals of the YRI ethnicity in this database

(MAF = 0.014 for 2303 A.G, MAF = 0.024 for 2324 A.G).

Neither of these variants was present in 1000 Genomes Project

participants of other ethnicities, nor were any of the other 15

variants present in any population from this study.

To determine the functional significance of the identified

variants in modulating LIPG promoter activity, variants were

tested with a luciferase reporter assay in HUVECs, which

endogenously express LIPG. A wild-type LIPG promoter construct

corresponding to the sequenced portion of the LIPG promoter was

constructed and tested against the promoter-less pGL3-basic

construct. The WT LIPG promoter construct displayed approx-

imately 31.9 times greater relative luciferase activity than the

pGL3-basic construct (Figure S1).

We tested promoter constructs corresponding to the rare LIPG

variants. Four of the 10 rare variants found only in high HDL-C

individuals displayed decreased promoter activity relative to the WT

promoter construct (Figure 2A). In contrast, 4 of the 5 rare variants

found only in low HDL-C individuals displayed increased promoter

activity (Figure 2B). The remaining 6 variants identified in only in

Author Summary

Genetic association studies have identified genomic
regions that affect quantifiable traits such as lipid levels.
When a gene and a trait are found to be associated with
one another, the gene is often further studied to
determine its role in affecting the trait. One approach is
to sequence the gene in individuals at the extremes of the
trait’s distribution with the hope of finding rare mutations
that directly contribute to the trait. Until now studies using
this approach have focused on genetic variation in the
protein coding sequence of these genes and have been
largely successful in identifying functionally important
mutations. However, other studies have found an abun-
dance of noncoding variation in the genome that may also
contribute to the heritability of these traits. Here we seek
to determine the contribution of such noncoding muta-
tions to high density lipoprotein cholesterol (HDL-C) levels
in humans using the HDL-C candidate gene LIPG as an
example. Through a sequencing study in individuals with
high and low HDL-C levels, we demonstrate that both rare
and common noncoding mutations are influential con-
tributors to the allelic spectrum of such traits and should
be further characterized after initial association with the
trait.

LIPG Regulatory Variants Modulate HDL Cholesterol
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high HDL-C individuals and 1 variant identified only in low HDL-

C individuals did not alter promoter activity relative to WT (Figure

S2A and S2B). One of the 2 rare regulatory variants found at both

extremes (2303 A.G) caused increased promoter activity in vitro

(Figure S2C). Six individuals from the HHDL Sequencing Cohort

had a rare regulatory variant decreasing LIPG expression in vitro,

compared to no individuals from the LHDL Sequencing Cohort

(P = 0.0301, Fisher’s exact test, Table 3). One individual from the

HHDL Sequencing Cohort had a rare regulatory variant increasing

promoter activity, compared with 7 individuals from the LHDL

Sequencing Cohort (P = 0.0364, Table 3).

Next, we individually compared the number of individuals with

functional rare regulatory variants identified in either sequencing

cohort. We excluded the 2 regulatory mutations that were

identified in individuals from both cohorts and reassessed the

association of functional rare regulatory variants with the

phenotypic extremes. Similar to the results obtained above, a

significant excess of rare LIPG promoter variants causing

decreased LIPG expression was found in individuals with high

HDL-C (P = 0.0301, Table 3), and an excess of rare variants

causing increased promoter activity was found in individuals with

low HDL-C (P = 0.0297, Table 3). Notably, when we enriched for

variants only present in either of the cohorts, no variants

decreasing LIPG promoter activity in vitro were identified in

individuals with low HDL-C. Likewise, no variants increasing

promoter activity were present in individuals with high HDL-C.

Table 1. Baseline characteristics of participants in LIPG promoter resequencing.

HHDL Sequencing Cohort (N = 195) LHDL Sequencing Cohort (N = 193)

Ascertainment Physician referral, HDL$95th PCTL Physician referral, HDL#25th PCTL

Ethnic composition 92.2% Caucasian, 7.8% Black 91.7% Caucasian, 8.3% Black

Mean age (y) 60.4611.9 57.5613.9

Female (%) 58 58

HDL (mg/dL) 109.1617.9 33.966.2

BMI (kg/m2) 23.262.8 29.365.5

Values are given as mean 6 standard deviation except for ethnic composition and sex; PCTL, percentile.
doi:10.1371/journal.pgen.1002393.t001

Figure 1. Rare and common LIPG regulatory variants studied. Diagram of Chr. 18q21.1 region containing LIPG with variants identified
annotated.
doi:10.1371/journal.pgen.1002393.g001

LIPG Regulatory Variants Modulate HDL Cholesterol
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Identification and association of common LIPG
regulatory variants associated with HDL-C

In addition to discovering novel, rare LIPG regulatory variants,

our sequencing effort identified 5 common variants (MAF$5%),

all of which were present in both high HDL-C and low HDL-C

subjects (Figure 1 and Table 4). The minor alleles of 3 of the

identified variants (rs9959847, 21495 T.C; rs4245232, 21429

C.A; rs3829632, 21309 A.G) are in complete LD with each

other and constitute a common haplotype. According to the

International HapMap Project dataset [33], this haplotype

includes 3 additional SNPs upstream of the sequenced region

(rs4939583, rs6507929, rs4939875) and 2 intronic SNPs

(rs2000812, rs3819166) (Figure 1, Table S2, Figure S3). We

assessed the association of 2 of the identified common variants,

21309 A.G (rs3829632) and 21358 (T insertion), with HDL-C

and other HDL traits in the Framingham Heart Study Offspring

cohort (FHS; 1089 subjects in this analysis, Table 5). The 21309

A.G variant was used as a tag SNP for the haplotype. Although

the 21358 (T insertion) variant had a borderline association with

decreased HDL3 subfraction, the 21309 A.G variant (and, thus,

the entire haplotype) was strongly associated with decreased HDL-

C by approximately 2 mg/dL (P,0.0002). This latter variant was

also associated with decreases in HDL3, large HDL particles,

apoA-I (the major protein component of all HDL), and HDL size.

Consistent with these findings, a recent GWAS of .100,000

individuals by the Global Lipids Genetics Consortium (GLGC)

found that the minor alleles of several variants of this haplotype

were strongly associated with a reduction in HDL-C (Table S2)

[13]. Neither the 21358 (T insertion) or 21309 A.G variants

were associated with changes in any other lipid or lipoprotein

measures in the FHS (data not shown).

Functional analysis of common LIPG regulatory variants
Reporter constructs corresponding to the common LIPG

regulatory variant rs34474737 (229 T.G) and the 21358 T

insertion variant, neither of which is known to be part of a haplotype

extending beyond the LIPG promoter, were generated and used to

test their impact on LIPG promoter activity in HUVECs (Figure 3).

The rs34474737 variant caused a marked reduction in luciferase

reporter activity (P,0.01 vs. WT), whereas the 21358 (T insertion)

variant, which was not strongly associated with modulation of HDL-

C in FHS, did not significantly alter LIPG promoter activity.

We hypothesized that the common LIPG regulatory variant

rs34474737, which decreases promoter activity in vitro, would

cause decreased plasma levels of EL in human subjects. If true, this

finding would provide a mechanism through which the identified

variants could increase HDL-C levels in humans. We also assessed

the role of 2 recently associated noncoding variants (rs2156552

and rs4299883) and the common haplotype spanning the LIPG

locus (rs3829632, 21309 A.G) in the regulation of LIPG

expression, by testing the effects of these variants on plasma EL.

The EL concentrations were measured in participants of the

SIRCA study who were genotyped for variants rs34474737

(n = 761), rs2156552 (n = 570), rs4299883 (n = 755), and

rs3829632 (n = 760) (Table 6).

Minor alleles of the rs4299883 and rs2156552 variants were

highly associated with decreased HDL-C in the GLGC GWAS

(P,10244 and P,10248 respectively) [13]. We tested the

association of these 2 variants with HDL-C and HDL subpheno-

types in the FHS, and found that the minor alleles of these variants

are associated with decreased HDL-C, HDL2, HDL3, and HDL

particle sizes and apoA-I levels (Table 5). Consistent with these

findings, the minor alleles of these variants were also associated

with increased plasma EL (P,0.002 and P,0.004, respectively)

(Table 6). The minor allele of the 21309 A.G variant was

moderately associated with increased plasma EL (P,0.05),

consistent with its role in decreasing plasma HDL-C, as suggested

by the GLGC and FHS association studies.

The minor allele of the rs344747347 (229 T.G) variant was

highly associated with decreased plasma EL (P,0.004), consistent

with the luciferase reporter assay results. Plasma EL concentra-

tions were measured for individuals in SIRCA genotyped for the

rs2000813 variant (Thr111Ile; n = 761). This common nonsynon-

ymous variant does not alter EL lipolytic activity in vitro or in vivo

[20], but was associated with increased HDL-C in GLGC

(P = 1.92610214). Plasma EL concentrations decreased with the

minor allele of the Thr111Ile variant (P,0.0008, Table 6).

It may be that the Thr111Ile variant is in high LD with a regulatory

variant that decreases EL expression, which would explain the

decreased plasma EL of subjects with the Thr111Ile variant, as well as

its association with HDL-C but normal lipolytic activity in GLGC. To

test this possibility, using genotyping data for the common regulatory

variants in SIRCA participants, we estimated their LD with

Haploview software [34]. The rs34474737 (229 T.G) and

rs2000813 (Thr111Ile) variants were in high LD (R2 = 0.8) (Figure 4).

Discussion

GWAS and candidate gene association techniques clearly

contribute to the identification and validation of candidate genes

Table 2. Identified rarea LIPG regulatory variants.

Mutationb High HDLc Low HDLd HDL-C (mg/dL)

Variants identified in HHDL Sequencing Cohort

21487 A.G 2 0 124–132

21324 C.T 1 0 104

21234 C.T 1 0 102

21080 G.T 3 0 85–132

2612 C.A 1 0 152

2537 T.C 1 0 100

2410 C.G 1 0 110–114

2403 C.G 2 0 102–108

2274 C.T 2 0 106–108

219 A.G 1 0 90

Variants identified in LHDL Sequencing Cohort

21666 G.C 0 2 34–36

21223 A.G 0 1 33

21052 C.A 0 1 34

2175 G.A 0 1 37

44 T.C 0 1 38

Variants identified in both sequencing cohorts

2324 A.G 3 1 82–102 (HHDL), 44 (LHDL)

2303 A.G 1 2 124 (HHDL), 28–36 (LHDL)

aRare LIPG promoter variants were defined as those with a minor allele
frequency (MAF) of ,0.01 as determined by the number of participants with
each variant relative to the total.

bRelative to transcription start site.
cNumber of individuals with the mutation identified in HHDL Sequencing
Cohort.

dNumber of individuals with the mutation identified in LHDL Sequencing
Cohort.

doi:10.1371/journal.pgen.1002393.t002

LIPG Regulatory Variants Modulate HDL Cholesterol

PLoS Genetics | www.plosgenetics.org 4 December 2011 | Volume 7 | Issue 12 | e1002393



T
a

b
le

3
.

A
ss

o
ci

at
io

n
o

f
ra

re
LI

P
G

re
g

u
la

to
ry

va
ri

an
ts

w
it

h
H

D
L-

C
p

h
e

n
o

ty
p

ic
e

xt
re

m
e

s.

D
is

co
v

e
ry

co
h

o
rt

V
a

ri
a

n
ts

id
e

n
ti

fi
e

d
In

d
iv

id
u

a
ls

w
it

h
v

a
ri

a
n

tb

A
ss

o
ci

a
ti

o
n

w
it

h
d

is
co

v
e

ry
co

h
o

rt
(P

v
a

lu
e

)c

F
u

n
ct

io
n

a
l

v
a

ri
a

n
ts

(e
ff

e
ct

d
ir

e
ct

io
n

)d

In
d

iv
id

u
a

ls
w

it
h

v
a

ri
a

n
t

d
e

cr
e

a
si

n
g

p
ro

m
o

te
r

a
ct

iv
it

y

A
ss

o
ci

a
ti

o
n

fo
r

v
a

ri
a

n
ts

d
e

cr
e

a
si

n
g

p
ro

m
o

te
r

a
ct

iv
it

y
(P

v
a

lu
e

)e

In
d

iv
id

u
a

ls
w

it
h

v
a

ri
a

n
t

in
cr

e
a

si
n

g
p

ro
m

o
te

r
a

ct
iv

it
y

A
ss

o
ci

a
ti

o
n

fo
r

v
a

ri
a

n
ts

in
cr

e
a

si
n

g
p

ro
m

o
te

r
a

ct
iv

it
y

(P
v

a
lu

e
)f

In
d

iv
id

u
a

ls
w

it
h

e
x

cl
u

si
v

e
v

a
ri

a
n

t
d

e
cr

e
a

si
n

g
p

ro
m

o
te

r
a

ct
iv

it
y

g

A
ss

o
ci

a
ti

o
n

fo
r

e
x

cl
u

si
v

e
v

a
ri

a
n

ts
d

e
cr

e
a

si
n

g
p

ro
m

o
te

r
a

ct
iv

it
y

(P
v

a
lu

e
)h

In
d

iv
id

u
a

ls
w

it
h

e
x

cl
u

si
v

e
v

a
ri

a
n

t
in

cr
e

a
si

n
g

p
ro

m
o

te
r

a
ct

iv
it

y
g

A
ss

o
ci

a
ti

o
n

fo
r

e
x

cl
u

si
v

e
v

a
ri

a
n

ts
in

cr
e

a
si

n
g

p
ro

m
o

te
r

a
ct

iv
it

y
i

H
H

D
L

S
e

q
u

e
n

ci
n

g
C

o
h

o
rt

2
1

4
8

7
A

.
G

1
6

0
.2

1
4

2
2

1
4

8
7

A
.

G
(Q

)
6

0
.0

3
0

1
1

0
.0

3
6

4
6

0
.0

3
0

1
0

0
.0

2
9

7

2
1

3
2

4
C

.
T

2
1

0
8

0
G

.
T

(Q
)

2
1

2
3

4
C

.
T

2
5

3
7

T
.

C
(Q

)

2
1

0
8

0
G

.
T

2
4

1
0

C
.

G
(Q

)

2
6

1
2

C
.

A

2
5

3
7

T
.

C
2

3
0

3
A

.
G

(q
)a

2
4

1
0

C
.

G

2
4

0
3

C
.

G

2
2

7
4

C
.

T

2
1

9
A

.
G

2
3

2
4

A
.

G
a

2
3

0
3

A
.

G
a

LH
D

L
S

e
q

u
e

n
ci

n
g

C
o

h
o

rt
2

1
6

6
6

G
.

C
9

2
1

6
6

6
G

.
C

(q
)

0
7

0
5

2
1

2
2

3
A

.
G

2
1

2
2

3
A

.
G

(q
)

2
1

0
5

2
C

.
A

2
1

0
5

2
C

.
A

(q
)

2
1

7
5

G
.

A
2

1
7

5
G

.
A

(q
)

4
4

T
.

C

2
3

2
4

A
.

G
a

2
3

0
3

A
.

G
(q

)a

2
3

0
3

A
.

G
a

a
R

ar
e

va
ri

an
ts

fo
u

n
d

in
in

d
iv

id
u

al
s

fr
o

m
b

o
th

H
H

D
L

an
d

LH
D

L
Se

q
u

e
n

ci
n

g
C

o
h

o
rt

s.
b

In
d

iv
id

u
al

s
w

e
re

in
cl

u
d

e
d

if
th

e
y

h
ar

b
o

re
d

at
le

as
t

1
ra

re
LI

P
G

re
g

u
la

to
ry

va
ri

an
t

o
f

th
o

se
id

e
n

ti
fi

e
d

.T
h

re
e

in
d

iv
id

u
al

s
fr

o
m

th
e

H
H

D
L

Se
q

u
e

n
ci

n
g

C
o

h
o

rt
h

ad
tw

o
ra

re
re

g
u

la
to

ry
m

u
ta

ti
o

n
s

e
ac

h
:o

n
e

w
it

h
2

1
4

8
7

A
.

G
an

d
2

1
0

8
0

G
.

T
,

o
n

e
w

it
h

2
1

2
3

4
C

.
T

an
d

2
3

2
4

A
.

G
,

an
d

o
n

e
w

it
h

2
1

4
8

7
A

.
G

an
d

2
3

0
3

A
.

G
.

A
ll

th
re

e
in

d
iv

id
u

al
s

w
e

re
in

cl
u

d
e

d
o

n
ce

e
ac

h
in

th
e

to
ta

l
co

u
n

ts
.

c
T

h
e

n
u

m
b

e
r

o
f

in
d

iv
id

u
al

s
w

it
h

a
ra

re
va

ri
an

t
w

as
co

m
p

ar
e

d
b

e
tw

e
e

n
th

e
2

co
h

o
rt

s
w

it
h

a
2

-t
ai

le
d

Fi
sh

e
r’

s
e

xa
ct

te
st

.
A

ll
ra

re
va

ri
an

ts
w

e
re

co
n

si
d

e
re

d
,

re
g

ar
d

le
ss

o
f

fu
n

ct
io

n
al

im
p

ac
t

o
n

LI
P

G
e

xp
re

ss
io

n
an

d
in

cl
u

d
in

g
va

ri
an

ts
fo

u
n

d
in

b
o

th
se

q
u

e
n

ci
n

g
co

h
o

rt
s.

d
Fu

n
ct

io
n

al
va

ri
an

ts
w

e
re

fo
u

n
d

to
al

te
r

LI
P

G
p

ro
m

o
te

r
ac

ti
vi

ty
re

la
ti

ve
to

W
T

in
vi

tr
o

b
y

lu
ci

fe
ra

se
re

p
o

rt
e

r
as

sa
ys

(F
ig

u
re

2
).

e
V

ar
ia

n
ts

d
e

cr
e

as
in

g
p

ro
m

o
te

r
ac

ti
vi

ty
w

e
re

te
st

e
d

fo
r

as
so

ci
at

io
n

w
it

h
th

e
H

H
D

L
Se

q
u

e
n

ci
n

g
C

o
h

o
rt

w
it

h
a

2
-t

ai
le

d
Fi

sh
e

r’
s

e
xa

ct
te

st
.

A
ll

fu
n

ct
io

n
al

va
ri

an
ts

d
e

cr
e

as
in

g
p

ro
m

o
te

r
ac

ti
vi

ty
w

e
re

te
st

e
d

,
in

cl
u

d
in

g
va

ri
an

ts
fo

u
n

d
in

b
o

th
se

q
u

e
n

ci
n

g
co

h
o

rt
s.

f V
ar

ia
n

ts
in

cr
e

as
in

g
p

ro
m

o
te

r
ac

ti
vi

ty
w

e
re

te
st

e
d

fo
r

as
so

ci
at

io
n

w
it

h
th

e
LH

D
L

Se
q

u
e

n
ci

n
g

C
o

h
o

rt
w

it
h

a
2

-t
ai

le
d

Fi
sh

e
r’

s
e

xa
ct

te
st

.A
ll

fu
n

ct
io

n
al

va
ri

an
ts

in
cr

e
as

in
g

p
ro

m
o

te
r

ac
ti

vi
ty

w
e

re
te

st
e

d
,i

n
cl

u
d

in
g

va
ri

an
ts

fo
u

n
d

in
b

o
th

se
q

u
e

n
ci

n
g

co
h

o
rt

s.
g

Ex
cl

u
si

ve
va

ri
an

ts
ar

e
d

e
fi

n
e

d
as

va
ri

an
ts

o
cc

u
rr

in
g

in
in

d
iv

id
u

al
s

in
e

it
h

e
r

o
f

th
e

2
se

q
u

e
n

ci
n

g
co

h
o

rt
s.

h
N

u
m

b
e

r
o

f
in

d
iv

id
u

al
s

w
it

h
a

ra
re

e
xc

lu
si

ve
va

ri
an

t
d

e
cr

e
as

in
g

p
ro

m
o

te
r

ac
ti

vi
ty

w
as

co
m

p
ar

e
d

b
e

tw
e

e
n

th
e

2
co

h
o

rt
s

vi
a

2
-t

ai
le

d
Fi

sh
e

r’
s

e
xa

ct
te

st
.

i N
u

m
b

e
r

o
f

in
d

iv
id

u
al

s
w

it
h

a
ra

re
e

xc
lu

si
ve

va
ri

an
t

in
cr

e
as

in
g

p
ro

m
o

te
r

ac
ti

vi
ty

w
as

co
m

p
ar

e
d

b
e

tw
e

e
n

th
e

2
co

h
o

rt
s

vi
a

2
-t

ai
le

d
Fi

sh
e

r’
s

e
xa

ct
te

st
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

g
e

n
.1

0
0

2
3

9
3

.t
0

0
3

LIPG Regulatory Variants Modulate HDL Cholesterol

PLoS Genetics | www.plosgenetics.org 5 December 2011 | Volume 7 | Issue 12 | e1002393



for complex traits; however, they have fallen short in identifying

causal variations. Although rare variants hold much promise for

filling this void [35], the association of rare mutations with

continuously distributed phenotypes has been hampered by the

dual presence of functional and nonfunctional mutations.

Moreover, studies have shown a lack of uniformity in incorporat-

ing the functional relevance of rare variants into their analyses.

The direct influence of regulatory variants, for which functional

significance is often ambiguous, also remains largely uncharacter-

ized.

To address the phenotypic contributions of rare and common

regulatory variants, we utilized the continuous trait HDL-C and

candidate gene LIPG, which has significant genome-wide common

and causal coding variations. By uncovering the allelic spectrum of

LIPG regulatory regions through sequencing at the HDL-C

extremes, rare and common regulatory mutations in LIPG were

shown to contribute to observable variation in HDL-C levels. The

findings also demonstrated that the functional impact of identified

variants can help guide statistical analyses that assess their

combined effect on a studied phenotype. To our knowledge, this

study is one of the first applications of a rare variant association

test to regulatory variants for a complex trait, as well as the first of

such analyses to be informed by functional assays.

Association tests for rare variants of complex traits
Numerous methodologies have been described for statistically

comparing the frequency differences of rare coding variants for a

complex trait in cases and controls [22]. Some approaches assume

that much of the heritability of complex traits arises from the

Figure 2. Rare LIPG regulatory variants modulate transcrip-
tional activity in vitro. Relative promoter activity of rare variants
(MAF,0.01) identified from resequencing of high HDL-C individuals (A)
or low HDL-C individuals (B). Plasmid constructs expressing firefly
luciferase under the control of wild-type (WT) or variant LIPG promoters
were individually co-transfected with a Renilla luciferase reporter
construct (pRL-SV40) in HUVECs. Firefly luciferase expression were
measured and normalized to that of Renilla luciferase, and Renilla-
normalized promoter activities for variant constructs were then
compared to those of the WT construct to provide relative LIPG
promoter activities of the variants. Assays were conducted with 6
replicates per experiment and data is given as mean 6 standard
deviation. *P-value,0.05, **P-value,0.01, ***P-value,0.0001, com-
pared with WT.
doi:10.1371/journal.pgen.1002393.g002

Table 4. Identified commona LIPG regulatory variants.

Mutationb Genotypec High HDLd Low HDLe

21495 T.C (rs9958947)f Homozygous 5 (2.6%) 9 (4.7%)

Heterozygous 44 (22.6%) 55 (28.5%)

MAFh 0.14 0.19

21429 C.A (rs4245232)f Homozygous 5 (2.6%) 9 (4.7%)

Heterozygous 44 (22.6%) 55 (28.5%)

MAF 0.14 0.19

21309 A.G (rs3829632)f Homozygous 5 (2.6%) 9 (4.7%)

Heterozygous 44 (22.6%) 55 (28.5%)

MAF 0.14 0.19

21358 T insertiong Homozygous 1 (0.5%) 0 (0%)

Heterozygous 17 (8.7%) 23 (11.9%)

MAF 0.05 0.06

229 T.G (rs34474737) Homozygous 25 (12.8%) 16 (8.4%)

Heterozygous 96 (49.2%) 103 (55.1%)

MAF 0.37 0.35

aCommon LIPG promoter variants were defined as those with MAF$0.05 as
determined by number of participants with each variant relative to the total.

bRelative to transcription start site.
cHomozygous and heterozygous refer to minor allele.
dNumber identified in HHDL Sequencing Cohort (percentage of total
sequenced in cohort).

eNumber identified in LHDL Sequencing Cohort (percentage of total sequenced
in cohort).

fMinor alleles of 21495, 21429, and 21309 variants were present in a common
haplotype.

gA rs number for this SNP was not present in dbSNP.
hMinor allele frequency, as determined for each cohort.
doi:10.1371/journal.pgen.1002393.t004
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combined presence of functionally important rare variants. These,

which include CAST and combined multivariate and collapsing

(CMC) method, collapse rare variants within a functional location

(e.g., gene locus) and compare the frequencies of the aggregate

variants between cases and controls [36,37]. Other methods for

evaluating rare, risk-conferring mutations include weighted sum

methods that count both rare and common coding variants. These

tests weight variants based on their frequency in controls [38] or

are informed by computational prediction programs for assessing

functionality [39]. Although these assessment methods demon-

strate high statistical power, they are disadvantaged by their

inclusion of both rare and common variants, as well as functional

information that is largely inapplicable or unavailable for

noncoding variants.

Although the effects of rare missense variants are frequently

deleterious with regard to protein structure and function, the

effects of rare regulatory variants are less readily interpretable

[23,36]. Such variants may cause increased or decreased gene

expression, depending on their location; may act in a tissue-

dependent manner, thereby weakening their association with

complex traits; and may increase, decrease, or not affect

transcription at all. Whereas nonfunctional coding variants can

be predicted easily by synonymous or conservative amino acid

substitutions, similar criteria cannot be applied to regulatory

variants.

We first used CAST to investigate the contribution of rare

regulatory variants to HDL-C without computationally predicting

their effects. The results showed no significant excess of rare

regulatory variants in LIPG in either cohort. However, the strength

of rare variant aggregation methods increases when the functional

validity of the variants is known [22,23,40,41]. Therefore, we

assessed the functional effects of each variant in a cell type that

endogenously expresses LIPG (HUVECs). These putative func-

tional effects were used to reassess the association of functional

variants in the 2 cohorts. Using a modification of CAST, we

separately tested the associations of variants that increase or

decrease LIPG promoter activity. The results showed that variants

segregated with the phenotypic extremes in a manner that was

almost completely consistent with the contribution of the gene to

the phenotype. For example, given that EL inversely affects HDL-

C levels, variants that decrease EL should cause increased HDL-C

and should occur at a higher frequency in high HDL-C

individuals, and vice versa. Including functional information in the

association analysis permitted the near-perfect demonstration of

this distribution.

The only rare regulatory mutation inconsistent with the

expected distribution was the 2303 A.G variant, which increased

Table 5. Association of common variants with HDL in Framingham Heart Study.

Variant 21358 (T insertion) 21309 A.G (rs3829632) rs4939883 rs2156552

Phenotype D S.D.a P value D S.D.a P value D S.D.a P value D S.D.a P value

HDL 20.09 0.15 20.15 0.0002 20.16 2.2861027 20.18 1.0861028

HDL2 20.01 0.84 20.07 0.14 20.10 0.002 20.16 5.1461027

HDL3 20.17 0.02 20.12 0.01 20.15 2.5961025 20.13 0.0002

HDL size 20.07 0.36 20.12 0.01 20.11 0.004 20.12 0.002

HDL small particle 20.07 0.38 0.01 0.88 0.06 0.08 0.06 0.13

HDL intermediate
particle

0.04 0.62 0.07 0.16 20.07 0.04 20.07 0.05

HDL large particle 20.1 0.22 20.14 0.004 20.14 0.0002 20.15 9.3161025

apoA-I 20.11 0.13 20.09 0.05 20.12 0.0003 20.13 0.0001

aDSD represents the fractional change in standard deviation (SD) in standardized residual (mean = 0, SD = 1 after adjustment for age, age2, BMI, alcohol intake, smoking
status, menopause, and hormone replacement therapy separately by gender) per copy of minor allele. One SD unit in the Framingham Heart Study was 13.2 mg/dL.

doi:10.1371/journal.pgen.1002393.t005

Figure 3. Common LIPG regulatory variant rs34474737 affects
LIPG promoter activity in vitro. Relative LIPG promoter activity of
common variants rs34474737 (229 T.G) and 21358 T insertion variant
identified from resequencing of individuals with high and low HDL-C
levels, measured as relative firefly luciferase expression of LIPG variant
constructs in HUVECs. Assays were conducted with 6 replicates per
experiment and data is given as mean 6 standard deviation.
**P-value,0.01, compared with WT.
doi:10.1371/journal.pgen.1002393.g003
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LIPG promoter activity in vitro. This variant was found in 1 high

and 2 low HDL-C individuals, which is the expected distribution,

given its in vitro functionality. However, the high HDL-C

individual with the 2303 A.G variant also had another rare

LIPG regulatory variant, 21487 A.G, which decreased promoter

activity in vitro. Thus, the actual role of 2303 A.G in contributing

to high HDL-C levels must be considered in the context of the

contribution from the additional rare variant in this individual.

Previously, Hegele et al. presented an elegant approach of

refining association tests by using exclusively presenting coding

variants [42]. In the present study, this approach was modified for

application to noncoding variants. We examined the association of

variant types with the phenotypic extremes after eliminating

variants occurring at both extremes. The results showed that

promoter-activating or -damaging rare LIPG variants occurred

only in individuals with high or low HDL-C, respectively. Thus,

our analysis method effectively enriched for functional variants

with the greatest potential effect at either extreme. A limitation of

this approach is that the exclusivity of any rare variant depends on

the selection criteria and sizes of the cohorts. Nevertheless, even

without this selectivity filter, the expected enrichment of opposing

regulatory variant types occurred at the opposite phenotypic

extremes.

The current literature contains additional rare variant associ-

ation tests that evaluate the contribution of risk and protective rare

variants to complex traits. One is a modified C-alpha score-test

that measures the deviation of variance of each observed mutation

from the expected variance with a binomial distribution. However,

this method may not be valid for evaluating variants occurring

only once in a test cohort, such as were identified in our study [43].

Another method, weighted sum test, calculates 2 one-sided

statistics to quantify the association of variants in either phenotypic

extreme. This test allows the incorporation of functional

information of the identified variants and may be applicable to

measuring the association of rare regulatory variants [44]. Yet

neither of these methods is sufficiently robust to manage the large

number of rare nonfunctional variants likely to be identified in

resequencing studies of regulatory regions. In our study, nearly

half of the rare variants identified in only one extreme failed to

have any transcriptional effect. A recently reported modification of

a previous methodology for studying common variants, the

sequence kernel association test, may prove useful in studying

the association of such rare variants without making any

assumption of the functional direction or degree of effect of any

individual variants [45].

Putative haplotype involving a causal regulatory and a
nonfunctional coding variant of LIPG is associated with
HDL-C levels

Exploration of the LIPG noncoding regions revealed the

contributions of common regulatory variants. For example, the

229 T.G (rs34474737) variant in the 59 UTR was found to

decrease LIPG promoter activity in vitro and to raise plasma EL in

humans. This variant was in LD with the common nonsynon-

Table 6. Association of common LIPG variants with plasma EL concentrations in SIRCA.

LIPG Variant (ref.
allele.minor allele) MAF Effect of minor allele on HDL-C (P value)e Genotype (Nf) Mean plasma ELg

Effect of minor allele on
plasma EL (P value)h

Combined Haplotypea 0.221a Q (8.64610210)a AA (537)a 483.56342.1a q (0.041)a

AG (202) 538.46368.9

GG (21) 540.26367.9

rs4939883b (C.T) 0.190c Q (4.34610249) CC (542) 481.86353.5 q (1.4361023)

CT (203) 538.86342.0

TT (10) 772.96452.8

rs2156552b (T.A) 0.190c Q (5.53610245) TT (419) 486.26362.1 q (3.4861023)

TA (146) 545.16346.5

AA (5) 852.16565.7

rs34474737 (229 T.G) 0.278d N/A TT (391) 520.16338.3 Q (3.3861023)

TG (305) 505.76379.3

GG (70) 417.66302.0

rs2000813 (584 C.T;
Thr111Ile)

0.279c q (1.92610214) CC (352) 521.26343.5 Q (7.0061024)

CT (330) 492.76362.9

TT (79) 417.46319.9

aHaplotype block containing variants rs3829632, rs4245232, rs9958947, rs4939875, rs6507929, rs4939583, rs3819166, and rs2000812. Representative minor allele
frequency (MAF; from HapMap, CEU Set, Caucasians from Utah, USA) and effect of minor allele on HDL-C in GLGC GWAS are given for the rs4245232 variant.
Genotyping in SIRCA was completed for the rs3829632 variant and this was used to assess association of the minor allele of this variant with mean plasma EL
concentration. Individual variants, their chromosomal location, and P values for the association of the minor alleles with HDL-C in the Global Lipids Genetics
Consortium (GLGC) GWAS are given in Table S2. R2 values for LD of individual variants of the haplotype block are given.

bIdentified in the GLGC GWAS [13].
cFrom HapMap (CEU Set, Caucasians from Utah, USA).
dFrom dbSNP (CEU Set, Caucasians from Utah, USA).
eAssociation with HDL-C in the GLGC GWAS.
fNumber of individuals in SIRCA with given genotype whose plasma EL concentrations were measured.
gPre-heparin plasma EL concentrations (ng/mL), shown as mean 6 S.D.
hAssociation of log-transformed mean plasma EL concentration with minor allele for each variant in SIRCA.
doi:10.1371/journal.pgen.1002393.t006
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ymous variant Thr111Ile (rs2000813). Thr111Ile is a missense

variant that does not damage EL function (according to the

PolyPhen prediction program) and does not alter EL lipolytic

activity in vitro or in vivo [20]. The association of Thr111lle with

HDL is unclear, with some studies purporting a weak association

with elevated HDL-C and others showing no association

[46,47,48,49,50,51,52]. However, a recent GLGC GWAS metaa-

nalysis of .100,000 individuals revealed significant association of

this variant with increased plasma HDL-C (P = 1.92610214) [13],

suggesting that Thr111Ile may be in LD with a regulatory variant.

Based on the high LD between 229 T.G and Thr111Ile, as

well as the association of plasma EL with minor alleles of the 229

T.G and Thr111Ile variants in SIRCA participants, we propose

that the 229 T.G variant may cause the association of Thr111Ile

with HDL-C by decreasing plasma EL. To our knowledge, this

finding represents the first identification of a putative haplotype

involving a causal regulatory variant and a functionally benign

coding variant. The result also highlights the potential misattri-

bution that can occur when nonsynonymous coding variants are

considered to be highly suggestive of causal mutations, and

regulatory variants are ignored.

Interestingly, there are several reports of common nonsynon-

ymous variants causing the association of noncoding variants in

high LD with a phenotype. Kanda et al. reported that a common

missense variant in high LD with a nearby promoter SNP at

chromosome 10q26 independently explains the association of the

locus with susceptibility to age-related macular degeneration [53].

A common functional missense variant in the B-cell scaffold

protein BANK1 was shown to be in high LD with a common

intronic variant that alters splicing, and both variants were

strongly associated with systemic lupus erythematosus [54]. The

functional heterogeneity of linked coding and noncoding SNPs

highlights the complexity of haplotype structures, as well as the

need to characterize the complete (i.e., coding and noncoding)

variation in candidate loci for complex traits. Indeed, resequencing

studies to identify haplotypes in candidate genes for inflammation,

lipid metabolism, and blood pressure regulation are susceptible to

missing partial or whole haplotype blocks when only coding

variation is considered [55]. Common regulatory variation in

observed haplotypes for several complex traits may have profound

functional significance.

In our analysis of common regulatory variation in LIPG, we

identified another haplotype with SNPs in the proximal promoter

region. Three variants, 21495 T.C (rs9958947), 21429 C.A

(rs4245232), and 21309 A.G (rs3829632), identified in the

promoter region were in complete LD with each other. A study of

HapMap data indicated that three SNPs upstream of the

sequenced region (rs4839583, rs6507929, and rs4939875) and

SNPs in the second and fifth introns of LIPG (rs2000812 and

rs3819166, respectively) are also in high LD with these three

promoter SNPs [33]. Because the region encompassed by this

haplotype extends far upstream and within the LIPG gene

(approximately 34.1 kb from the most 59 to most 39 of the variant

constituents of the haplotype), it is not possible to assess its full

functional impact with a reporter driven by part of the LIPG

promoter. Characterization of the effects of single variants of this

haplotype on LIPG expression in vitro could lead to erroneous

implications about their functional significance, because their

aggregate (and potentially synergistic) effects on transcription

would be ignored. Therefore, we evaluated the contribution of the

combined haplotype by measuring its effect on HDL-C levels and

plasma EL concentrations from human subjects. Minor alleles of

the haplotype variants were associated with decreased HDL-C in

the FHS and GLGC GWAS studies, and the minor allele of 1

variant was associated with increased plasma EL. Together, these

findings implicate this haplotype in the reduction of human HDL-

C.

Association of minor alleles of the 21309 A.G, rs4939883, and

rs2156552 variants with decreased HDL-C (P = 0.0002,

2.2861027, and 1.0861028, respectively) in the FHS was

supported by a similar association with decreases in the HDL

subphenotypes HDL2 and HDL3. A recent GWAS of 17

nonconventional, NMR-assessed lipoprotein measures also iden-

tified association of the rs4938993 variant with apoA-I and large

HDL particles under both fasting and nonfasting conditions [56].

Together, these results demonstrate the reproducibility of such

measurements in association studies. Future lipid genetic associ-

ation studies using nonstandard measurements may provide

additional insights beyond aggregate lipoprotein measures.

Finally, we evaluated 2 SNPs, rs2156552 and rs4299883, which

were recently reported in the GLGC GWAS metaanalysis to be

highly associated with HDL-C. Both variants are 40–65 kb

downstream of the LIPG gene and are in high LD with each

Figure 4. Linkage disequilibrium of rs34474737 (229 T.G) and
rs2000813 (Thr111Ile) variants. Genotyping of rs34474737 and
rs2000813 variants was completed in SIRCA participants (761 in total).
LD was estimated and plotted using this genotyping data using
Haploview software. Values in the LD plot are estimated squared
correlation coefficients (R2).
doi:10.1371/journal.pgen.1002393.g004
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other [20], but not with Thr111Ile or Asn396Ser. In addition to

being associated with decreased HDL-C, the minor alleles of these

variants are associated with increased plasma EL in humans. We

did not observe any LD with any of the common variants

identified in our resequencing study. Further analysis of the

regulatory region harboring these SNPs may help elucidate the

mechanism by which these variants contribute to increased human

LIPG expression.

The molecular regulators of LIPG expression are largely

unknown. Investigations of induced EL secretion from human

endothelial cells upon cytokine treatment have suggested that

LIPG is regulated in an NFkB-dependent manner [57]. Subse-

quent studies utilizing electrophoretic mobility shift assays,

chromatin immunoprecipitation (ChIP), and cotransfection exper-

iments of luciferase reporter constructs determined that the LIPG

promoter contains 2 NFkB binding sites, one of which (position

21250 relative to the transcription start site) exhibited strong

NFkB binding in vitro [58]. In addition, ChIP combined with

genome tiling arrays in HepG2 liver cell lines identified LIPG as a

potential target of the SREBP1 transcription factor, a major

regulator of cellular fatty acid synthesis and metabolism [59].

None of the promoter variants identified in this study disrupt the

NFkB or SREBP1 binding sites. Further characterization of

regulatory variants affecting LIPG expression may help elucidate

key regulators of LIPG expression.

Conclusions
In this study, we demonstrate that regulatory variants, both

common and rare, causally contribute to an associated phenotype.

Given the complexities of interpreting the functionality of

noncoding variants, direct experimental evaluation may be

required to assess their impact accurately. By expanding on

previous statistical association methods, this study provides an

example of how such an evaluation may be done. As future whole-

genome sequencing efforts will undoubtedly uncover myriad

causal regulatory mutations for several polygenic traits, the

findings in this study should encourage the development of

methodologies to assess the contribution of rare noncoding

variants.

Materials and Methods

Ethics statement
Written informed consent was obtained from all participants in

the cohorts described. The UPenn Institutional Review Board

(IRB) approved all study protocols.

Research participants for the sequencing cohorts
LIPG regulatory variants were identified in a discovery cohort of

subjects selected from the extremes of the HDL-C phenotypic

distribution in the following cohorts: University of Pennsylvania

(UPenn) High HDL Cholesterol Study (HHDL), UPenn Cathe-

terization cohort (PennCATH), Study of Inherited Risk of

Coronary Atherosclerosis (SIRCA), and Philadelphia Area Met-

abolic Syndrome Network (PAMSyN).

HHDL is a cross-sectional study of genetic factors contributing

to elevated HDL-C levels. Individuals with elevated HDL-C

(.90th percentile for age and gender) were identified by physician

referrals or through the Hospital of the UPenn clinical laboratory.

PennCATH is composed of consecutive subjects undergoing

coronary angiography at UPenn Health System hospitals and has

been previously described [60]. SIRCA is a cross-sectional study of

factors associated with coronary artery calcification in asymptom-

atic subjects recruited on the basis of a family history of premature

coronary artery disease. Study design and initial findings have

been previously published [61]. PAMSyN is a cross-sectional study

of individuals with varying numbers of metabolic syndrome

criteria, from none to all 5.

High HDL participants and low HDL participants were chosen

from these cohorts. HHDL Sequencing Cohort participants are

subjects with elevated HDL-C ($95th percentile) for age and sex

(females, range 87–174 mg/dL; males, range 85–166 mg/dL).

LHDL Sequencing Cohort participants are subjects with low

HDL-C (#25th percentile), excluding individuals with HDL-C

,20 mg/dL to eliminate participants with likely monogenic

disorders of lipoprotein metabolism, leading to reduced HDL-C

concentration (females, range 22–61 mg/dL; males, range 23–

44 mg/dL). Approximately 92% of participants were Caucasian,

while the remaining 8% were of African descent; 42% of the

participants were males, which was representative of the overall

demographics of the parent studies. In total, 195 high HDL

participants and 193 low HDL participants were chosen for deep

resequencing analysis of the LIPG promoter.

Research participants in Framingham Heart Study
association

The Framingham Heart Study (FHS) Offspring Cohort,

consisting of 5124 participants who were offspring of the original

cohort recruited in 1948 and the spouses of the offspring, was

initiated in 1971. Participants have been examined every 4 to 8

years. The examined genotypes were from a panel of 1778

unrelated individuals who provided blood samples for DNA

extraction during the sixth examination cycle (1995–1998). HDL

measurements were available at up to 7 time points for each

individual. The HDL mean from the available measures for each

individual was used. HDL2, HDL3, HDL size, HDL subfractions,

and apoA-I, measured at exam 4, were determined as described

previously [62,63,64]. The Institutional Review Board at Boston

Medical Center approved the study, and all participants gave

written informed consent.

Sequencing
A 1755-bp region of the promoter region (directly upstream of

the transcription start site) of LIPG was amplified using a

polymerase chain reaction (PCR)-based strategy. Genomic DNA

was isolated from peripheral blood leukocytes using Nucleon

extraction and purification protocols (Amersham). PCR reactions

containing 200 ng of DNA template using Ready-to-Go PCR

Beads (Amersham) were amplified in a final volume of 25 mL. The

PCR program included denaturation at 95uC for 5 min, followed

by 35 cycles (95uC for 1 min, 61.5uC for 30 s, and 72uC for

1 min), and extension at 72uC for 2 min. PCR products were

purified with ExoSAP-IT (USB, Cleveland, OH). Purified PCR

products were analyzed via Sanger sequencing on an ABI

sequencer with Big Dye (Applied Biosystems) terminator chemis-

try. Sequences were aligned and chromatograms viewed with

Sequencher Version 4.8 (Gene Codes) software. Allelic variations

were verified by inspecting chromatograms. Putative variants

identified in the HHDL and LHDL Sequencing Cohorts were

searched for in the 1000 Genomes Project database. Rare variants

were those with ,1% MAF in our sequencing cohorts, and

common variants were those with $5% MAF in our sequencing

cohorts.

Genotyping
The 21309 A.G (rs3829632) and 21358 (T insertion) variants

were genotyped in participants of the FHS for association analysis

LIPG Regulatory Variants Modulate HDL Cholesterol
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with HDL-C and other HDL traits by using Taqman custom

genotyping assays (Applied Biosystems). For association of

common variants with plasma EL concentration in SIRCA

participants, genotyping was completed by using either Taqman

custom genotyping assays (for 21309 A.G [rs3829632], 229

T.G [rs34474737], and rs4299883) or the ITMAT-Broad-CARe

(IBC) cardiovascular gene genotyping array [65]. DNA was

diluted to 50 ng/mL, and genotyping was performed at the Center

for Applied Genomics (Children’s Hospital of Pennsylvania)

following manufacturer specifications for amplification and

hybridization to the IBC array (HumanCVD beadchip, Illumina),

as previously described [66].

Plasmid constructs and site-directed mutagenesis
A 2007-bp fragment consisting of the human LIPG promoter

(1755-bp portion flanking the transcription start site) and the 59

untranslated region (252-bp) was PCR-amplified from a human

LIPG plasmid clone with PCR primers that introduced Kpn I and

Xho I restriction sites at the 59 and 39 ends of the fragment,

respectively. This amplified region was cloned into the pGL3-basic

vector (Promega) with the Kpn I and Xho I restriction sites to

generate a construct with wild-type LIPG promoter driving firefly

luciferase expression and was confirmed by PCR.

Mutagenesis of the wild-type LIPG promoter (firefly luciferase)

construct to generate mutant constructs for each of the identified

regulatory variants was achieved by using QuikChange Site-

Directed Mutagenesis Kit (Stratagene) according to the manufac-

turer’s directions with primer sequences available in Table S3.

Plasmids were sequenced after site-directed mutagenesis to

confirm the changes and to rule out additional nonspecific

changes.

Cell culture and dual-reporter luciferase assays
Clonetics human umbilical vein endothelial cells (HUVEC,

Lonza) were cultured in Clonetics Endothelial Growth Medium

(EGM-2, Lonza) at 37uC, 5% (v/v) CO2. In preparation for

luciferase assays, HUVECs were passaged 3 times and plated

(10,000 cells/well) overnight in 96-well tissue culture grade

black-and-white microplates (Perkin-Elmer) in EGM-2. Cells

were transfected by using 2 mg DNA/well (LIPG promoter

construct and pRL-SV40 in a 50:1 ratio) and Fugene HD

transfection reagent (Roche) in a 1:3 ratio of DNA to Fugene

HD following the manufacturer’s instructions. Cells were

harvested at 36 h after transfection. Luciferase assays were

performed with the Dual Luciferase Assay Kit (Promega) and a

dual-injection microplate luminometer (Orion Microplate Lu-

minometer, Berthold Detection Systems). Each well was

normalized by Renilla luciferase luminescence values. Normal-

ized values were compared to wild-type LIPG promoter

constructs transfected on the same plate. Each construct was

transfected with 6 replicate wells for each experiment. Each

construct was evaluated at least three times.

Enzyme-linked immunosorbent assays
The preheparin mass of EL was measured from the plasma of

SIRCA study participants genotyped for some of the identified

common variants and 2 GWAS-identified noncoding variants.

Detailed methods of the EL sandwich ELISA have been reported

previously [67,68]. Briefly, rabbit anti-human EL antibody was

used to capture EL from diluted plasma samples, followed by

incubation with biotin-conjugated rabbit anti-human EL antibody

and streptavidin-horseradish peroxidase conjugate with O-phe-

nylenediamine for detection.

Statistical analyses
Analysis and comparison of promoter activity between wild-type

and variant LIPG promoter constructs from the luciferase assays

were conducted by using unpaired Student’s t-tests (P-values,0.05

were considered to be statistically significant). Numbers of

individuals with a rare variant identified in each sequencing

cohort were initially compared using 2-tailed Fisher’s exact tests.

Variants that did not alter promoter activity in vitro were

discounted, and individuals harboring these variants were included

in their respective sequencing cohort as individuals without a

functionally altering variant. Numbers of individuals with variants

decreasing promoter activity and with variants decreasing

promoter activity in each sequencing cohort were then compared

separately using 1-tailed Fisher’s exact tests.

The FHS association analysis was completed by performing

multiple linear regressions of the residuals of lipid phenotypes,

separately by gender, after adjustment for means of age, age2,

BMI, alcohol intake, and smoking status. In this analysis, for

women, the proportion of exams that a woman was menopausal

and on hormone replacement therapy was included as a covariate.

For association of variant genotypes with effect on plasma EL in

SIRCA, plasma EL concentrations were log-transformed to

normalize the distribution and analyzed with linear regression.

Linkage disequilibrium (LD) calculations and presentation were

performed with Haploview software [34].

Supporting Information

Figure S1 Expression of LIPG promoter construct in HUVECs.

Relative LIPG promoter activity of WT LIPG promoter construct

(1755-bp of LIPG promoter and 59 UTR driving expression of

firefly luciferase) and pGL3-basic construct (no functional

promoter) in HUVECs. Firefly luciferase activity of WT construct

was normalized to that of cotransfected Renilla luciferase, and

Renilla-normalized promoter activity was normalized to that of

pGL3-basic construct to determine functionality of WT promoter

construct in HUVECs for subsequent analysis of variant

constructs. Assays were conducted with 6 replicates per experi-

ment and data is given as mean 6 standard deviation.

***P,0.0001 relative to pGL3-basic.

(TIF)

Figure S2 Functional analysis of additional rare LIPG regulatory

variants identified. Relative promoter activity of rare variants

(MAF,0.01) identified from resequencing of individuals with high

HDL-C levels (A) or low HDL-C levels (B) which did not alter

LIPG promoter activity in vitro, and of rare variants present in

both high HDL-C and low HDL-C cohorts (C). Plasmid constructs

expressing firefly luciferase under the control of wild-type (WT) or

variant LIPG promoters were individually co-transfected with a

Renilla luciferase reporter construct (pRL-SV40) in HUVECs.

Firefly luciferase expression were measured and normalized to that

of Renilla luciferase, and Renilla-normalized promoter activities

for variant constructs were then normalized to those of the WT

construct to provide relative LIPG promoter activities of the

variants. Assays were conducted with 6 replicates per experiment

and data is given as mean 6 standard deviation.

(TIF)

Figure S3 Linkage disequilibrium in and surrounding the LIPG

promoter. LD was estimated for 3 common LIPG promoter

variants (rs3829632, rs4245232 and rs9958947) and additional

common variants upstream and in intronic regions of LIPG from

HapMap CEU population dataset using Haploview software.
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Values in the LD plot are estimated squared correlation

coefficients (R2).

(TIF)

Table S1 Characteristics of participants in sequencing cohorts

with rare LIPG regulatory variants.

(DOCX)

Table S2 Association of LIPG combined haplotype variants with

HDL-C in GLGC GWAS.

(DOCX)

Table S3 Primers used for site-directed mutagenesis to generate

LIPG promoter variant constructs.

(DOCX)
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