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ABSTRACT

Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing 
nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary 
diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. 
Mabc infection is chronic and often challenging to treat due to drug resistance, motivating 
the development of new therapeutics. Despite this, there is a lack of understanding of the 
relationship between Mabc and the immune system. This review highlights recent progress 
in the molecular architecture of Mabc and host interactions. We discuss several microbial 
components that take advantage of host immune defenses, host defense pathways that can 
overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes 
of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen 
interactions during Mabc infection will enable the identification of biomarkers and/or drugs 
to control immune pathogenesis and protect against NTM infection.
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INTRODUCTION

Nontuberculous mycobacteria (NTM) are emerging and ubiquitous microorganisms found 
in environments such as water and soil (1). Among NTM strains, the rapidly growing 
Mycobacteroides abscessus complex includes M. abscessus subsp. bolletii, M. abscessus subsp. 
massiliense (Mmass), and M. abscessus subsp. abscessus (Mabc) (2-4). M. abscessus complex 
members cause pulmonary infections (3,5), particularly in patients with cystic fibrosis (CF) 
and other underlying diseases (6-9). Mabc is thought to be the most pathogenic M. abscessus 
complex member due to natural and acquired antibiotic resistance (1,10,11). Although they 
primarily cause opportunistic infection in immunocompromised subjects, M. abscessus 
complex members can induce pathogenic infection in the immunocompetent people (12). In 
addition, there are considerable differences in the clinical and epidemiological characteristics 
of NTM diseases depending on race/ethnicity and geographical distribution (13). Treatment 
of NTM diseases is hampered by multidrug resistance. The M. abscessus complex is resistant 
to all first-line drugs against tuberculosis (1,2,14). According to the current CF Foundation 
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Clinical Care Guidelines, amikacin, cefoxitin, and clarithromycin are the leading drugs for 
treating M. abscessus infection (15). However, these regimens show a low cure rate (29%–
58%), as well as toxic side-effects because of prolonged treatment durations, thus reducing 
compliance with regimens (16). Therefore, new host-directed therapeutics against NTM 
diseases are needed. However, our understanding of the host factors that influence protective 
immune responses in NTM infections is inadequate.

In this review, we discuss recent progress in crosstalk between Mabc and the host innate 
and adaptive immune systems during infection. Specifically, we focus on the microbial 
components and host factors/pathways by which host cells regulate protective immunity and 
pathological inflammation. Finally, we review candidate host-directed therapeutics against 
Mabc infection. Understanding the mechanisms underlying host-pathogen interactions 
during Mabc infection will facilitate the development of host-targeted immunotherapeutics 
against drug-resistant refractory Mabc infection.

OVERVIEW OF Mabc INFECTION

Over 190 species of NTM have been identified and several species cause diseases in 
immunocompromised and immunocompetent individuals. NTMs are typically present in soil, 
water networks, showerheads, tap water, and swimming pools, making human–pathogen 
contact likely (1,2). Among them, the Mycobacterium avium-intracellulare complex (MAC) and M. 
abscessus complex are clinically significant pathogens (17,18). M. abscessus complex members are 
rapidly growing mycobacteria (RGM) classified into 3 subspecies: Mabc, M. bolletii, and Mmass 
(2-4,18). Mabc causes various diseases, including pulmonary, extra-pulmonary, cutaneous, and 
systemic infections (18,19). M. abscessus complex members are the agent of pulmonary disease 
(PD) driven by RGM, accounting for 3%–13% of all NTM-PD (2,5). In South Korea the 6-, 10-, 
and 14-year cumulative mortality rates of patients infected with NTM increase over time (13.7%, 
19.2%, and 22.9%, respectively) (20). Mabc pulmonary infection is often severe, requires 
prolonged treatment, and is one of the most antibiotic-resistant mycobacteria (2,14,18,21). 
Long-term macrolide therapy in CF patients promoted the emergence of Mabc infection 
(10,22). Exposure of CF patients to the macrolide clarithromycin increases the expression of 
the erythromycin ribosome methyltransferase (erm)(41) gene in Mabc and M. bolletii, indicating 
inducible macrolide resistance (23,24). However, the erm(41) gene in Mmass is in a short form 
of about 270 bp, likely because Mmass lacks inducible resistance to macrolides (2,23,24). 
In addition, Mabc can survive in water distribution systems and exhibits several virulence 
characteristics, such as biofilm formation, disinfectant resistance, and adherence to surfaces. 
The Mabc variants, smooth (MaSm) and rough (MaRg), have distinct colony morphologies, 
depending on the presence of cell wall glycopeptidolipids (GPLs) (1,8,18). MaSm variants have 
GPL in their cell wall, which is absent in MaRg. Although both variants induce biofilms to resist 
mechanical clearance from the lungs, MaRg biofilms are stiffer than those of MaSm (25).

Recent studies suggest a model for the stepwise pathogenic evolution of Mabc from 
horizontal gene acquisition by environmental clones, allopatric (or geographic) within host 
adaptation, constrained (or forced) transmission via the environment, and opportunities 
for direct transmission of emergent mycobacteria among populations (26,27). However, 
cohabiting patients with NTM-PDs have distinct genetic profiles, suggesting minimal 
patient-to-patient transmission (28). More data are needed to evaluate the person-to-person 
transmission of NTM diseases.
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Mabc COMPONENTS THAT INTERACT WITH THE HOST 
IMMUNE SYSTEM
Although Mabc infection has similarities with that of M. tuberculosis (Mtb), the antigens/
components responsible for host defense and pathogenesis in Mabc infection are unclear. 
This section discusses the Mabc components and antigens responsible for virulence and/or 
interaction with the host immune system (Table 1).

Mabc lipids: glycopeptidolipids (GPLs) and others
GPLs are a family of glycolipids found in several pathogenic and nonpathogenic NTM 
species. Therefore, considerable effort has focused on identifying GPL structure, function, 
and role in pathogenesis. GPLs mask the bacterial surface, thereby inhibiting recognition by 
the host immune system. Mabc colonies have distinct phenotypes depending on the presence 
or absence of GPL in the cell wall. MaSm, which produces GPLs, is responsible for the initial 
colonization of lung alveoli (1,8,18). Spontaneous in vivo conversion from MaSm to MaRg 
was detected using an in vivo fibrin plug model of Mabc infection (29). The transition from 
the MaSm to MaRg variant is associated with exacerbation and persistence of Mabc infection 
and increased intensive proinflammatory responses, and host lethality (29). The virulence of 
MaRg is mainly due to massive production of serpentine cords, which form clumps or loose 
aggregates (1,30). In addition, Mabc GPLs inhibit the host macrophage apoptosis induced 
by proapoptotic stimuli, by inhibiting ROS generation and maintaining the mitochondrial 
transmembrane potential (31). Mabc GPL-mediated inhibition of host cell apoptosis is 
important for controlling bacterial spread in the context of Mabc infection (31) because 
apoptosis induction during Mtb infection is implicated in host antimicrobial defense (32). 
Trehalose dimycolate (TDM) is a glycolipid intermediating the construction of mycobacterial 
cell wall, produced by MaRg, not by MaSm. The production of TDM by MaRg contributes to 
invasive infection by cord formation (8). In addition to GPL and TDM, multiple isolates of 
the same NTM species and multiple NTM species have differential infectivity, at least in part 
because of modified phospholipids that antagonize antibacterial protein LL-37 (33). Given 
the host-protective function of LL-37 in Mtb infection (34), it would be interesting to explore 
the role of LL-37 in Mabc infection. In addition, whether GPLs of Mabc affect the functions of 
other antimicrobial proteins during Mabc infection warrants further investigation.
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Table 1. Mabc components interacting with the host system
Category Name Role Required for Ref.
Mabc lipids GPL Surface components • Masking the bacterial surface to prevent recognition by host immune systems (1,30,31)

• The initial colonization at the lung alveoli
• Inhibition of host macrophage apoptosis

TDM • Invasive infection by cord formation (8)
ESX systems ESX-3 Secretion system • Activation of proinflammatory responses during infections (40)

ESX-4 Secretion system • Intracellular survival (41)
• Blockade of phagosomal acidification during infection

Membrane proteins 
and enzymes

MmpL4 Membrane protein • Transport and assembly of GPL at the bacterial surface (42)
MmpL8 Membrane protein • Adhesion to host macrophages (43)

• Phagosome membrane rupture
PLC Hydrolase • Intracellular survival of Mabc (44)

• The detrimental effect on murine macrophage
Pmt Glycosylation • Intracellular survival of Mabc (45)

Mabc protein 
antigens

MAB1843 Unknown • Maturation of DCs (46)
• Increment of the T cell proliferation and Th1 polarization

MgtC Unknown • Intramacrophage survival (47)
• Adaptation to Mg2+ deprivation

MAB_4780 Dehydratase • The escape of phagosomal fusion (48)



ESAT6 secretion (ESX) system of Mabc
Most bacteria possess extracellular protein secretion systems that transport proteins across 
the cell wall. Mycobacterial cell envelopes contain several complex secretion systems (35). ESX 
system, also known as the Type VII secretion system, is conserved in high G+C Actinobacteria 
and is crucial for mycobacterial virulence and physiology, such as nutrient uptake (36). The 
first Type VII secretion system was discovered in Mtb. To date, 5 types of ESX system have 
been identified in mycobacteria, and the number of ESX systems differs among mycobacterial 
species. Tuberculosis-causing mycobacteria have ESX-1-5; M. leprae has ESX-1, -3, and -5; M. 
smegmatis has ESX-1-4; and Mabc has only ESX-3 and ESX-4, the fewest of any mycobacterial 
species (37). Mycobacterial Type VII secretion system substrates are divided into 3 types. First, 
ESX-1 secretion-associated proteins (Esp) are secreted via ESX-1, including EspA, EspB, and 
EspC. Next, as a proline-glutamate (PE) and proline-proline-glutamate (PPE) substrate, 2 
proteins exist as heterodimers. PE and PPE motifs are conserved in the N-terminal domain, 
respectively, and comprise a helix-turn-helix motif (38). Finally, Esx substrates, typically of 
fewer than 100 amino acids, are represented by EsxA (early secretory antigenic target; ESAT-
6) and EsxB (culture filtrate protein; CFP-10) of Mtb. Homologs of esxA and esxB are present 
in the gene cluster comprising the 5 ESX systems, and are widespread in mycobacteria other 
than tuberculosis (37,39). Compared to Mtb, ESX systems of Mabc have not been thoroughly 
investigated. Mabc ESX-3 induces a host immunopathological response during infection. In 
addition, ESX-3 contains the EsxH and EsxG substrates, matching EsxA and EsxB of Mtb, 
respectively. Recombinant EsxG and EsxH increase inflammatory cytokine generation in 
a dose-dependent manner in macrophages infected with an Mabc Δesx3 deletion mutant 
strain (40). The ESX-4 system locus encompasses a cluster of 7 genes, including homologs 
encoding the Esx substrates. Mabc EccB4, a core structural component of ESX-4, is required 
for intracellular survival and blockade of phagosomal acidification during infection (41). 
Notably, Mabc ΔeccB4 cannot disrupt phagosomes, thereby inhibiting phagosome-to-cytosol 
contacts (41). The Mabc ESX-4 system may replace the function of the ESX-1 system in other 
mycobacteria based on 3 findings: the absence of an ESX-1 system in Mabc, in contrast to its 
presence in most other RGM (35); the Mabc ESX-4 locus harbors eccE4, which is implicated in 
host-pathogen communication and is depleted in all the other mycobacteria (35,41); and ESX-4 
blocks phagosomal acidification and rupture during infection (41).

Membrane proteins and enzymes
The mycobacterial membrane protein large (MmpL) family transporters translocate 
substrates and lipids (such as PDIM, sulfoglycolipid, and diacyltrehaloses) across the cell 
membrane via proton motive force. MmpL proteins are involved in drug resistance in both 
NTM and tuberculous mycobacteria. Mabc harbors 31 putative MmpL transporters, compared 
to 13 in Mtb (42). However, most MmpL transporters of Mabc are not characterized. Mabc 
MmpL4, which is implicated in GPL assembly and transport, was reported to be involved 
in Mabc virulence, suggesting that GPL produced by MmpL4 regulates the fate of Mabc 
within macrophages (30). Mabc mmpL8 was identified in an investigation of the phylogenetic 
relationships between MmpL proteins of Mabc and Mtb. MmpL8 is essential in Mabc 
intracellular survival and virulence in both murine macrophages and zebrafish, mediating 
adhesion to host macrophages and phagosome membrane rupture (43). In addition, 
bacterial phospholipase C (PLC) is a hydrolase associated with surface molecules, such as 
phospholipids, required for Mabc pathogenicity. Purified recombinant protein PLC of Mabc 
exhibits strong cytotoxicity for murine macrophages, presumably due to decomposition 
of membrane phospholipids (44). Protein-O-mannosyltransferase (Pmt), involved in 
O-glycosylation, increases cell wall rigidity by glycosylating endogenous Mabc lipoproteins. 
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Deletion of Mabc pmt increases cell wall permeability and suppresses intracellular survival 
because of a cell wall defect of glycosylation (45). However, it has yet to be determined how 
Mabc Pmt escapes from host immune defenses.

Mabc protein antigens
Mabc MAB1843 promotes dendritic cell (DC) maturation via TLR4 signaling, and MAB1843-
treated DCs increased T cell proliferation and Th1 polarization (46). These data indicate 
that specific Mabc antigens, including MAB1843, potentiate innate and adaptive protective 
immune responses against Mabc, thus showing promise for the development of vaccines and 
therapeutic candidates (46). Although there is no effect of MgtC in vitro, blockade of MgtC, a 
virulence factor encoded by MAB_3593, protects against Mabc infection in CF (ΔF508 FVB) 
mice (47). Furthermore, MAB_4780, encoding a dehydratase implicated in the metabolism 
of mycolic acids, is involved in escape from phagosomal fusion, which favors intracellular 
growth of Mabc (48).

Mycobacteria use various strategies to escape from host immune and effector 
mechanisms, establishing long-lasting infection within host cells (12,14,49). However, the 
immunomodulatory effects of Mabc components during infection are unclear, as are the 
signaling pathways activated by those components in innate and adaptive immune cells. 
Therefore, understanding the molecular mechanisms by which the host immune system 
interacts with mycobacteria and their components would facilitate the development of host-
directed therapeutics against drug-resistant mycobacterial species, including Mtb and NTMs. 
Table 1 lists the Mabc components that interact with the host immune system.

CROSSTALK BETWEEN THE HOST INNATE IMMUNE 
SYSTEM AND Mabc
Several components of the innate immune system—such as pattern recognition receptors 
(PRRs), cytokines, and autophagy—play critical roles in protective and pathological 
responses to Mabc infection. The following 2 sections discuss the roles of various host innate 
and autophagic pathways in host-Mabc interaction. Knowledge of the interaction between 
Mabc antigens and host innate factors will enable identification of therapeutic targets and 
candidate vaccine antigens.

Overview of host innate immune responses
The host immune response has innate and adaptive immune components (49,50). Innate 
immunity, the early and immediate immune response, recognizes various pathogenic stimuli 
via PRRs in innate immune cells (50,51). The sensing of pathogen-associated molecular 
patterns (PAMPs) by PRRs activates intracellular signals, leading to the production of 
antimicrobial effector molecules and eliminating intracellular bacteria (50,52). The PRRs 
include TLRs, nucleotide-binding leucine-rich repeat-containing receptors (NLRs), and 
scavenger receptors, all of which are primarily present in innate immune cells, particularly 
macrophages (50). These innate immune receptors are classified as membrane- and cytosolic 
receptors, recognize PAMPs during pathogenic infection, and are responsible for signal 
transduction in host cells, activating inflammatory and effector responses (50). The effector 
pathways include the production of inflammatory cytokines and antimicrobial peptides, 
generation of reactive oxygen and nitrogen species, autophagy, phagolysosomal fusion, and 
antigen presentation (49). The inflammatory signaling triggered by PRRs is transduced by 
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the formation of cooperative assemblies of multiple signaling molecules, including enzymes 
and adaptors, to activate transcription factors, including NF-κB and interferon regulatory 
factors (IRFs) (53). In the nucleus, NF-κB enhances the transcriptional activities of a variety 
of inflammatory mediators, including TNF-α and IL-6, whereas IRFs participate in the 
activation of type I IFNs and antiviral immune responses (53,54). The transcription factor 
IRF1 activates type I IFN gene expression (53). Interestingly, Mabc triggers both NF-κB and 
IFN signaling to differentially influence host innate immune responses during infection 
(55,56). Further studies are needed to clarify the mechanisms by which these 2 cytokine 
signaling pathways regulate host defense and pathology in Mabc infection.

Inflammasomes are multiprotein complexes that activate canonical caspase-1, noncanonical 
caspase-11 (or the equivalent caspase-4 and -5 in humans), or caspase-8 to induce secretion 
of the mature forms of IL-1β and IL-18, and pyroptotic cell death (57). Regulation of 
the nucleotide-binding and oligomerization domain-like receptor family pyrin domain 
containing 3 (NLRP3) inflammasome is important because it is implicated in the primary 
immune defense and pathophysiological responses of various immune and inflammatory 
diseases (57,58). Mabc infection induces NLRP3 inflammasome activation, leading to the 
production of IL-1β in human and murine macrophages (55,59). However, little is known of 
the roles of other inflammasome complexes in host defense or tissue damage during Mabc 
infection. Further studies are needed to clarify the mechanisms by which Mabc infection 
regulates inflammasome assembly to modulate host effector function.

Innate immune receptors: TLR2, TLR4, nucleotide-binding oligomerization 
domain (NOD)2, and NLRP3
TLR2 and TLR4 are essential for recognition of bacterial cell wall structures. TLR2 is critical 
for protection against infection with Mabc and Mmass. The TLR2-enriched fraction of MaRg 
is reported as vaccine and diagnostic candidate because antibodies from this fraction are 
found in infected samples from patients with CF (60). In addition, TLR2-deficient mice 
showed increased susceptibility to intravenous MaRg infection, at least in part because 
of failure of early inflammatory responses, recruitment of inflammatory cells into the 
bronchoalveolar space, and T cell activation (61). MaRg, but not MaSm, increases IL-8 
activation and β-defensin 2 expression in airway epithelial cells via TLR2 (62). Moreover, 
IFN-β is induced via the TLR2/TLR4-MyD88/TRIF-IRF3-dependent signaling pathway upon 
MaRg infection (63). TLR2-MyD88 is implicated in Mmass-induced macrophage activation 
(64). However, neither TLR4 nor dectin-1 is involved in Mmass-mediated innate immune 
responses in vitro (64). These data suggest that TLR2 signaling is crucial in Mabc- and 
Mmass-induced inflammatory responses in innate immune cells, such as macrophages and 
bronchial epithelial cells.

The NOD containing proteins (NOD1 and NOD2) are crucial for innate immunity as sensors 
of bacterial components. NOD2 is essential for protection against Mabc infection in vivo. 
NOD2-deficient mice infected intranasally with Mabc have increased pathological responses 
and exhibit defective microbial clearance in the lungs. Mechanistically, NOD2-mediated 
activation of nitric oxide (NO) and the expression of iNOS suppress intracellular Mabc growth 
(65). Mabc activates the NLRP3 inflammasome complex via the Dectin-1-mediated Syk 
signaling pathway (59). Mabc-mediated activation of the NLRP3 inflammasome contributes 
to antimicrobial responses against Mabc infection (59). The MaRg variant activates NLRP3 
inflammasome-mediated IL-1β maturation in murine macrophages by increasing the 
production of mitochondrial ROS and cytosolic release of mitochondrial DNA (mtDNA) (55). 
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Mitochondrial ROS production and mtDNA translocation promote intracellular bacterial 
survival and replication in macrophages during MaRg infection (55). These data suggest that 
different variants of Mabc induce distinct innate immune responses during infection.

Cystic fibrosis transmembrane conductance regulator (CFTR)
Mabc is frequently found as an opportunistic pathogen in patients with CF (6-9). CFTR gene 
variants, particularly Q1352H, are associated with increased susceptibility to NTM lung 
infections in the Korean population (66). The CFTR is an anion channel in the epithelial 
cell membrane and a member of the ATP-binding cassette transporter family. During 
Mabc infection, CFTR is vital for host protection according to a study in zebrafish (67). 
CFTR depletion impairs NADPH oxidase-dependent oxidative defenses, thus increasing 
susceptibility to Mabc infection. It also inhibits neutrophil chemotaxis, causes defective 
granuloma formation, and induces abscess formation during disease development (67). In 
one study, loss of CFTR increased susceptibility to and impaired host immunity in a zebrafish 
model during M. fortuitum infection (68). However, CF lungs have chronic inflammation and 
aging markers, and the sustained airway inflammation seen in CF accelerates the degradation 
of CFTR (69). Given the chronic neutrophilic inflammation and lung damage in CF lungs 
(70), more clinically relevant animal models of pathologies related to neutrophil infiltration 
during chronic NTM diseases are needed. Further studies should clarify the role of CFTR in 
regulating host immunity and inflammation during Mabc infection.

Cytokines and their receptors
Human genetic studies identified that patients with primary immunodeficiencies undergoing 
disseminated Mabc infection have IFNAR1 and IFNGR2 mutations. There are 3 groups 
of IFNs: type I (IFN-α, IFN-β, IFN-κ, IFN-ε, IFN-ω, and IFN-τ), type II (IFN-γ), and type 
III (IFN-λ1, IFN-λ2, IFN-λ3, and IFN-λ4). Each group has a receptor (IFNAR, IFNGR, and 
IFNLR, respectively) and signaling pathway (71). Because IFNAR1 and IFNGR2 encode the 
signaling subunits for IFN-α and IFN-γ receptors, respectively, these data strongly suggest 
a critical role of type I and II IFN signaling in protection against Mabc infection (71). Mabc-
infected NTM-PD patients had lower IL-2-, TNF-α-, and IFN-γ-positive polyfunctional T 
cell counts than controls and a colonization group (72). In addition, the IFN-γ and IL-12 
levels were significantly decreased, whereas that of TNF-α was increased in sera from 
Mabc-infected patients prior to antibiotic treatment compared to healthy control subjects 
(73). Human cytomegalovirus infection-induced IL-10 production abrogates host immune 
responses to Mmass infection (74). Further studies with larger populations are warranted 
to clarify whether cytokines could be used as biomarkers for diagnosis and/or treatment 
outcome prediction.

Mabc infection robustly activates the expression of type I IFNs in innate immune cells. An 
MaRg variant promotes type I IFN production in macrophages via the cyclic GMP–AMP 
synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, thus contributing 
to virulence via cell-to-cell spreading (55). However, type I IFN responses might induce 
NO production and antimicrobial responses during Mabc infection (63). Although the 
discrepancy is apparent, further studies are warranted to clarify the role of type I IFN 
signaling during Mabc infection. In addition, gene and protein expression levels in the IFN-I 
signaling pathway significantly are increased in normal human bronchial epithelial cells and 
mouse lungs exposed to Mabc cell wall particles (75), although it is unclear the exact function 
of type I IFN in epithelial cells during Mabc infection.
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In a zebrafish model, TNFR signaling and downstream IL-8-dependent neutrophil 
recruitment are required for protective immunity to MaSm and MaRg infections (76). Given 
that anti-TNF therapy exacerbates NTM infection (77), these data suggest that TNF signaling 
is essential for host protection against Mabc infection. However, increased pathological 
inflammation with an upregulated TNF-α level in the lungs is detrimental to protection 
against MaRg infection in vivo (78). Therefore, TNF-α may be a double-edged sword, 
promoting both protective immunity and pathological inflammation. Table 2 lists the innate 
immune components involved in host protection during Mabc infection.

HOST AUTOPHAGY AND Mabc INFECTION

Overview of autophagy/xenophagy
Autophagy is an intracellular homeostatic process that protects cells from stresses, including 
infection and other hazards (79,80). In addition, it is a central catabolic system by which 
intracellular cargos, including large protein aggregates and damaged organelles, are subjected 
to lysosomal degradation (80). It is a cell-autonomous defense system against a variety of 
infections, including mycobacterial ones (81). Canonical autophagy pathways are divided into 
macroautophagy, microautophagy, and chaperone-mediated autophagy (79). Macroautophagy 
(or widely known as autophagy) is a multistep process involving initiation, vesicle elongation, 
autophagosome maturation, lysosomal fusion, and degradation, and is orchestrated by 
numerous autophagy-related genes (ATGs) family of proteins (80). Autophagy is generally 
triggered by various stress signals including starvation, hypoxia, and microbial infections. The 
formation of double-membrane autophagosomes is regulated by mTOR, a master metabolic 
regulator. mTOR is a negative regulator of autophagy, so its dephosphorylation mediates the 
translocation of Unc-51 like autophagy activating kinase (Ulk1/2)-ATG13-FAK family-interacting 
protein (FIP200)-Atg101 complex to the endoplasmic reticulum, a process that also involves 
the class III PI3K complex (79). Elongation and closure of autophagosomes are conducted by 
the ATG5-ATG12-ATG16L complex and the ATG8 family composed of LC3 (80). The completed 
autophagosome fuses with a lysosome for the degradation of cytoplasmic cargo.
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Table 2. Host innate immune interaction with Mabc during infection
Innate 
immune 
components

Variants 
used

Observation/Mechanism Model Ref.

TLR2 R • Detection of antibodies against TLR2eF in CF patients In vivo mice model,  
CF patients

(60)
• Partial protection by TLR2eF against Mabc infection in mice

TLR2 R •  Regulation of cytokine (IFN-γ, TNF-α and IL-12p70) production, T cell activation, and recruitment of 
immune cells

Tlr2-/- mice (61)

TLR2 R and S • Recognition of Mabc lacking GPL (R variant) by TLR2 A549 cells (62)
• Increased expression of IL-8 and beta defensin 2 by variant lacking GPL (R variant)

NOD2 R • NOD-2 mediated production of cytokine and NO via p38 and JNK activation NOD2-/- mice, BMDMs (65)
NLRP3 - • TLR2 mediated activation of NLRP3 inflammasome via Dectin-1-Syk signaling pathway Human MDMs (59)
NLRP3/IFN-I R and S •  Increased mitochondrial ROS and mtDNA leading to NLRP3 mediated IL-1b and cGAS-STING 

dependent IFN-I production
J774A.1, RAW264.7 cells, 

BMDMs
(55)

CFTR R and S •  Impaired NOX2/NADPH oxidase-dependent ROS production leading to increased growth of Mabc, 
decreased neutrophil recruitment, and defective granuloma formation during CFTR deficiency

Zebrafish (67)

IFNB R and S •  Activation of TLR2-TLR4-IRF3 pathway for the production of IFNB (more during R variant infection as 
compared to S-variant) which is involved in NO production

BMDMs (63)

TNF/IL8 R and S •  Activation of TNF signaling leading to IL-8 release contributing to neutrophil recruitment and 
structured granuloma formation

Zebrafish (76)

TNF R •  Increased level of Tnf and several proinflammatory cytokines in Mabc-infected mouse lung tissue 
correlated with increased bacterial burden

BMDMs and in vivo mice 
model

(78)

TLR2eF, TLR2-enriched fraction; cGAS-STING, cyclic GMP–AMP synthase-stimulator of interferon genes; R, Mabc rough variant; S, Mabc smooth variant; MDM, 
monocyte-derived macrophage; BMDM, bone marrow-derived macrophage.



Noncanonical autophagy includes selective autophagy and LC3-associated phagocytosis 
(LAP) (82,83). Selective autophagy is triggered by a variety of stimuli, such as mitophagy 
for damaged mitochondria, lipophagy for lipids, and xenophagy for intracellular bacteria. 
During xenophagy, intracellular pathogens are directed to autophagic machineries through 
selective autophagic receptors for bacterial degradation (82,83). Because xenophagy 
activation during Mabc infection is unclear, we briefly discuss the regulation of xenophagy 
during Mtb infection before moving on to Mabc infection. Via the ESX-1 system, Mtb induces 
phagosomal permeabilization to activate ubiquitin-mediated/STING dependent xenophagy 
(82). Ubiquitinated bacterial phagosomes (by ubiquitin ligase, Parkin and Smurf1) interact 
with adaptors p62 and NDP52, thereby delivering Mtb phagosomes to autophagosomal 
structures (79). Additionally, TRIM16-galectin-3 cooperation is required for detection of 
damaged lysosomes and autophagic protection during Mtb infection (84). Furthermore, 
during Mtb infection, the surface protein Rv1468c of Mtb directly binds to ubiquitin to 
activate p62-mediated xenophagy and intracellular Mtb clearance (85). By sensing cytosolic 
Mtb DNA, the DNA sensor cGAS also triggers xenophagy (86).

Another noncanonical autophagic process, LAP, involves pattern PRR signaling-mediated 
direct recruitment of LC3 and Beclin-1 to the single-membrane phagosome, leading to 
phagosomal maturation and bacterial killing (82). The Rubicon complex, which is formed 
by Rubicon-BECN1-VPS34-UVRAG assembly and NOX2-dependent ROS, is essential for LAP 
activation (87). The detailed mechanisms and molecular importance of autophagy/xenophagy 
are reviewed elsewhere (79,81,82). However, whether noncanonical autophagy is activated 
in the context of Mabc infection and its regulation are unclear. Further studies are needed 
to elucidate the exact role of autophagy in defense against Mabc infection. Below we discuss 
recent findings on canonical autophagy in innate immune cells during Mabc infection.

Crosstalk between host autophagy and Mabc infection
Host autophagy is implicated in infection with NTM bacteria, including Mabc (88,89). 
Among NTMs, M. smegmatis and M. fortuitum induce more robust autophagy compared to 
M. kansasii (90). Autophagy activation is independent of mTOR signaling in M. smegmatis 
infection (91). Mabc and M. smegmatis induce greater autophagosome formation than 
Mtb and MAC in THP-1 macrophages. These data suggest that different mycobacterial 
species elicit distinct functions in macrophages (56). Long-term use of azithromycin in CF 
patients inhibits bactericidal autophagy by preventing lysosomal acidification during Mabc 
infection (22). However, azithromycin treatment or autophagy modulation does not affect 
the mycobactericidal activity of neutrophils (92). Therefore, the role of autophagy in host 
defenses against Mabc infection might differ by cell type.

MaSm suppresses phagosomal acidification and fails to induce host apoptosis and autophagy 
(30,31). In contrast, MaRg induces more autophagy than MaSm, although the reason for this 
is unclear (30). Although these data suggest that GPLs of Mabc play a role in escape from 
host autophagy, it is unknown how Mabc and/or its components evade host autophagy. In 
addition, MaRg UC22, isolated from patients with the upper lobe fibrocavitary form of lung 
disease, leads to severe pulmonary inflammation in mice and increases the levels of cytokines 
in macrophages (93). This clinical Mabc strain markedly inhibits autophagic flux compared 
to MaSm (94), suggesting a unique ability to modulate host autophagic activity to promote 
virulence. Further work is needed to clarify the Mabc components that actively regulate host 
autophagy and to understand the modulation of autophagy by Mabc strains in the context 
of host immune defense during infection. Autophagy-restoring therapies enhance pathogen 
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clearance and ameliorate lung inflammation, particularly in CF airways (95). The Mabc 
interaction with the host autophagy pathway is shown in Fig. 1. Given the essential function 
of autophagy in regulating immune responses and inflammation, autophagy-manipulating 
therapeutic strategies could promote immune defense and control pathologic inflammation 
during Mabc infection.

ADAPTIVE IMMUNE SYSTEM DURING Mabc INFECTION

Innate immune cells, such as DCs and macrophages, function as antigen-presenting cells 
(APCs) to activate adaptive immune responses, i.e., humoral and cell-mediated immunity. 
Adaptive immunity is associated with tight regulation of the interplay between APCs and T 
cells. APCs express markers involved in APC-T cell interactions and antigen presentation, 
such as CD40, CD70, and PD-L2 (96-98). The adaptive immune system encompasses CD4+ 
Th1 cells, Th2 cells, Th17 cells, and cytotoxic T cells. Th1 cells produce IFN-γ to protect 
against intracellular microbes, including Mtb and NTMs, by activating the mononuclear 
phagocyte family, NK cells, and cytolytic T cells (14,49). The activation of bacteria-loaded 
macrophages caused by Th1 cells is crucial for intercellular interactions in Mtb infection. The 
IFNGR2 signaling pathway is critical for protective immune responses against Mabc infection 
(71). Because most studies have not focused on NTMs, further in vitro and in vivo works are 
needed to clarify the functions of adaptive immune components and cells in Mabc infection.

Distinct patterns of adaptive immune responses are related to protection and pathogenesis 
during NTM-PD. In patients with Mabc lung diseases, Th1- and Th2-related cytokine levels 
were significantly decreased, whereas IL-17-related cytokine levels were increased, in Mabc-
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Figure 1. Schematic of the interaction between Mabc and host autophagy during infection. MaRg upregulates 
autophagosome formation in host cells during infection, but MaSm blocks phagosomal acidification and fails 
to elicit autophagy. The clinical isolate MaRg UC22 inhibits autophagic flux. GPL of MaSm is a key component of 
MaSm that mediates escape from host autophagy. Although the autophagy-modulating effect of azithromycin 
differs by cell type, it inhibits host autophagy during Mabc infection. Gemfibrozil (a PPARα activator) promotes 
host defense against Mabc infection by activating TFEB and lysosomal function. 
TFEB, transcription factor EB.



infected patients compared to controls (73). Interestingly, a recent study revealed that there 
were no differences in Th1- and Th2-related cytokine levels in PBMCs between Mabc-infected 
patients and controls and the IL-17-related cytokine level was lower in patients than in healthy 
controls (99). These discrepancies could be a result of different cell types, patients with 
different disease severities, or sample sizes, etc. Further comprehensive studies on larger 
populations are needed to clarify the distinct patterns of cytokine profiles in patients with 
M. abscessus infection at different clinical stages. By contrast, the level of IL-17 was reduced in 
patients with MAC PD compared to healthy subjects, implying MAC actively suppresses Th17 
production in the disease sites during infection (100). BCG vaccination enhances cross-
reactive T cell immunity to inhibit intracellular Mav and Mabc (101). These data highlight the 
potential of BCG-mediated NTM cross-reactive immunity to facilitate the development of a 
vaccine or immunotherapy for pulmonary NTM disease (101). The proportion of PD-1 levels on 
CD4+ lymphocytes are upregulated in PBMC from the patients with MAC lung infection, but 
not in those with Mabc infection, compared to healthy controls (102). In patients with NTM 
lung disease, the level of PD-1+CD4+ lymphocytes is correlated with radiographic progression 
(102). Therefore, IFN-γ-producing protective T cell activity is associated with anti-NTM 
host defenses; however, it is unclear whether immunosuppressive PD-1 expression and Treg 
expansion are related to the pathogenesis of NTM-PD by different NTM strains. Fig. 2 shows 
the roles of T cell types in the host adaptive immune response to Mabc infection.

In the increasing population of CF patients infected by NTMs, Mabc infection is often 
associated with coinfection with Aspergillus fumigatus, the most common filamentous fungus 
in CF, spores of which are usually inhaled into the airways (103). Control of Mabc infection 
is dependent on the Th1 and Th17 immune responses in A. fumigatus-coinfected mouse lung 
(104), suggesting a protective role for adaptive immunity against coinfection. In addition, 
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Figure 2. Role of the adaptive immune system during Mabc infection. APCs, including DCs and macrophages, 
present antigens to T cells, which mediate the adaptive immune response to Mabc infection. Th1 cells produce 
IFN-γ to protect against Mabc. INFGR2 signaling is crucial for the host immune response to Mabc infection. The 
Th17 immune response controls Mabc infection in A. fumigatus-coinfected mouse lungs. The levels of PD-1+CD4+ 
lymphocytes and Tregs are related to the bacterial burden. Treg levels are increased in patients with CF. The 
exhausted T cell phenotype and dysregulated type I cytokine production is found in elderly individuals. 
CTLA-4, cytotoxic T lymphocyte antigen 4.



the T cell immune signature differs depending on host risk factors; i.e., CF and old age. In 
response to mitogens, CF patients have increased Tregs and defective TNF-α production, 
whereas elderly individuals have the exhausted T cell phenotype with dysregulated type I 
cytokine production (105). Further research with a larger population is needed to assess 
adaptive immune responses and investigate the therapeutic efficacy of blockade of immune 
checkpoint inhibitors, such as PD-1 and/or cytotoxic T lymphocyte antigen 4 antibody, for 
NTM infections.

OTHER HOST FACTORS INVOLVED IN PROTECTIVE AND 
PATHOGENIC RESPONSES
Sirtuin 3 (SIRT3), peroxisome proliferator-activated receptor-α (PPARα), and 
high-mobility group nucleosomal-binding domain 2 (HMGN2)
Several host factors are involved in antimicrobial defenses during Mabc infection. SIRT3 is 
central to biological metabolic processes and is localized to mitochondria (106). It is one of 
the main deacetylases which can control acetylation of mitochondrial proteins and enzymes 
involved in the mitochondrial functions (107). This enzyme belongs to a conserved class that 
requires NAD+ for its activity (107). SIRT3 is also implicated in non-metabolic cells including 
immune cells. Our previous data represent that SIRT3 promotes host defense against Mabc 
pulmonary infection (78). SIRT3 regulates excessive inflammation and mitochondrial 
damage in the Mabc-infected lung (78). In addition, a SIRT3 agonist (resveratrol) promoted 
antimicrobial growth in mice and zebrafish, suggesting a critical role for SIRT3 in metazoan 
host defense (78).

The transcription factor PPARα is crucial in several metabolic processes, such as 
carbohydrate and lipid metabolism and control of inflammation in diverse cell and tissue 
types (108). PPARα promotes antimicrobial responses against Mabc in macrophages and in 
vivo via the transcription factor EB and the regulation of excessive inflammatory cytokine 
production (109). Notably, gemfibrozil, a PPARα activator, reduces the lung Mabc load and 
pathological inflammatory responses in mice (109). Both compounds are shown in Fig. 1 as 
lysosomal activators, although their functions in autophagy regulation are unclear.

Little is known about the host immune factors that promote Mabc infection. A case study 
showed that the heterozygous missense mutation of STAT3, associated with a gain of 
function, is responsible for chronic immunodeficiency and recurrent bronchopulmonary 
infections caused by Mabc (110). These data strongly suggest a role for STAT3 signaling in the 
pathogenesis of human Mabc infection.

HMGN2, a highly conserved nucleus-associated small protein, functions in bacterial 
clearance and various cellular processes, including regulation of gene transcription, 
chromatin structure, and DNA replication. HMGN2 is also induced during NTM infection 
(along with Mabc and M. smegmatis), suppresses antimicrobial responses in host cells 
by inhibiting NO synthesis and M1 macrophage polarization (111). These findings have 
improved our understanding of host factors with protective and/or detrimental functions 
during Mabc pulmonary infection.
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Micro RNAs (miRNAs)
The mRNAs and miRNAs in immune cells and body fluids have been investigated as 
biomarkers of NTM diseases. Post-transcriptional gene silencing is an attractive gene 
silencing mechanism moderated by miRNAs, which are widely distributed in eukaryotes 
(112). Each miRNA may negatively regulate multiple targets, and several miRNAs can control 
a single miRNA. miRNAs are a family of small non-coding RNAs of 18–25 nucleotides and 
participates in the fine-tuning of innate immune and inflammatory responses (112,113). 
Several miRNAs control the production of cytokines that are crucial in mycobacterial 
infection. NTM-PD patients infected with Mabc and Mmass showed increased miR-144-
3p levels in PBMCs (114). Although the target of miR-144-3p has not been identified, the 
expression levels of proinflammatory cytokines/chemokines are strongly correlated with miR-
144-3p levels in PBMCs (114). Combined with the finding that miR-144-3p favors intracellular 
mycobacterial growth, upregulation of miR-144-3p is involved in NTM-PD (114). NTM-PD 
patients exhibit significant differences in serum levels of multiple miRNAs compared to 
healthy controls (115). Four miRNAs (hsa-miR-484, hsa-miR-584-5p, hsa-miR-625-3p, and 
hsa-miR-4732-5p) are differentially expressed in sera between NTM-PD patients and controls, 
suggesting that differentially expressed miRNAs have potential as diagnostic biomarkers for 
NTM-PD (115). Although bioinformatics analysis suggested that the target genes of these 
miRNAs are involved in immune responses, the functions of the miRNAs are unknown (115). 
Further studies are warranted to clarify the roles and precise mechanisms by which these 
miRNAs regulate host defenses in NTM infections.

CONCLUSION

In the last decade, research on pathogen-host interactions during Mabc infection has advanced 
considerably. Mabc manipulates host immune defenses via lipid and protein components. 
Mabc GPLs enable immune escape and survival in the host. However, MaRg lacks GPLs and, 
unlike MaSm, disrupts phagosomal structures and induces a robust inflammatory response 
and cell death. Further studies of bacterial factors are needed to gain insight into pathogenesis 
and host-protective responses. In addition, numerous host factors interact with Mabc to 
modulate protective and pathological responses during infection. Host antimicrobial defense 
mechanisms include PRRs, cytokines, autophagy, SIRT3, miRNAs, and the adaptive immune 
system, all of which determine the outcome of Mabc infection. Future studies should clarify 
the molecular mechanisms underlying the protective factors/pathways that achieve Mabc 
clearance from host cells. In addition, in vivo and translational studies will promote the design 
of novel host-directed therapeutics against drug-resistant Mabc infection.
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