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Schistosomula- and adult worms-derived antigens induce predominant Th1 immune responses. The radiation-attenuated cercariae vaccine

efficacy is dependent on induction of Th1 and Th2 immune responses. Accordingly, schistosomula- and adult worms-derived antigens used

for effective vaccination must be combined with Th2 immune responses-inducing cytokines or molecules as adjuvant.
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A B S T R A C T

Schistosomiasis is a debilitating parasitic disease caused by platyhelminthes of the genus Schis-

tosoma, notably Schistosoma mansoni, Schistosoma haematobium, and Schistosoma japonicum.

Pioneer researchers used radiation-attenuated (RA) schistosome larvae to immunize laboratory

rodent and non-human primate hosts. Significant and reproducible reduction in challenge worm
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burden varying from 30% to 90% was achieved, providing a sound proof that vaccination

against this infection is feasible. Extensive histopathological, tissue mincing and incubation,

autoradiographic tracking, parasitological, and immunological studies led to defining condi-

tions and settings for achieving optimal protection and delineating the resistance underlying

mechanisms. The present review aims to summarize these findings and draw the lessons that

should have guided the development of an effective schistosomiasis vaccine.
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Introduction

Schistosomiasis is a severe parasitic disease caused by members
of the genus Schistosoma, notably Schistosoma mansoni,

Schistosoma haematobium, and Schistosoma japonicum. More
than 200 million persons are infected and up to 800 million,
mostly children, are at risk. These statistics may well be under-

estimated because the stool analysis gold standard technique
for diagnosis of the infection is insensitive and unreliable lead-
ing the World Health Organization to no longer provide esti-
mates on population infected or at risk. These have been

replaced by estimates of population requiring preventive che-
motherapy. Egypt is among 51 countries with population
requiring chemotherapy despite inaccurate and incomplete

information advocating the near eradication of schistosomiasis
from Egypt [1]. These hearsays have their foundation on the
unreliability of diagnostic techniques and lack of sound and

objective epidemiological studies. Failure to assess the
prevalence of schistosomiasis leads to people unawareness of
its danger. The sequelae are intense reflected in more than 70
million disability-adjusted-life-years (DALYs) and remarkably

high rates of years-lived-with disability (YLD) [2].
Praziquantel is the only drug commonly used for treatment.
But its efficacy is not proof, and it does not prevent reinfection

necessitating its repeated use, thus increasing the threat of
development of parasite resistance to the drug [1,2]. Infection
and transmission can be prevented if a vaccine is in place.

Vaccination studies with radiation-attenuated (RA) schisto-
some larvae have demonstrated that a schistosomiasis vaccine
is a realistic goal [3]. These studies have provided invaluable
learning and directions that should have helped developing

an effective vaccine composed of purified or recombinant anti-
gens [3]. The present review attempts to outline these lessons
and clarify how and where they were disregarded or painstak-

ingly followed.

The radiation-attenuated vaccine model

The life cycle stage used

The infective schistosome stage, the cercariae are commonly
used for inducing resistance to challenge infection following
radiation attenuation (RA) [4]. Mechanically transformed

schistosomula (tailless cercariae) attenuated by X- or gamma
irradiation and injected intramuscularly (im) successfully
protected mice and cynomolgus monkeys against challenge
S. mansoni infection [5,6]. However, percutaneously applied

RA cercariae were more effective in stimulating resistance
(60%) than irradiated, im-administered, schistosomula
(40%) [7]. Approximately 500 RA (50 krad of gamma irradi-

ation) 6-day-old lung S. mansoni schistosomula, injected im,
intraperitoneally (ip), or intravenously (iv) into NIH/Nmri
CV and C57BL/6J mice, were also capable of inducing sig-

nificant (P < 0.001) levels of challenge worm reduction
(36–56%) that were not very different from approximately
850 RA cercariae as immunizing agents. These findings were

construed to indicate that the extravascular stages of
development within the skin are not required for the induc-
tion of resistance [8]. Conversely, iv-injected RA lung-stage
schistosomula derived from optimally RA cercariae failed

to confer protection in C57BL/6 mice, suggesting that suc-
cessful vaccination is not dependent on systemic (vascular),
antigen presentation [9,10]. Additionally, irradiated day 21

(# 105) and day 28 (# 58) worms induced much less resis-
tance (reduction in challenge worm burden of 15–27%) than
RA cercariae [8].
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The type and dose of radiation

Parameters of immunization of mice with 60Cobalt-irradiated
Schistosoma mansoni cercariae were first described by
Minard et al. [4] and related to protection against subsequent

challenge infection. Optimal protection was found to be depen-
dent on dose of irradiation, number of immunizing cercariae,
and number and time course of immunizations. Low levels
of resistance were obtained with low irradiation doses. In gen-

eral, resistance increased with increasing irradiation doses, up
to approximately 48–56 krad. Maximal resistance (70–80%
reduction in challenge worm burden) was elicited by a single

exposure to 250–500 cercariae, irradiated at a dose rate of
2 krad/min to a total dose of 56 krad. In C57BL/6 mice, S.
mansoni cercaria RA with 60Co 15 krad induced higher levels

of protection than 50 krad, and protection was maximal fol-
lowing 4· immunizations with moderately or highly RA cerca-
riae [11]. Cobalt-60 RA cercariae and schistosomula vaccine

was widely used in mice [3,4,7,12] and baboons [3,13] for pro-
tection against S. mansoni, in calves for protection against
Schistosoma bovis [14], and in cattle and buffaloes for protec-
tion against homologous Schistosoma japonicum infection

[15]. In parallel comparison studies, Cesium-137-attenuated
cercariae afforded better protection than the 60Co RA vaccine.
The optimal total radiation with 137Ce was between 45 and

50 krad [16]. Cercariae of S. mansoni attenuated by exposure
to 30–60 krad gamma radiation from a 137Ce source induced
>50% protection in baboons against homologous, but not

S. haematobium, infection challenge [17], and in the vervet
monkey, where a protection ceiling of 48% was achieved fol-
lowing 3 vaccinations [18].

X-irradiated S. mansoni cercariae were also effective in pro-

tecting mice against homologous challenge infection, provided
using the optimum number of immunizing cercariae (500),
dose of X-irradiation (48 krad), the number of immunizations

(5), the time interval between immunization and challenge (up
to 1 year), and the size of the challenging dose (up to 500 cerca-
riae) [19,20]. X-irradiated S. japonicum tailless cercariae were

employed for protecting rhesus monkeys [21] and cattle [22]
against schistosomiasis japonicum, with reduction in challenge
worm burden varying between 42% and 96%.

The expenses and inconvenience of gamma and X-ray
irradiation promoted studies using ultraviolet (UV) irradiated
vaccine, which is cost-effective, and only requires simple
devices [23]. Dean et al. demonstrated that single immuniza-

tion of mice with UV-attenuated S. mansoni cercariae, using
a small, portable S-68 Mineralight Lamp adjusted to deliver
330–440 lwatts/cm2, conferred similar levels of resistance to

infection (50–70%) as with 50 krad gamma-RA cercariae
[24]. Ultra-violet-irradiated S. mansoni cercariae were capable
of leading to reduction in challenge infection in guinea pigs

(approximately 40%), but not Mongolian gerbils [25]. Of
note, Mongolian gerbils were also not protected against S.
mansoni challenge infection when vaccinated with 20 krad
gamma-irradiated cercariae [26]. Likewise, UV-attenuated

cercarial vaccine was highly effective with S. japonicum in
protecting mice, water buffaloes, and pigs against homolo-
gous schistosome infection [27–31], but induced low, unstable

level of protection in some inbred mice, notably C57BL/6
[32].
Fate of irradiated larvae

Studies using tissue mincing and incubation, histopathology,
and autoradiographic tracking techniques revealed that simi-
larly to normal larvae, RA cercariae are able to penetrate

the epidermis of the host and henceforth to the dermis en route
to the dermal blood or lymph capillaries, with only a slight dif-
ference in timing of skin exit, whereby attenuated larvae persist
in the skin much longer than normal parasites [33–35]. A sig-

nificant number of immunizing RA larvae were located in
lymph nodes draining the skin site of exposure [34].
Migrating schistosomula derived from RA S. mansoni cerca-

riae (approximately 50% of penetrants) attain the lung in 6
or 7 days, and differently from their intact counterparts linger,
not to leave this site, and die therein. Indeed, schistosomula are

detected in the lung for up to 3 weeks following infection with
RA cercariae, and a proportion therefrom are located extrav-
ascularly within the alveoli [33–39]. Schistosomula transform-

ing from cercariae attenuated with low doses of irradiation
may make their route to the liver, but usually fail to copulate
and lay eggs [35,39]. Accordingly, RA schistosome larvae con-
fer high levels of protection without causing pathological

symptoms [3].
The failure of schistosomula derived from RA cercariae to

migrate beyond the lung stage was attributed to the impact of

irradiation on the parasite neuromuscular function with conse-
quent lowermobility, slow alternating body extensions and con-
tractions, and limited maximum body elongation and extension

[40]. In support, microarray examination of the gene expression
in cultured schistosomula derived from normal and RA
cercariae revealed down-regulation of transcripts encoding G-
protein-coupled and neuro receptors, resulting into diminished

parasite response to external stimuli and giving an explanation
to the extended transit through skin-draining lymph nodes
and the lung [41]. Radiation attenuation of S. mansoni larvae

was reported to lead to profound inhibition of protein and gly-
coprotein synthesis and radiolysis of surface carbohydrates that
likely enhance the immunogenicity of the larval antigens and/or

stimulate exposure of cryptic epitopes [42–45]. No studies are,
however, available to delineate whether the death ofRA schisto-
somula in the lungs is a result of the radiation insult and/or to the

host immune effector responses. This questionmight be resolved
by tracking the fate of RA cercariae in thymectomized or
anti-thymocyte serum-treated mice [46].
Effects on challenge worm burden and fecundity

Immunization ofmicewith 60Co-attenuated (46–96 krad) larvae
ofS. mansoni, once or twice, resulted in a 70% reduction in chal-

lenge worm burden administered 3 and up to 15 weeks after
immunization [4,7]. Treatment with immunosuppressive drugs
or excision of sites of infection following immunization revealed

that RA larvae need to persist in the host for between 1 and
2 weeks to stimulate optimum protection. Antigens released
during protracted stay in the skin and lung likely induce the

effector immune responses mediating the resistance to challenge
infection [34,35,47,48]. Elucidating the challenge parasites
major attrition site was a subject of controversy. Thus, in inbred
CBA/Ca mice exposed to 400 S. mansoni cercariae attenuated
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with 20 krad of 60Co irradiation, challenge parasites were found
to be killed within the first 4 days after challenge, i.e., at the skin
stage [12,49–51]. Conversely, in mice immunized by exposure to

S. mansoni RA cercariae (50 krad, 2 krad/min of 60Co radia-
tion), mincing and incubation [52] as well as autoradiographic
studies of challenge infection with approximately 200 L-(75Se)

selenomethionine-labeled but otherwise normal cercariae
indicated that worm elimination occurs after the skin stage,
essentially in the lungs [12,33,34,39,53–56]. Challenge schisto-

somula were found to reach the liver in reduced numbers or
are killed or cleared extravascularly in the liver in greater num-
ber in immunized mice, suggesting that the liver is a site of chal-
lenge worm attrition in mice immunized with RA larvae [53] or

previously infected mice as well [57]. In guinea pigs vaccinated
with 60Co-RA (20 krad) S. mansoni cercariae, and challenged
4–5 weeks after immunizationwith normal cercariae, lung-stage

or 2–6 week-old parasites, the liver appeared to be an important
attrition site [58]. Combined microautoradiographic and histo-
pathological studies revealed that immune elimination of chal-

lenge larvae does not result from a cytolytic hit, but is
essentially due to extravascular exit during migration.
Schistosomula surrounded by leukocytic foci in alveoli or in

the vasculature did not show any attached leukocyte and
appeared entirely free of structural damage [59].

Immune protection was found to be schistosome species-
specific as mice exposed to 20 krad-irradiated S. mansoni

cercariae showed 53–67% reduction in homologous challenge
worm burden, while heterologous vaccination with S. bovis,
S. haematobium, or S. japonicum conferred only 5–12% protec-

tion [60]. The RA vaccine cross-protection in mice was limited
to species of the S. haematobium, but not S. mansoni, group
[61]. In inbred mice immunized with UV-irradiated cercariae

of S. mansoni or S. haematobium, homologous protection ran-
ged from 56% to 69% for S. mansoni and 88% to 99% for S.
haematobium. Significant heterologous protection was consis-

tently induced against S. haematobium by immunization with
S. mansoni, but not against S. mansoni by immunization with
S. haematobium [62]. Moreover, induction of resistance with
RA cercariae of S. mansoni varied with mouse strain, with

C57BL/6 showing the highest and P/N the lowest level of
reduction in challenge worm burden [63–65].

The RA schistosome vaccine induced a high level of protec-

tive immunity in experimental rodent hosts and importantly
was also efficacious in baboons, whereby 9000 cercariae atten-
uated by exposure to 30–60 krad of gamma radiation induced

>50% protection to a challenge with normal larvae [17].
Significant protection, with 64–89% reductions in worm
burden and parallel reductions in egg production, was
achieved in baboons immunized with gamma-irradiated S.

haematobium cercariae [66]. Cynomolgus monkeys im-injected
with 60Co (50 krad at 4 krad/min)-RA S. mansoni tailless
cercariae had 52% fewer challenge worm, and at 7 weeks

post-challenge excreted 80% fewer eggs than did the control
animals [6].

The data together gave strong evidence that protective

immunity could be induced against schistosome infection.
The RA vaccine-mediated protection was invariably partial,
with surviving worms able to copulate, and daily deposit hun-

dreds of eggs [67]. Moreover, the RA vaccine did not result in
significant decrease in challenge worm fecundity in CBA and
C57BL/6 mice immunized once or more with gamma-
irradiated S. mansoni larvae [7,11]. Inbred and outbred mice
receiving one exposure to UV RA S. mansoni cercariae, and
challenged five weeks later with approximately 100 normal
cercariae were assessed for worm burden and worm egg counts

in liver and intestine at 5, 6, 7 and 8 weeks after infection.
Reduction in worm burden varied between 27 and 65% (8
experiments). Decrease in egg counts and female fecundity

was highly significant in vaccinated versus control mice at 5,
6, and 7 weeks after challenge. At 8 weeks after challenge,
the egg count/mouse and per female worm was similar in

immunized and control mice suggesting that the RA vaccine-
mediated decrease in worm egg load is only transient [68]. In
studies complete regarding egg sampling, significant reduction
in fecundity of challenge worms was not observed in baboons

immunized with S. haematobium [66], or S. mansoni [69] RA
cryopreserved schistosomula.
RA vaccine-induced immune responses

Skin

Vaccination of CBA or C57BL mice with RA cercariae induces
localized skin inflammatory foci comprising 50% macrophages
and 50% eosinophils at the site of immunization that appeared

to be responsible for attrition of challenge parasite within few
days of entry [51,70]. In support, ip injection of a monoclonal
antibody (mAb) specific to neutrophils, but apparently also
effective against macrophages and eosinophils, on the day of

challenge, greatly reduced (67% mean reduction) the RA-
induced resistance [71]. Moreover, passive transfer of serum
from RA vaccine-protected mice was able to transfer resistance

against challenge infection in mice via induction of subdermal
inflammatory reactions, comprising 60% mononuclear cells
and 40% eosinophils [72]. Whole body irradiation of RA

cercariae-immunized CBA mice 3 days prior to challenge infec-
tion revealed that eosinophils, rather than macrophages, are
central to the RA vaccine-induced protection [73].

The importance of the skin-draining lymph nodes (LN) for
the RA vaccine-mediated immunity was shown in mice
percutaneously immunized once with 500 S. mansoni cercariae
attenuated with 20 krad 60Co radiation, LN draining the

vaccination site removed five days prior, or 5, 10, 15, or
20 days after vaccination, and challenged 35 days post-
immunization with 200 normal cercariae. Highly significant

reduction in resistance to challenge infection was observed in
the lympho-adenectomized as compared to intact mice. The
results were construed to suggest that for induction of immune

protection, presentation of antigens to leukocytes in the drain-
ing LN during the first days of RA larvae skin residence is
more important than antigen presentation to the spleen cells
(SC) during larval intravascular migration [74]. This assump-

tion was supported by finding marked increase in T-, and to
a greater extent of B-lymphocytes in skin- and lung-draining
LN, but not in spleen of C57Bl/6 mice on days 2–14 post 1·
vaccination with S. mansoni cercariae attenuated with 20 krad
from a 60Co source [75]. Localized hyperemia (increased blood
flow) appeared to explain the accumulations of lymphocytes in

draining LN [76]. This finding suggests that leukocytes in
draining LN may well be stimulated by larval antigens released
intravascularly and not uniquely by antigens released extravas-

cularly, in the dermis or lung parenchyma [77]. The draining
LN leukocytes of RA cercariae-vaccinated mice were shown
to be essentially of the CD4+ type and responded to parasite
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antigens by production of T helper (Th) dominant immune
responses, notably increased production of interferon-gamma
(IFN-c) and interleukin (IL)-12 [78–82]. Yet, these LN cells

released significant amounts of IL-4 and did not generate
an anamnestic Th1 response to parasite antigens after chal-
lenge infection whereby IFN-c production was profoundly

down-regulated and large amounts of IL-4 were generated
[83].

The results together certainly indicate that RA S. mansoni

vaccine-induced protection of mice to challenge infection is
dependent on site of vaccination-draining LN build-up of
Th1 and Th2-immune responses.
Lung

Schistosomula must negotiate the thin-walled and convoluted
pulmonary capillaries before attaining the liver sinusoids and

then the portal vein. The migration is obligatorily intravascu-
lar, but during the strenuous journey in the lung, many larvae
are detected in the alveolar spaces, destined to disintegrate
and die [59,84,85]. The larval-derived antigens stimulate

intense immune responses characterized by accumulation of
lymphocytes and macrophages in dense foci. Similar events
occur in RA cercariae-vaccinated rodents with a larger pro-

portion of migrating schistosomula ending into the alveolar
spaces and surrounded by larger leukocytic foci [85–91].
These inflammatory foci are generated in response to antigens

derived from larvae destined to die, and there is no proof
they are the agents responsible for parasite attrition in nor-
mal or RA cercariae-immunized mice. Indeed, in spite of

the inflammation, no direct lethal cytolytic hit to the schisto-
somula was observed [59,85,87,92,93]. Intravascular healthy
larvae release extremely minute amounts of molecules, the
excretory–secretory products (ESP), the scent, and attract

no or minute foci [59,92,93]. Intravascular dying or dead lar-
vae, especially in RA vaccine-administered mice, stimulate
more or less intense inflammatory foci characterized by the

presence of large numbers of eosinophils [92,93]. Some histo-
pathological studies showed the intravascular leukocytic loci
destroy the blood-air barrier, thus facilitating larval exit

and subsequent death, but also blood spill in the alveoli, a
phenomenon rarely, if never, observed [85]. Conversely, it
was reported that pulmonary intravascular foci around larvae
are rather small [59,92,93]. The results together do not pro-

vide conclusive evidence that the inflammatory foci in the
lung parenchyma are the agents responsible for parasite
deflection in the alveoli.

The dogma stipulating that immune responses to chal-
lenge schistosome infection following RA cercariae vaccina-
tion must be Th1 polarized to achieve protection has its

foundation in several studies that measured C57BL/6 mice
bronchoalveolar lavage leukocytes (BAL) immune responses
to parasite antigens. As stated above, BAL are situated in

lung parenchyma and alveolar tissue and are stimulated by
antigens released by extravasated dying larvae. Schistosome
larval antigens predominantly induce Th1-related responses
[78,94–98]. Accordingly, it is expected that BAL release

Th1-related cytokines upon culture in vitro in the absence
or presence of larval antigens [80,95]. Yet, there is no proof
that the BAL-mediated Th1 immune responses are major

players in extravasation of challenge intravascularly migrat-
ing worms.
Spleen

Schistosomes are obligatory intravascular residents. Like other

blood-born antigens, ESP released by healthy parasites and
molecules derived from intravascularly dying, dead and degen-
erated worms reach the spleen, are trapped by residents macro-

phages and dendritic cells (DC), and stimulate T and B
lymphocytes that circulate thereafter in tissue and blood [88].
Leukocytes in blood, rather than in tissue-draining LN, are

the ones that interact with developing larvae and might medi-
ate their extravasation and potential attrition. Yet, SC immune
responses in the RA vaccine model were seldom looked at.
C57BL/6 mice were percutaneously vaccinated with S. mansoni

cercariae attenuated with 20 krad of gamma irradiation from a
60Co source, SC and LN cells obtained at 3 day interval for
24 days post-immunization, and tested for proliferation and

cytokine release in response to soluble schistosomular (18 h-
old larvae) antigens. Similarly to the axillary, inguinal and
mediastinal LN, SC cultures released significant amounts of

IFN-c that reached a peak at day 18 post-vaccination; no
information was shown related to SC IL-4 production [80].
Following challenge with 200 normal cercariae, SC differed

from BAL in displaying vigorous proliferation but production
of low levels of IFN-c in response to in vitro stimulation with
schistosomular antigens [95]. In our laboratory, SC obtained
from C57BL/6 mice 1–6 weeks following secondary immuniza-

tion with RA (25 krad of gamma irradiation from a 60Co
source, or 330 lW/cm2 UV radiation) were found to consis-
tently release IL-2, IFN-c, and IL-4 in response to in vitro

stimulation with electroseparated soluble schistosomular or
adult worm antigens [99,100].

T cell mediated or humoral immunity?

The association between leukocytic accumulations in the lung
parenchyma of RA larvae-vaccinated and challenge cercariae-
infected mice and high protection levels led to the assumption

that resistance in vaccinated mice may be T cell rather anti-
body-mediated [84,85]. In RA cercariae once vaccinated mice,
results were compatible with that hypothesis and further

stressed that the mechanism of immunity depends on T lym-
phocytes-macrophages interaction triggered by antigens
released from lung larvae, leading to focal cell-mediated effec-
tor immune responses that block onward challenge larvae

migration and cause their deflection in the alveoli and attrition
[84–93,101]. The results together suggested that challenge lar-
vae are predominantly eliminated through delayed-type hyper-

sensitivity (DTH) reactions [79,90]. In support, mice of the P/N
strain that are characterized as deficient in their ability to
mount DTH and macrophage activity, and mice of the 129

strain with disruption of the gene encoding the tumor necrosis
factor receptor consistently failed to display resistance to chal-
lenge infection following once vaccination [65,102]. In contrast,

nitric oxide produced by leukocytes accumulations in the lung
tissue of RA cercariae vaccinated mice was shown to be not
essential for challenge parasite elimination [103].
Additionally, one-third of B cell-deficient C57BL/6 mice vacci-

nated once with RA cercariae failed to display resistance to
challenge infection [104].

T cell and antibody reactivity to larval antigens in mouse

strains differing in their level of resistance to challenge infec-
tion following once RA cercariae vaccination appeared to be
of importance for the development of protection [64]. These
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findings were supported in mice made deficient in T or B lym-
phocytes [105]. A strong evidence for the importance of anti-
bodies came from studies of Mangold and Dean [106] who

conclusively showed that passive iv transfer of serum obtained
from C57BL/6 mice 3 weeks following last (of 2–3) immuniza-
tion with RA (50 krad from a 60Co source) S. mansoni cerca-

riae into syngeneic naive mice elicited reductions in challenge
worm burdens of 20–50%. The highest level of protection
was achieved when immune serum was administered at a time

coincident with larval migration in the pulmonary vasculature.
The antibody-mediated protection levels were never as high as
in the donor mice, implying that other immune effector arms,
likely cell-mediated immunity, are required for optimal resis-

tance [106] and Table 1. Highly significant protection was also
achieved in C57BL/6 mice upon passive transfer of serum from
RA S. mansoni cercariae vaccinated rabbits [107]. The serum

fraction responsible for resistance transfer was conclusively
shown to be antibodies of the IgG class [106,107]. Similar
results were obtained in BALB/c mice passive transferred with

RA S. mansoni vaccine immune serum from syngeneic mice or
rabbits [108] and were entirely confirmed in the RA S. japoni-
cum vaccine model [109]. Furthermore, protective immunity

displayed by baboons vaccinated with RA S. mansoni cercariae
was suggested to essentially be antibody-dependent [110]. In
mice, the titer of antibodies following RA cercariae immuniza-
tion appeared of critical importance for the development of

resistance to challenge infection [111].

Th1 versus Th2?

Treatment of RA cercariae once vaccinated-mice with neutral-
izing mAb to mouse IL-4, IL-5, or IFN-c, on day 14 or 7, and
day 1 before and again at weekly intervals after challenge
infection indicated a preponderant role for IFN-c-dependent
cell-mediated effector mechanisms in the elicited protection,
while IL-4, IL-5, and eosinophils are of negligible importance
[112]. Yet, mice with disrupted IFN-c receptor gene displayed

an impaired, yet not abrogated, resistance to challenge infec-
tion following vaccination with RA S. mansoni cercariae; of
note, the reduction in worm burdens in wild type was in the

range of a modest 50% [113]. The results, thus, suggest that
IFN-c-independent mechanisms are necessary for optimal pro-
tection in the RA vaccine model. Additionally, all cytokine
measurements concentrated on BAL and/or total lung tissue

[113,114] while it must be reiterated that S. mansoni strive
inside the blood vasculature in lungs and elsewhere. In contrast
to conclusions reported using mice treated with a mAb target-

ing inducible nitric oxide synthase [103], nitric oxide direct
effector functions and its role in activation of macrophages
and endothelial cells for killing migrating larvae were
Table 1 RA cercariae vaccine efficacy varies with host species and

RA vaccine Host species and strain Protection level

S. mansoni Mouse C57BL/6 75–90%

S. mansoni Mouse BALB/c 30–60%

S. mansoni Mouse CBA 4–66%

S. mansoni Mouse P/N

S. mansoni Baboons 30–54%

S. japonicum Mouse CBA/H 50–72%

S. japonicum Mouse C57BL/6 2–40%

DTH= delayed-type hypersensitivity; Ab = antibody.
advocated as key elements in the acquisition of protection in
the murine RA vaccine model [114,115]. The debate over the
effector functions of nitric oxide in protection against schisto-

some infection is not as yet settled [116,117]. On the other
hand, lung tissue or SC production of IL-4, IL-13, IL-10 and
other Th2-related cytokine responses appeared to be responsi-

ble for the overall limited protection in high [115] and low [118]
responder mice.

Different results were attained with 50 krad RA (from a
137Cs source) S. mansoni cercariae once or thrice vaccination
of B cell-deficient mice, whereby challenge worm burden
reductions were only 33–43%, considerably less than wild type
mouse. Additionally, the decrease in protection in IFN-c
knockout mice was not striking compared to wild type coun-
terparts vaccinated in parallel with RA S. mansoni cercariae
once (46% versus 63%) or thrice (64% versus 80%) [119].

Moreover, signaling via IL-4 receptor alpha chain was abso-
lutely required for significant RA cercariae vaccination-medi-
ated resistance in BALB/c mice [120]. Finally, several studies

using knockout mice closed the controversy by conclusively
demonstrating that optimal protection in the RA vaccine
model is dependent on the induction of both type-1 and

type-2-associated immune responses [121–123].

Molecules recognized by antibodies and lymphocytes of RA-
immunized hosts

Antibodies of C57BL/6 mice exposed twice via tail immersion
to approximately 500 S. mansoni RA (50 krad) cercariae selec-
tively bound to several schistosomular molecules, notably a

38 kDa glycoprotein of in vitro cultured 5 day-old schistosom-
ula, seven adult worm antigens among which a 94–97 kDa
glycoprotein, as well as, an antigen of 200 kDa present in schist-

osomular and adult worm soluble extracts [124–127]. A cDNA
encoding a 62 kDa portion of the 200 kDa molecule was cloned
and sequenced and found to share homology with myosins of

other species; subcutaneous or ip immunization of C57BL/6
mice with the expressed recombinant protein, designated
rIrV-5, elicited 75% protection against challenge worm burden
[127]. Similar studies led to identification of SmIrV1, which

showed homology to calnexin and calreticulin [128,129].
Additionally, studies with SC of mice vaccinated with RA S.
mansoni cercariae used to produce mAb against newly trans-

formed schistosomular surface antigen resulted into selection
of a larval surface membrane 18 kDa polypeptide. Polyclonal
antibodies generated against the 18 kDa molecule isolated

recombinant clones from an adult worm cDNA library con-
structed in kgt11 [130]. The target molecule was found to be
of exactly 23 kDa, designated Sm23, and identified as worm
strain immune responses.

Immunity References

Th1 and Th2 [3,11,136]

High DTH [65]

Low Ab levels [136]

10%-20% Low DTH and Th1 [65,118]

High IgM/IgG [17]

High Ab levels [109]

Low Th1 and Th2 [32]
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integral surface transmembrane antigen and glycosyl inositol
phosphatidyl-anchored as well [131]. Furthermore, antibodies
of RA S. mansoni cercariae-vaccinated CBA mice were found

to specifically recognize schistosomulum surface antigens of
>200, 38, 32, 20, and 15 kDa. The>200 and 15 kDamolecules
were also recognized by CBA mice immunized with RA S. hae-

matobium cercariae; conversely, the molecules of the 20–38 kDa
range showed species-specificity [132,133], thus indicating that
some, but, not all schistosome molecules confer cross-

protection. Most importantly, when vaccinated mice of the
C57BL/6 and CBA strain were compared, both strains recog-
nized Sm23, glutathione-S-transferase (GST) and cathepsin
B, thus suggesting that these molecules may be used for vacci-

nation of different mouse strains, in contrast to Sm32 and
paramyosin that were recognized only by CBA, and heat shock
protein 70 exclusively by C57BL/6 mice [134].

Since T cells mediate cellular immunity and control anti-
body production, it was of importance to identify the schisto-
some antigens recognized by T cells as well as humoral

antibodies of mice vaccinated with RA S. mansoni cercariae.
Axillary LN cells of C57BL/6 and CBA mice vaccinated once
with cercariae attenuated with 15 or 50 k of gamma irradiation

were in vitro stimulated with adult worm antigens fractionated
by isoelectric focusing. The LN cells proliferative and lympho-
kine responses and humoral antibody binding revealed that
Sm23, paramyosin, heat shock protein 70, triose phosphate

isomerase (TPI), and GST appeared to be the molecules that
stimulate the most intense immune responses in the murine
RA vaccine model [135,136]. We have used the T cell western

and western blotting assays to identify the schistosomular and
adult worm antigens recognized by LN and spleen T cells and
serum antibody of outbred and inbred mice immunized twice

with gamma or UV-radiation-attenuated S. mansoni cercariae
[99,100,137]. The molecules most consistently recognized, and
presumably of importance in inducing resistance against chal-

lenge infection in this model, were selected and identified as S.
mansoni enolase, and S. mansoni calreticulin [99,100,138,139].

Some of the molecules putatively responsible for the induc-
tion of protection against challenge infection following RA

cercariae vaccination, notably IrV5, Sm23, paramyosin,
GST, TPI-derived peptides in a multiple antigen construct
(MAP), probably emulsified in Freund’s or alum were used

in controlled vaccination and protection studies in C57BL/6
and BALB/c mice. None succeeded in inducing protection
higher than the 40% benchmark sent by the World Health

Organization for progression of schistosome vaccine antigens
into pre- and clinical trials [140,141].
The outcome of the missed lessons

The majority of the murine RA vaccine model studies concen-
trated on the C57BL/6 strain because it proved to be the high-
est responder. BALB/c and CBA mice showed moderate

response, A/J mice marginal resistance, while other strains,
notably RF/J, and P/N appeared to display negligible protec-
tion following immunization with RA larvae [63–65]. These

findings suggest that vaccination results using schistosome sub-
unit antigens in preferred 2 or 3 inbred mouse strains may not
be readily confirmed in other laboratories using different

mouse strains, or extrapolated to the outbred humans.
Nevertheless, the majority of studies related to development
of a schistosomiasis vaccine disregarded this limitation, over-
relied on the C57BL/6 strain, and neglected the use of outbred
mice. Fortunately, several schistosome vaccine studies were

performed in baboons, despite the challenges of the costs
and experimental settings [110,142–148].

In every histopathological or mincing/incubation study

regarding the RA vaccine model, no evidence was ever obtained
for tight adherence of leukocytes to the lung-stage schistosom-
ula surface, direct cytolytic hit, or structural damage presum-

ably mediated by antibody-dependent cell-mediated
cytotoxicity [39,52,56,59,67,84–87,89–93]. These results were
in entire accord with the plethora of articles documenting the
inaccessibility of healthy schistosome surface membrane anti-

gens to antibody binding and the insusceptibility of developing
larvae to antibody-dependent attritionmechanisms [9, reviewed
in 149,150]. Thesewell-established, confirmed, and reproducible

findings imply that parasite surface membrane or tegumental
antigens may not mediate access of effector immune responses
to challenge infection parasites whether in the dermis or during

intravascular migration and residence. Nevertheless, the great
majority of articles focused on schistosome surface membrane
or tegumentalmolecules as vaccine candidates, notwithstanding

the fact that if surface membrane molecules were at any time
accessible to the host effector immune responses, the parasite
would not survive days, not to mention decades, in the host
blood stream. The outcome of this lessons neglect is obtention

of protection against challenge infection of limited significance
(P< 0.05–<0.01) and reduction percentages of 30–40% that
are not reproduced from experiment to experiment, leading to

damping of these molecules out of the vaccine candidate list
[reviewed in 149,150]. An outstanding example was the
S. mansoni glucose transporter SGTP4, a molecule at the host-

parasite interface of critical importance for the parasite survival
[151]. Vaccination of outbred and inbredmice with themolecule
extracellular domains in recombinant or synthetic peptide

constructs and emulsified in Freund’s adjuvant induced consid-
erable cellular and humoral immune responses but entirely
failed to provide protection against challenge S. mansoni
infection [152]. Fortunately, however, several antigens readily

released from invading worms and potential inducers of protec-
tion in the RA vaccine model were used as vaccine candidates
among which calpain [143–148], GST [142], which has now

moved to phase 1 clinical trials [153], and paramyosin, whereby
recombinant full-length S. japonicum paramyosin, rSj97 was
produced and assessed for efficacy and safety in rodents and

large-animal models [154].
One of the salient lessons gained from the extensive studies

concerning the RA vaccine model is that protection elicited
essentially depends on both Th1 and Th2-associated immune

responses [3]. Since schistosome candidate vaccine molecules
are documented to stimulate polarized Th1-related immune
reactivity, it was of importance to look for and use an adjuvant

that would skew the immunogen-induced polarized Th1
toward the Th2 immunity axis. That did not happen. On the
contrary, many candidate vaccines, including calpain, were

used as DNA constructs known to predominantly elicit
Th1-related responses [143–145 and reviewed in 150,155]. We
have used the candidate vaccine antigen and larval ESP, S.

mansoni glyceraldehyde 3-phosphate dehydrogenase
(SG3PDH) in a recombinant (r), linear peptide or MAP form,
emulsified in Freund’s or other Th1 adjuvants for immuniza-
tion of outbred and inbred mice and only obtained occasional,
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and barely significant (P < 0.05) reduction in challenge worm
burden and egg load of less than 35% [156–159]. We have used
other larval ESP, notably S. mansoni 14-3-3 and p18 protein in

a recombinant form, and aldolase, calpain, and thioredoxin
peroxidase (TPX) = 2 cys peroxiredoxin-derived peptides in
MAP constructs emulsified in Freund’s adjuvant or aluminum

hydroxide for immunization of C57BL/6 and BALB/c mice.
While the molecules were strongly immunogenic, eliciting
biased Th1-related immune responses whether administered

in conjunction with Freund’s adjuvant or alum, the protection
levels were suboptimal and rather erratic [160]. Not very differ-
ent results were attained with the numerous trials using S.
mansoni or S. japonicum tegumental and surface membrane

associated molecules in conjunction with Th1-biased adjuvants
for immunization of inbred mice [reviewed in 149,150,161].
The outcome is up of today, the schistosomiasis vaccine still

remains an unmet clinical need [123,149].

The outcome of the well-learned lessons

We have learned our lessons and focused on the use of larval
ESP, such as SG3PDH and TPX, relied on outbred mice,
and most importantly performed extensive studies to find an

adjuvant that would skew these molecules-mediated Th1
responses toward the Th2 axis. We found that alum [160],
polyinosinic–polycytidylic acid and peptidoglycan [162] drive

C57BL/6 and BALB/c to respond to S. mansoni larval ESP
by production of IFN-c and IL-17. Conversely, thymic stro-
mal lymphopoietin (TSLP), the master regulator of type 2
responses, succeeded in directing the larval ESP-mediated

immune responses toward a Th2-biased profile in prototypical
Th1 and Th2 mice [162]. We thus understood that the type 2
cytokines, notably TSLP, IL-25, and IL-33, which stimulate

the group 2 innate lymphoid cells [163–165] and type-2-
cytokines-inducing molecules such as the cysteine peptidase,
papain [166,167], are the immunomodulatory adjuvants

needed to drive larval ESP-mediated vaccination toward gen-
eration of type 2-associated immune responses. Challenge
infection larvae are, thus, met by both Th1- and Th2 cell-

dependent immunity, as studies of the RA vaccine model rec-
ommended. Administration of outbred mice with rSG3PDH
and TPX MAP in conjunction with papain, TSLP, IL-25, or
IL-33 consistently and reproducibly elicited Th1- and Th2-

associated cytokines and antibodies, and significant
(P < 0.0001) reductions of a minimum of 50% and up to
78% in challenge worm burden and worm egg counts [168].

Since schistosome cysteine peptidases are both ESP and
potential type-2 cytokines-inducers, it was reasonable to assess
their protective potential in outbred mice alone or as adjuvants

to the larval ESP, rSG3PDH and TPXMAP. The considerable
and highly significant (P< 0.0001) reduction of 50–83% in
worm burdens and worm egg load in each of 7 consecutive
experiments, each involving 4–8 animal groups, led us to devise

a formula for the schistosomiasis vaccine, notably
rSG3PDH+ S. mansoni cathepsin B+ S. mansoni cathepsin
L. The latter peptidase was required for its potential role in

worm reproduction and impact on eliminating the Th2 cyto-
kine-associated transient increase in challenge worm fecundity
[169,170]. Benefiting from another lesson of the RA vaccine

model, notably that S. mansoni molecules may protect hosts
against S. haematobium infection [62], we have vaccinated
outbred mice and hamsters with the S. mansoni antigens men-
tioned in the formula and obtained consistent, reproducible,
and highly significant (P < 0.0001) reductions of 70% in chal-

lenge worm burden and worm egg counts [171].
Accordingly, we recommend retesting the various available

schistosome candidate vaccine antigens, notably calpain, GST,

TPI, enolase, paramyosin, and Sm14 in conjunction with
cathepsin B and cathepsin L for their protective potential in
laboratory outbred rodents and baboons against challenge S.

mansoni, S. haematobium, and S. japonicum infection.
Evidence regarding the longevity of the generated protection
must be established in an aim of achieving the highly coveted
goal of a sterilizing schistosomiasis vaccine.
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Vaccination of bovines against schistosomiasis japonica with

highly irradiated schistosomula in China. Am J Trop Med Hyg

1984;33(5):891–8.

[16] Stek Jr M, Minard P, Cruess DF. Murine immunization by

cesium-137 irradiation attenuated Schistosoma mansoni

cercariae. J Parasitol 1984;70(3):398–402.

[17] Yole DS, Pemberton R, Reid GD, Wilson RA. Protective

immunity to Schistosoma mansoni induced in the olive baboon

Papio anubis by the irradiated cercaria vaccine. Parasitology

1996;112(Pt 1):37–46.

[18] Yole DS, Reid GD, Wilson RA. Protection against

Schistosoma mansoni and associated immune responses

induced in the vervet monkey Cercopithecus aethiops by the

irradiated cercaria vaccine. Am J Trop Med Hyg

1996;54(3):265–70.
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