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Abstract: Inflammatory cells are major players in the onset of cancer. The degree of inflammation
and type of inflammatory cells in the tumor microenvironment (TME) are responsible for tilting
the balance between tumor progression and regression. Cancer-related inflammation has also been
shown to influence the efficacy of conventional therapy. Mononuclear phagocytes (MPs) represent
a major component of the inflammatory circuit that promotes tumor progression. Despite their
potential to activate immunosurveillance and exert anti-tumor responses, MPs are subverted by the
tumor to support its growth, immune evasion, and spread. MP responses in the TME are dictated by
a network of stimuli integrated through the cross-talk between activatory and inhibitory receptors.
Alterations in receptor expression/signaling can create excessive inflammation and, when chronic,
promote tumorigenesis. Research advances have led to the development of new therapeutic strategies
aimed at receptor targeting to induce a tumor-infiltrating MP switch from a cancer-supportive toward
an anti-tumor phenotype, demonstrating efficacy in different human cancers. This review provides an
overview of the role of MP receptors in inflammation-mediated carcinogenesis and discusses the most
recent updates regarding their targeting for immunotherapeutic purposes. We focus in particular on
the TREM-1 receptor, a major amplifier of MP inflammatory responses, highlighting its relevance in
the development and progression of several types of inflammation-associated malignancies and the
promises of its inhibition for cancer immunotherapy.

Keywords: mononuclear phagocytes; tumor-associated macrophages and dendritic cells; tumor
microenvironment; cancer immunotherapy; pattern recognition and immunoregulatory receptors;
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1. Introduction

The onset of cancer involves a complex interplay among neoplastic, stromal, endothelial, and
infiltrating inflammatory cells, which results in the establishment of a highly specialized tumor
microenvironment (TME) [1]. Clinical and experimental evidence indicate that chronic inflammation
is an indispensable participant in the neoplastic process, fostering genomic instability, epigenetic
modifications, angiogenesis, cancer cell proliferation, survival, and dissemination [2–7]. Indeed, many
cancers arise at sites of infection and chronic inflammation, and different inflammatory conditions,
e.g., inflammatory bowel diseases (IBD), are highly correlated with the increased risk of neoplastic
transformation [1,8–10]. Furthermore, cancer-related inflammation negatively affects the clinical
efficacy of conventional therapies (chemotherapy and radiotherapy) and immunotherapy, antagonizing
or hindering therapeutic responses [5,11].
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The type of inflammatory cells present at tumor sites is responsible for tilting the balance between
tumor progression and regression [1,3,5,12–17]. In particular, mononuclear phagocytes (MPs) have
been recognized as major components of the inflammatory infiltrate in most solid human malignancies
and crucial drivers of cancer-associated inflammation, being involved in every step of tumorigenesis
from early transformation through to metastatic progression [3–5,18–23]. They are highly versatile
immune cells able to adapt to different environmental conditions and display distinct phenotypes
and functional programs dictated by a network of signals, including cytokines, microbial pathogens
(pathogen-associated molecular patterns, PAMPs), molecules released by damaged/stressed cells
(damage-associated molecular patterns, DAMPs), and metabolites [24–33]. Environmental stimuli
are integrated through the cross-talk between multiple activatory/inhibitory receptor families, whose
dynamic equilibria finely tune MP responses in diseased tissues, regulating their inflammatory and
effector functions [34]. Alterations in receptor expression/activation can create excessive inflammation
and, when chronic, promote tumorigenesis [33,35–39]. Given their role in carcinogenesis and
influence on the effectiveness of anti-tumor therapies, MPs have attracted a lot of interest as potential
targets of immunotherapeutic strategies, a concept that has already been investigated in several
tumors [4,11,40–43].

In this review, we provide a comprehensive overview of published studies on MP physiopathology
in the TME and an update of the state of the art of MP-targeted immunotherapeutic approaches. We
summarize the current knowledge on the role of MP receptors in inflammation-mediated carcinogenesis
and discuss the most recent advances regarding the attempts to their therapeutic targeting. We focus
in particular on the triggering receptor expressed on myeloid cells (TREM1)-1, a major player in the
amplification of MP inflammatory responses [44,45], highlighting its relevance in the development of
several inflammation-associated malignancies and the promises of its inhibition as a novel therapeutic
strategy in cancer.

2. MPs in Tumors

2.1. MP Pro- and Anti-Cancer Activities

MPs are recruited from the circulation to tumor sites by tumor-derived factors as primary
monocytes (Mn), differentiating into tumor-associated macrophages (TAMs) or dendritic cells
(TADCs) [4,18–20,46–52].

Macrophages are a heterogeneous cell population and a key component of innate defense
mechanisms, exerting microbicidal and immunostimulatory activities. In the TME, TAMs display a dual
influence on tumor progression [23,40,53,54]. They have the potential to activate immunosurveillance
and exert anti-tumor responses by destroying cancer cells or inhibiting their proliferation through the
release of cytokines, reactive oxygen species (ROS), and nitric oxide (NO), complement components,
and prostaglandins. However, they can be subverted by the tumor to support its progression, spread,
and immune evasion through the production of pro-angiogenic, mitogenic, metastatic factors, and
immunosuppressive cytokines and the upregulation of inhibitory receptors [11,21,22,40,50,53,55,56].
Preclinical and clinical studies demonstrated that the nature of the activating stimulus and the
combination of different stimuli in the TME can profoundly impact upon the type of response that
occurs, polarizing TAMs into specialized functional subsets [24,26,30]. In addition, TAMs can undergo a
rapid and reversible shift among functional programs in response to changes in the activating stimulus,
often exhibiting mixed phenotypes [21,24,57–60]. It is currently accepted that TAMs involved in the early
tumor initiation process display a “M1-like” pro-inflammatory and tumoricidal phenotype, activating
Th1-type immune responses and eliminating transformed cells, but, as the tumor grows, they are
educated by the TME to switch to an “M2-like” immunosuppressive and tumor-promoting phenotype,
fostering tumor growth/metastatization and immune evasion [3,4,11,20,24,30,40,47,57–59,61,62]. High
TAM infiltration in solid tumors is generally associated with poor prognosis and reduced overall survival
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in both experimental models and neoplastic patients [3,10,47,50,56,63–67], although a correlation with
better prognosis has been suggested for some tumors [68].

DCs are professional antigen-presenting cells central to the orchestration of innate and
acquired immunity and the maintenance of self-tolerance [51]. Deregulated DC responses may
result in the amplification of inflammation, loss of tolerance, or establishment of immune escape
mechanisms [25,33,69–71]. TADCs were described in the TME of many cancer types, and their
inactivation was reported as one of the main mechanisms of tumor escape [72]. Several evidence
suggest that TADCs can exist in a multitude of functional states during the course of the disease [46,71,73],
and that their immunogenic capacity may be strongly conditioned by the TME, ranging from
immunostimulatory to immunosuppressive [74,75]. In established tumors, TADCs display mostly an
immature phenotype, characterized by a low expression of T-cell costimulatory and high levels of
inhibitory molecules, defective migration to lymph nodes, and tolerance to tumor antigens, promoting
tumor progression, dissemination, and immune evasion [46,48,73,74,76]. However, TADCs can
generate tumor-specific adaptive immune responses, a capacity that is enhanced via DC-targeted
vaccines [70,71,77].

2.2. Tumor Hypoxia Contributes to MP Pro-Tumoral Phenotype

A critical hallmark of the TME, especially in advanced-stage tumors, is represented by low partial
oxygen tension (pO2, 0–20 mm·Hg), referred to as hypoxia, which arises as a result of a disorganized
or dysfunctional vascular network and poor O2 supply [78–80]. Hypoxia is an important driver
of malignant progression, metastatic spread, and resistance to therapies and an indicator of poor
prognosis in almost all solid tumors [13,78,81–83]. As documented by an extensive literature, hypoxia
in the TME exerts multifaceted effects on every tumor component, influencing the nature and function
of the inflammatory cell infiltrate and contributing to the establishment of immune resistance and
tumor escape mechanisms [13,19,78–80,84–91].

Hypoxia is one of the critical signals regulating MP migration into tumors and conditioning the
balance between their anti-/pro-tumoral functions [18,19,25,87,92–94]. Under hypoxic conditions, MPs
are functionally reprogrammed through the differential expression of genes implicated in inflammation,
angiogenesis, tissue disruption, mitogenesis, and immunoregulation [19,25,79,85,92,93,95]. Recent
results point to the hypoxic environment as a direct trigger of human macrophage polarization towards
a pro-tumoral “M2-like” state [31], confirming and extending studies in rodent tumor models showing
that the intra-tumor O2 gradient is a critical regulator of the M1- to M2-skewed transition [61,93,96–98].
The correlation among the extent of M2-polarized TAM infiltration in hypoxic areas, tumor progression,
and poor patient prognosis supports the hypothesis that reduced oxygenation contributes to MP
acquisition of a pro-tumoral state [19,97]. Elucidation of the mechanisms underlying TAM/TADC
dysregulated functions within the hypoxic TME may have important implications for their therapeutic
reprogramming in tumors (see Section 2.3 for details).

2.3. Targeting MPs in Cancers

Considerable efforts from several research groups have been dedicated to the development of
anti-tumor immunotherapeutic strategies targeting MP recruitment to, and/or survival and functional
polarization in, tumors [4,22,40,41,43,50,62,99]. Many studies have been carried out in experimental
animal models, and a few drugs are currently under clinical trial investigation both as monotherapies
or in combination with standard therapies [4,40].

The use of bisphosphonates encapsulated in liposomes or PEGylated nanoparticles to selectively
deplete TAMs, owing to their phagocytic activities, showed promising anti-tumor effects in preclinical
studies, reducing tumor burden, angiogenesis, and metastases. These agents are currently undergoing
clinical trials as neoadjuvants in combination with chemotherapy and hormonal therapy [4,10,22,
40,50]. Targeting the CSF1/CSF1R pathway, which is critical for Mn/macrophage survival and
differentiation toward a M2 phenotype, with mAbs and small molecule inhibitors was used as an
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approach to neutralize immunosuppressive M2-like TAMs in tumors or induce their reprogramming
toward a M1 phenotype and is being studied in phase I/II clinical trials. Several CSFR1 inhibitors
demonstrated some anti-tumor response and reduction in tumor cell invasion, in particular, in
combination regimens with conventional therapy or T cell-directed immunotherapy [4,10,11,22,40,43].
TAM accumulation in the tumor can be mediated by Mn recruitment through the CCL2–CCR2 axis,
and CCL2 inhibition by specific Abs correlated with reduced TAM infiltration, tumor growth, and
metastasis in various experimental models, alone or in association with chemotherapies, suggesting the
efficacy of this approach [40,100,101]. Various CCL2-neutralizing Abs and a CCR2 inhibitor are now
being tested in clinical trials, showing promises results [11,40,43,102,103]. TAM re-education from a
pro-tumoral toward a pro- inflammatory/tumoricidal state was also proposed as a therapeutic strategy,
eliminating the drawbacks and long-term toxicity of macrophage ablation. Immune checkpoint and/or
anti-immunosuppressive cytokine inhibitors are currently being tested at both preclinical and clinical
levels to boost TAM phagocytosis and effector functions or inhibit their immunosuppressive activity.
Clinical trials combining anti-TAMs agents (such anti-CSF1R Abs) and immune checkpoint inhibitors
are ongoing in different solid tumor contexts [4,43,104,105] (see Section 3.3 for details).

Promising developments in cancer-therapeutic strategies have also been made by targeting
TADCs [72,106]. DCs have been used in vaccine preclinical models, and several phase I, II, and
III clinical trials have tested the use of autologous Mn-derived DCs pulsed with tumor antigens to
trigger anti-tumor T cell responses, with some results obtained in melanoma and prostate cancer
patients [70–72]. Furthermore, TADC depletion in mice bearing ovarian cancer by targeting specific
markers was also shown to significantly delay tumor growth and enhance the effect of standard
chemotherapies [75]. More recently, the manipulation of TADCs to subdue their immunosuppressive
functions and enhance their immune-stimulatory capacity has been carried out in preclinical studies,
showing great promise [3,71,72,106,107] (see Section 3.3 for details).

Encouraging results obtained in preclinical studies and early clinical trials across various
therapeutic modalities and tumor types highlight the possibility of translating MP-targeted
immunotherapeutic strategies to the clinical practice to complement and improve the efficacy of
current anti-cancer therapies [10,11,40,43].

3. MP Activatory/Inhibitory Surface Receptors

3.1. Pattern Recognition Receptor (PRR) and Immunoregulatory Signaling (IRS) Receptors Expressed on MPs

Knowledge of the receptors regulating MP responses has largely increased in the past two
decades [33–36,38,71–73,92,108–115]. The deregulated expression of various members of the scavenger/
pattern recognition receptor (PRRs) and the inhibitory/activatory immunoregulatory signaling (IRS)
receptor families in MPs has been reported to lead to aberrant inflammatory responses and trigger
inflammatory diseases and inflammation-associated cancer development [71–73]. PRRs play a central
role in the detection of and responses to PAMPs/DAMPs, triggering MP activation, immunogenicity,
and pro-/anti-inflammatory and effector functions, which eventually result in pathogen clearance
and tissue repair [33,38,39,71,114,116–120]. IRS receptors are involved in the pathogenesis of chronic
inflammatory, allergic, and autoimmune diseases [34,35,92,108,112,120,121]. Their ligation can have
both pro-inflammatory and immunoregulatory consequences by modulating differentiation/maturation,
pro-/anti-inflammatory mediator secretion, phagocytosis, immune complex clearance, Ab-dependent
cytotoxicity (ADCC), respiratory burst, and T cell priming [35,36,71,108,112,113].

3.2. Role of PRR and IRS Receptors in Tumors

Recent studies have highlighted the role of PRRs in mediating MP pro-/anti-tumor activities
(Figure 1). Among them, toll-like receptors (TLRs) have been implicated in the regulation of macrophage
polarization towards either an inflammatory/anti-tumor or a pro-tumorigenic phenotype in different
cancers [4,99,122]. The expression of the macrophage scavenger receptor 1 (MSR1) was suggested
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to label a subset of anti-tumor TAMs, being significantly correlated with the inhibition of tumor
progression, lower clinical stage, recurrence-free survival, and good prognosis in prostate cancer
patients [64]. On the contrary, the macrophage receptor with collagenous structure (MARCO) was
found expressed on a subtype of TAMs with an M2-like immunosuppressive phenotype in patients
with mammary carcinoma, metastatic melanoma, and non-small cell lung cancer (NSCLC), and linked
to poor prognosis [123,124].
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Figure 1. Schematic representation of pattern recognition receptor (PRR) and immunoregulatory
signaling (IRS) receptors mediating mononuclear phagocytes (MP) pro-/anti-tumor activities and
representing potential targets of cancer immunotherapy. The figure depicts a selection of MP
receptors tested as potential immunotherapeutic targets in cancer. Targeting toll-like receptors (TLRs),
CD40, Fc region of Igs (FcRs) activating receptors with agonist, or antagonist mAbs/ligands boosts
tumor-associated macrophages (TAM)/tumor-associated dendritic cells (TADC) tumoricidal activities
and T cell activation, enhancing their cytotoxicity, cancer cell phagocytosis, and/or antigen-presenting
ability. Blockade of SIRPα LILRB1, PD-1 immunocheckpoint molecules, or macrophage receptor
with collagenous structure (MARCO) and T cell Ig and mucin domain 3 (TIM-3) immunosuppressive
receptors with inhibitory mAbs induces MP reprogramming toward an anti-tumor/immune-promoting
state, eliciting TAM phagocytic activity and tumor cell killing and improving TADC ability to stimulate
T cells. Activating and inhibitory approaches are indicated in the figure by keys and padlocks,
respectively. TLRs, toll-like receptors; CD40, cluster of differentiation 40; FcRs, receptors for the Fc
region of immunoglobulins; SIRPα, signal regulatory protein-alpha, CD47, cluster of differentiation 47;
LILRB1, leukocyte immunoglobulin-like receptor B1; β2M, β2-microglobulin; PD-1, programmed cell
death-1; PD-L1, PD-1 ligand; MARCO, macrophage receptor with collagenous structure; TIM-3, T cell
Ig and mucin domain 3; HMGB1, high mobility group box 1.

Some IRS receptors have been shown to serve as immune checkpoints by inhibiting MP anti-tumor
activation and favoring tumor immune escape [4,125,126] (Figure 1). The inhibitory receptor, signal
regulatory protein-alpha (SIRPα), negatively regulates macrophage and DC phagocytic activity by
interacting with its cognate ligand cluster of differentiation 47 (CD47) overexpressed on many types of
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cancer cells, increasing tumor invasion and metastasis [4,43,127]. Programmed cell death-1 (PD-1), as
well as its ligand, PD-L1, are expressed on M2-like TAMs and TADCs (in addition to T lymphocytes)
and upregulated during disease progression in both mouse cancer models and primary human tumors,
inhibiting TAM phagocytic activity against tumor cells and the TADC adaptive immune-activating
potential [72,74,104,106,128]. Another important immune checkpoint is represented by leukocyte
immunoglobulin-like receptor B1 (LILRB1), which suppresses TAM phagocytic functions through
the engagement of the MHC class I component β2-microglobulin (β2M) on cancer cells. The T cell
Ig and mucin domain 3 (TIM-3) was also identified as an immune checkpoint expressed on a subset
of macrophages, Mn, and DCs [129]. Its upregulation on DCs by factors present in the TME seems
to be an important mechanism by which TADCs are locked into an immune-suppressive phenotype,
preventing the detection of tumor-derived danger signals through an interaction with the DAMP
molecule, high mobility group box 1 (HMGB1), and leading to the release of immune-suppressive
factors, with consequent attenuation of the therapeutic efficacy of DNA vaccination and chemotherapy
in experimental tumor models [130].

Elucidation of the stimuli in the TME involved in receptor deregulation has been the focus of
intense research with the purpose of identifying new potential therapeutic targets. Hypoxic conditions
similar to those present at tumor sites were reported to finely tune the PRR/IRS receptor repertoire
in human Mn, Mn-derived macrophages, and DCs, by exerting a specific regulatory control on the
expression profile of genes coding for various members of both receptor families, thus affecting cell
responses toward an anti-tumor or a tumor-promoting direction [92,109–111,131–134].

3.3. PRR and IRS Receptors as Therapeutic Targets in Cancer

Advances in understanding PRR/IRS receptor expression changes have led to promising
developments in cancer-therapeutic strategies targeting TAM/TADCs to induce their switch from a
tumor-supportive toward an anti-tumor phenotype (Figure 1).

New immunotherapeutic approaches aimed at boosting TAM phagocytosis and effector functions
using mAbs to specific receptors are currently under investigation [35,43,105]. Several therapeutic
mAbs used in the clinic involve effector macrophages expressing the receptors for the Fc region of
Igs (FcRs) to induce Ab-dependent phagocytosis (ADP) or ADCC of cancer cells (for a review see
Reference [43]). Macrophage repolarization towards a tumoricidal phenotype was also attempted by
targeting the TNF receptor superfamily member, CD40, which is expressed on MPs and binds CD40L
on T cells [135]. Treatment with agonist anti-CD40 mAbs induced TAM immunostimulatory and
tumor inhibitory effects in mouse tumor models both alone and in combination with anti-CSF1R mAb,
by enhancing antigen-presentation and pro-inflammatory cytokine production and priming naive T
lymphocytes [136–139]. This observation opened the way for the development of clinically relevant
anti-CD40 mAbs, which have been tested in clinical trials for advanced-stage pancreatic tumors alone
or in combination with chemotherapy, leading to partial response [4,43,140].

Another important example of Ab-based targeted therapy comes from studies of the CD47/SIRPα
axis. Macrophages can be induced to phagocytize tumor cells by CD47/SIRPα-blocking agents, resulting
in antigen presentation and promotion of adaptive immune responses against tumors [127]. Blocking
SIRPα also polarizes TAMs to an “M1-like” anti-tumor phenotype [99]. Therapeutics targeting the
CD47/SIRPα axis demonstrated anti-tumor efficacy both in vitro and in vivo in preclinical models and
are currently being evaluated in clinical trials for both solid and haematologic malignancies as single
agents and as combination therapies with tumor-opsonizing mAbs [4,43,126,127,141–143]. Blockade of
the β2M/LILRB1 interaction was found to stimulate tumor cell phagocytosis by TAMs and significantly
slow tumor growth in mice, representing an interesting anti-cancer immunotherapeutic approach [144].
Among the strategies aimed at TAM reprogramming, PD-1/PD-L1 targeting with specific mAbs
was also shown to increase TAM phagocytosis, reduce tumor growth, and lengthen survival of
tumor-bearing mice in a macrophage-dependent fashion [22,104,105]. Interestingly, high-dimensional
profiling studies of immune cell populations infiltrating sarcomas of mice treated with anti-PD-1 mAbs,
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alone or in combination with anti-CTLA-4 mAbs, revealed Mn/macrophage remodeling in the tumor
microenvironment, providing compelling support to the hypothesis that successful immune checkpoint
therapy favors the generation of TAMs with an M1-like pro-inflammatory/anti-tumor phenotype while
decreasing the induction of TAMs with an M2-like immunosuppressive phenotype [145]. Anti-MARCO
mAbs similarly induced TAM re-education towards a pro-inflammatory phenotype in preclinical mouse
models of breast and colon carcinoma and melanoma, resulting in increased tumor immunogenicity and
tumor growth/metastasis inhibition, and improving the efficacy of checkpoint immunotherapy [123].

Another emerging approach to direct macrophage functions for cancer immunotherapy is to
manipulate TLR signaling using synthetic ligands [99]. TLR3, TLR4, TLR7/8, and TLR9 agonists have
been explored as vaccine adjuvants in different mouse cancer models, showing TAM repolarization
toward an “M1 like” phenotype and improved tumoricidal activity both alone and in combination
with immune-checkpoint inhibitors [146–149]. TLR7 and TLR9 agonists are currently being tested in
clinical trials, resulting in tumor inhibition and increased lymphoid immune cell infiltration [4,99,122].
Anti-tumor properties of TLR2 and TLR4 antagonists or cognate ligands have also been observed [122].

TADC manipulation to rescue their immune stimulatory potential also represents an intriguing
area of therapeutic impact [71,72,106]. Similarly to TAMs, TADCs are an important target of checkpoint
inhibitor-based approaches, with promising results in preclinical studies. Blockade of the PD1/PD-L1
axis on murine TADCs improved their ability to stimulate T cell activation [72,74,128]. A recent
study by Mayoux et al. [106] highlighted the strong correlation between a high DC gene signature
and clinical response to treatment with an anti-PD-L1 mAb in patients with renal cell carcinoma and
NSCLC. These investigators established the biological basis of PD-L1 blockade on TADCs, showing
a disruption of the PD-L1/B7-1 interaction and CD28 costimulation by B7-1 on T cells, suggesting
that anti-PD-L1 immunotherapy reinvigorates the TADC costimulatory function, enhancing T cell
priming. TIM-3 targeting on TADCs by specific mAbs was also shown to delay tumor progression in
a mouse model of lymphoma, although its efficacy is not completely clear and in part controversial
due to the TIM-3 expression by multiple cell types with potentially different roles [129]. A number of
anti-TIM3 mAbs are now being tested in early phase clinical trials as monotherapy or in combination
with anti-PD-1/PD-L1 mAbs [150]. CD40 and TLR3 costimulation on TADCs was shown to increase
their T cell immunostimulatory activity, inducing the rejection of ovarian carcinoma in a mouse
model [151]. Recently, the combination of DC vaccines and checkpoint molecule inhibitors led to
therapeutic responses in a phase II study in melanoma patients [3,72,107]. Furthermore, clinical use of
TLR ligands as adjuvants for DCs vaccines against cancer has yielded promising results [72].

Taken together, these findings demonstrate that the use of Abs/ligands directed to specific MP
receptors to shift their balance from a pro-tumorigenic/immunosuppressive toward an anti-tumoral
phenotype represents an attractive alternative to classic tumor treatments, improving the efficacy of
current immunotherapy in combinatorial strategies [22,105,122].

4. TREM

Novel IRS receptors have been recently described in MPs. Among them, the TREM receptor family
belonging to the Ig-like superfamily has been reported to participate in innate immune responses and be
implicated in several infectious and non-infectious inflammatory diseases, autoimmune disorders, and
cancers [44,152–157]. Six trem genes (Trem1, Trem2, Treml1-4) have been identified clustered on human
chromosome 6p21 [153,158] and mouse chromosome 17C3, with four of them encoding structurally
related type I transmembrane glycoproteins bearing a single extracellular Ig-like ectodomain (TREM-1,
TREM-2, TREML-3, and TREML-4) [157,159]. The TREM isoforms have a short cytoplasmic tail (CYT)
without a signaling motif, pairing for signaling with the transmembrane adapter, DNA-activating
protein 12 (DAP12), which carries an immune receptor tyrosine-based activatory signal-transducing
motif (ITAM) [152]. Despite similar structure and sequence homology, TREM isoforms show different
cell-type expression patterns and functional activities [44,154,160]. TREM-1 (CD354) is the first
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identified and best-characterized family member and an important regulator of myeloid cell immune
responses [37,45,153,154,161,162].

4.1. TREM-1 Structure and Expression Regulation in MPs

Two forms of TREM-1 were identified: 1) a transmembrane glycoprotein (≈30-kDa), composed of a
signal peptide, the extracellular Ig-like domain, a membrane spanning region, and a short CYT [45,154,
156,158,163–165]; 2) a soluble form (sTREM-1,≈27 kDa), devoid of both transmembrane and cytoplasmic
domains, either derived from alternative splicing of TREM-1 mRNA [153,155,166] or from shedding of
the extracellular domain of the membrane-bound form by matrix metalloproteinase (MMP)-mediated
proteolytic cleavage [167,168]. sTREM-1 acts as a decoy receptor, sequestering the TREM-1 ligand and
preventing its binding to membrane-bound TREM-1 and receptor activation [162,169].

TREM-1 is developmentally regulated in MPs, being constitutively expressed in blood Mn and
a subset of tissue macrophages [45,170] and downregulated upon Mn differentiation into DCs and
Langerhans cells (LCs) [110,111,161,162,171–173]. Several stimuli can regulate TREM-1 expression
(Figure 2). Increased TREM-1 surface levels and/or sTREM-1 release were demonstrated in vitro in both
mouse and human Mn/macrophages in response to PRR activation by bacterial and viral PAMPs [37,
45,168,174–182] and bacteria challenge [45,162,183], and in vivo in animals [162,168,182,184–189] and
patients [162,181,185,190–192] suffering from bacterial, fungal, and viral infections. In addition, pro
(TNFα)- and anti- (TGF-β, IL-10) inflammatory cytokines can increase and abrogate, respectively,
TREM-1 expression [171,193]. Lipid mediators, such as prostaglandins, also modulate TREM-1 surface
levels in both murine and human macrophages [194,195]. Expression regulation occurs mainly at the
transcriptional level through the interaction of various transcription factors with specific sites in the
TREM-1 promoter [37,183,196–200].
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Figure 2. Role of TREM-1 expressed on MPs in chronic inflammation-associated carcinogenesis
and potential as a new immunotherapeutic target in cancer. MPs are recruited to sites of
inflammation, infection, and tumor growth, where they respond to microenvironmental stimuli,
such as infectious/inflammatory agents and hypoxia, by upregulating TREM-1. TREM-1 engagement by
specific pathogen-associated molecular pattern (PAMP)/damage-associated molecular pattern (DAMP)
ligands present in the microenvironment promotes MP secretion of pro-inflammatory, chemotactic,
angiogenic, and matrix-remodeling cytokines, resulting in the amplification of the ongoing inflammatory
process and contributing to the development and progression of inflammation-associated malignancies.
TREM-1 blockade by specific synthetic peptide inhibitors attenuates MP-mediated chronic inflammation
and tumor progression in various preclinical mouse models, pointing to TREM-1 as a novel attractive
target for cancer immunotherapy. Alternative TREM-1 inhibitors, such as the TREM-1/Fc fusion protein,
antagonist anti-TREM-1 mAbs, and anti-HIF inhibition are currently being tested.
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Interestingly, a major role for hypoxia as a TREM-1 trigger was demonstrated by Bosco and
coworkers in distinct human MPs populations [31,109–111,201] (Figure 2). The TREM-1 transcript,
membrane-bound protein, and sTREM-1 levels were significantly increased by hypoxia in primary
Mn [109,202], Mn-derived macrophages [131], and upon M1/M2 polarization [31]. Furthermore,
TREM-1 was induced ex novo on Mn-derived DCs [92,110,111] and LCs [201] generated under hypoxia,
indicating that hypoxic stimulation can overcome TREM-1 developmental downregulation. A hypoxia
response element (HRE) [25,78,203] was identified in the human TREM-1 gene promoter [110,111], and
the hypoxia-inducible transcription factor (HIF)-1, the master regulator of cell response to hypoxia and
an important activator of innate immune cells [204], was shown to be involved in TREM-1 inducibility
by hypoxia [110,111]. TREM-1 expression was confirmed in vivo in macrophages, DCs, and LCs
infiltrating hypoxic inflammatory tissues [31,110,201] and in TAMs infiltrating HIF-1+ glioblastoma
and hepatocellular carcinoma (HCC) [202,205] (see Section 6 for details), suggesting the potential
relevance of this molecule as a regulator of MP functions under hypoxic conditions.

4.2. TREM-1 Putative Ligands and Signaling

The identification of the TREM-1 ligand remains controversial. A broad range of molecules
have been proposed as putative TREM-1 ligands [37]. Studies with a recombinant TREM-1/Fc fusion
protein, consisting of the human TREM-1 extracellular domain fused to the Fc portion of Igs, and
anti-TREM-1 mAbs suggested the presence of a soluble ligand in the serum of septic patients or a
membrane-bound ligand on the surface of human platelets, respectively [169,206]. HMGB1 and heat
shock protein-70 have been proposed to act as TREM-1 ligands [207], and the interaction between
TREM-1 and HMGB1 was demonstrated in a murine model [208]. Both the neutrophil-specific antigen,
CD177, and the peptidoglycan recognition protein 1, a neutrophil granule protein with antibacterial
properties, were also identified as potent TREM-1 ligands [157,209]. Finally, other PAMPs, such as
the surface glycoprotein of Marburg and Ebola filoviruses [210], were recently included in the list of
putative TREM-1 ligands.

TREM-1 engagement on the cell membrane triggers DAP12 association and Src family
kinase-mediated ITAM tyrosine phosphorylation [45,154,156,161], followed by GRBP-2, Syk, and
ZAP70 recruitment and phosphorylation, which initiate downstream signal transduction events. The
signaling pathway mainly involves PI3K, PLC-γ, ERK1/2, p38 MAP, and Akt serine/threonine kinase
activation [45,154,156,172], ultimately triggering intracellular Ca2+ mobilization, actin cytoskeleton
rearrangement, and the activation of several transcription complexes [152,154,160], such as STAT5 and
NF-κB [179]. The TREM-1 signaling pathway has been recently reviewed [37,179].

5. TREM-1 Role in Inflammatory Responses and Infectious/Non-Infectious Diseases

Since the TREM-1 discovery in 2000, extensive progress has been made regarding the elucidation
of its biological effects and interaction with other receptor pathways. Due to the absence of a
well-characterized ligand, TREM-1 functions have been studied using agonist mAbs, which induce
receptor cross-linking. These studies demonstrated that TREM-1 is a key modulator of innate
immunity to PAMPs/DAMPs and a major amplifier of MP inflammatory responses induced by
PRRs [37,45,153,154,157,161,162,180] (Figure 2). TREM-1 triggering in human Mn was shown to drive
the robust production of pro-inflammatory cytokines/chemokines and MMPs [45,171,211]. Microarray
analysis showed the TREM-1 contribution to DC and LC pro-inflammatory reprogramming under
hypoxic conditions, through the upregulation of genes coding for inflammatory cytokines/chemokines,
angiogenic/growth factors, and MMPs [92,110,111,201]. These findings were extended by recent
evidence that TREM-1 engagement imparted a pro-inflammatory M1-skewed polarization state to
hypoxic macrophages [31].

In vivo, TREM-1 was first identified in sepsis and suggested to be an important
diagnostic/prognostic marker in both bacterial and fungal infections. The release of elevated levels
of sTREM-1 has been observed in serum samples from septic patients [162,168,184], as well as in
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biologic fluids and inflammatory lesions from patients with lower respiratory tract and pleural
infections [37,154,157,212,213]. The TREM-1 role as an amplifier of inflammatory responses was
confirmed in experimental models of septic shock and other infectious conditions. Recent studies
described the TREM-1 involvement in viral and parasite-associated infections and its potential as
a biomarker in these diseases [181,189,192]. The pharmacologic inhibition of TREM-1 signaling by
administration of the TREM-1/Fc fusion protein or siRNAs partially protected animals from acute
inflammation and death induced by microbial TLR ligands [37,154,161,162,168,181,186,214–216].

More recent investigations have linked TREM-1 to the occurrence of acute non-infectious
inflammatory diseases, such as acute pancreatitis, myocardial ischemia–reperfusion injury, and
hemorrhagic shock, as well as to the perpetuation of several chronic inflammatory conditions,
including bowel inflammatory disorders, arthritides, atherosclerosis, hypertrophic scars/ulcers,
multiple sclerosis, chronic obstructive pulmonary disease, and chronic hepatic granulomatous
inflammation [37,110,153,157,178,217–220]. Increased TREM-1 expression levels and sTREM
concentrations in various biological fluids were associated with early organ inflammatory injury
and dysfunction and suggested to be an indicator of disease activity and severity. This issue is
addressed in detail in Reference [37].

6. TREM-1 Role in Cancer

Recent investigations using different modulators of TREM-1 signaling have highlighted its critical
involvement in inflammation-mediated carcinogenesis (Figure 2). High TREM-1 expression on MPs
in mouse and human tumors and/or sTREM-1 release into the biologic fluids of cancer patients
were indicated as independent predictors of tumor progression and poor patient prognosis [37,160].
(Table 1).

Table 1. TREM-1 mRNA/protein expression in mouse and human tumor-associated MPs and/or
sTREM-1 release into the biological fluids of cancer patients.

Cancer Type MP Type Biological Fluid Effects References

NSCLC
Macrophages in
tumors and pleural
effusions

Pleural effusions
Correlates with aggressive tumor
behavior, recurrence, poor disease-free,
and overall patient survival

[194,221,222]

Lung
adenocarcinoma

DCs in pleural
effusions ND Associates with disease aggressiveness

and bad prognosis [223]

Colon carcinoma Intestinal
macrophages Serum/plasma

Amplifies macrophage- mediated
inflammation and intestinal tissue
damage; correlates with aggressive tumor
behavior and recurrence

[224–227]

HCC
Kupffer cells; HSCs;
macrophages in
tumor specimens

Plasma

Increases inflammatory responses,
hepatic injury, tumor development and
aggressive behavior, and poor patient
survival; prognostic predictor for both
early tumor recurrence and low patient
overall and relapse-free survival after
resection; mediates immunosupression

[205,208,228–231]

Pancreatic cancer TAMs ND Correlates with cancer progression [232]

T-cell lymphoma MDSCs; TAMs ND Correlates with increased tumor volume [182]

Cervical cancer Monocytes ND Correlates with high-grade,
invasive cancer [233]

Glioblastoma TAMs ND Associates with low outcome of
chemotherapy-treated patients [202]

Abbreviations: NSCLC, non-small cell lung cancer; HCCs, hepatocellular carcinoma; HSCs, HCC-activated hepatic
stellate cells; TAMs, tumor-associated macrophages; MDSC, myeloid-derived suppressor cells; ND, not determined.

Growing evidence points to a causal role of TREM-1 in chronic inflammation-mediated lung
cancer. In normal pulmonary tissue, TREM-1 is selectively expressed in alveolar macrophages, which
specialize in pathogen and apoptotic cell clearance. Analysis of surgical specimens from NSCLC patients
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demonstrated a high number of TREM-1+ macrophages in tumor tissues and pleural effusions, that
was associated with elevated sTREM-1 concentrations and correlated with aggressive tumor behavior,
recurrence, and poor patient survival, suggesting that TREM-1+ macrophages are critical players in
NSCLC development and progression [194,221,222]. Lung cancer cells directly promoted TREM-1
upregulation, sTREM-1 release, and pro-inflammatory cytokine secretion in primary Mn/macrophages
from NSCLC patients [194,221]. TREM-1 involvement in NSCLC progression was further demonstrated
by the finding that TREM-1 engagement by an agonist mAb in macrophages increased NSCLC’s cell
invasive ability, which was suppressed upon TREM-1 inhibition by shRNA [221]. TREM-1+ DCs
accumulation in pleural effusions from patients with lung adenocarcinoma also seems to be associated
with disease aggressiveness and bad prognosis [223].

IBDs are a group of chronic gastrointestinal disorders caused by genetics and environmental
factors and characterized by bowel chronic inflammation associated with increased risk of colorectal
and small bowel cancers [234]. Severe and diffuse mucosal inflammation develops with the production
of inflammatory mediators and ulceration. TREM-1 appears to be crucially implicated in IBD
pathogenesis and progression to colon tumorigenesis [224,225]. In normal human intestine, only
a small fraction of resident macrophages express TREM-1, probably because local IL-10 and TGFβ
prevent excessive activation in response to the flora-rich microenvironment [193]. In contrast, in
the mucosa of IBD patients and experimental models of colitis, TREM-1-expressing macrophage
infiltration becomes markedly increased, amplifying intestinal inflammation and tissue damage
through the secretion of pro-inflammatory mediators [224]. TREM-1-deficiency in mouse models
of colitis significantly attenuates disease severity, reduces pro-inflammatory cytokine production
and inflammatory infiltrates, and prevents colon carcinoma development/progression, pointing to
a pro-oncogenic role of TREM-1 through the amplification of MP inflammatory responses [226]. In
addition, increased plasma sTREM concentrations were found in IBD patients [224], representing
an indicator of clinical activity [225,227]. TREM-1 pharmacologic blockade in vivo in mouse models
of colitis confirmed the TREM-1 contribution to the exacerbation and perpetuation of chronic colon
inflammation and its progression toward carcinoma development [235] (see Section 7 for details).

TREM-1 was also indicated as a pivotal determinant of HCC development, progression, and poor
prognosis [208]. HCC is a well-known inflammation-related cancer, whose pathogenesis is mediated
by Kupffer cells in conjunction with recruited inflammatory cells which produce high amounts of
inflammatory cytokines after hepatocyte death in the setting of hepatitis or cirrhosis, driving the
compensatory proliferation of remaining hepatocytes that ultimately evolves into HCC [228]. TREM-1
mRNA and protein upregulation in liver Kupffer cells was associated with an increased inflammatory
response, hepatic injury, and HCC development in a murine model of hepatocellular carcinogenesis,
that were attenuated in TREM-1-deficient mice [208]. Another study showed an elevated TREM-1
expression in human HCC-activated hepatic stellate cells (HSCs) from peri-tumoral specimens,
associated with HCC aggressive behavior and poor patient survival, serving as an independent
prognostic predictor for both early tumor recurrence and low patient overall survival [229]. The
sTREM-1 level was higher in the plasma of HCC patients than in those with benign liver tumors [229],
suggesting its relevance as a tumor biomarker. Duan et al. [230] further demonstrated a significant
correlation among a high TREM-1 expression, pro-inflammatory cytokine secretion, increased HCC
proliferation/migration, and decreased HCC patient survival, suggesting a potential prognostic value
for postoperative recurrence. Interestingly, a recent study demonstrated that a novel small-molecule
STAT3-inhibitor able to block liver inflammation and reduce HCC development/growth in a mouse
model of nonalcoholic steatohepatitis exerted a main inhibitory effect on TREM-1 signaling, further
linking TREM-1 to the inflammatory processes that promote liver cancer [231]. Finally, Wu et al. [205]
recently demonstrated that TREM-1+ TAMs were abundant in advanced-stage HCC within HIF+ areas
and associated with poor prognosis, and that, in orthotopic liver tumor models, TREM-1+ TAMs
induced immunosuppression by impairing CD8+T cell cytotoxicity while promoting their apoptosis.
Interestingly, PD-L1 blockade failed to improve TREM-1+TAM-mediated immunosuppression in
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tumor-bearing mice because of Treg recruitment by the TREM-1-induced CCL20 release in response to
the hypoxic environment [205].

TREM-1 upregulation on blood Mn and TAMs phenotypically and functionally resembling
myeloid-derived suppressor cells (MDSCs) was reported in mice bearing s.c. T-cell lymphomas,
correlating with an increased tumor volume, suggesting its potential contribution to MDSC immune
suppressive activity [182].

Finally, a critical role for TREM-1-expressing TAMs in pancreatic cancer progression was shown
in xenograft mouse models [232] (see Section 7 for details), and a TREM-1 increased expression
was also observed in Mn from patients with invasive cervical cancer [233] and in TAM infiltrating
glioblastoma [202].

7. TREM-1 Therapeutic Targeting

The evidence that TREM-1 blockade via the TREM-1/Fc protein/antagonist Abs, or genetic
deletion/silencing can attenuate inflammatory responses and disease severity in experimental
models of microbial infection and inflammation, while treatment with agonist mAbs worsened
the disease, indicated the potential of this molecule as a therapeutic target in inflammatory
conditions [37,185,191,220,226]. Many efforts have therefore been focused on the development of
inhibitors targeting different TREM-1 domains to prevent receptor activation and function [37,157,
178,236]. Two short synthetic peptides, P1 and LP17, derived from the TREM-1 ligand-binding
extracellular domain and behaving as decoys for endogenous TREM-1 ligands, have been created and
proven to be effective in various preclinical models of microbial infections/sepsis and non-infectious
inflammatory conditions by dampening inflammation and protecting from organ damage and
death [37,168,178,184,186,188]. A ligand-independent peptide inhibitor, GF9, targeting the TREM-1
transmembrane domain and preventing the TREM-1/DAP12 interaction [237], has shown therapeutic
efficacy in models of septic shock [37]. Relevant preclinical data have also been obtained using the
TREM-1 antagonist peptide, LR12, mimicking a conserved sequence across TREM-1 and the related
receptor, TREM-like transcripts-1 [238], in animal models of septic shock and myocardial ischemia (for
a review see Reference [37]).

Recently, experimental and human studies have suggested that TREM-1 pharmacologic
targeting may represent a potential novel therapeutic modality to inhibit MP-mediated
chronic inflammation-associated tumor development, pointing to TREM-1 as an attractive new
immunotherapeutic target also for cancer [37,157] (Figure 2, Table 2).

Table 2. Therapeutic effects of TREM-1 targeting by synthetic peptide inhibitors in preclinical mouse
models of inflammation-derived malignancies.

Cancer Type TREM-1 Peptide Therapeutic Effects References

Colon Cancer LP-17

Reduces pro-inflammatory mediator secretion by intestinal
macrophages; attenuates intestinal inflammation, permeability,
and epithelial damage; decreases epithelial histopathological
alterations, proliferative activity, and progression to
colon carcinoma

[235]

NSCLC GF9 Decreases cytokine production and delays tumor growth [237]

Pancreatic
Cancer GF9 Reduces TAMs infiltration, pro-inflammatory cytokine serum

levels, and tumor growth, increasing animal survival [232]

HCC GF9

Reduces tumor development and growth; abrogates
TREM-1+TAM-mediated immunosuppressive effect by reducing
Treg recruitment and CD8+T cell apoptosis/dysfunction; improves
mouse survival; attenuates resistance to PD-L1 blockade
improving its therapeutic efficacy

[205]

Abbreviations: NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; TAMs, tumor-associated
macrophages; PD-L1, programmed cell death-1 ligand.
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Zhou and coworkers [235] demonstrated that TREM-1 blocking by the administration of the LP17
peptide antagonist had therapeutic effects in a mouse model of colon carcinogenesis, reducing the
histopathological alterations and tumor formation associated with decreased levels of pro-inflammatory
cytokine production by intestinal macrophages and epithelial proliferation, suggesting that treatment
can attenuate intestinal macrophage-mediated inflammation and progression to colon carcinoma [235].

The GF9 effects were explored in two human NSCLC xenograft models. TREM-1 blockade by
the administration of the GF9 inhibitory peptide significantly suppressed tumor growth, and the
therapeutic efficacy was increased by the peptide incorporation into synthetic high-density lipoprotein
nanoparticles to extend its half-life and specifically target delivery to macrophages, supporting the
TREM-1 potential as a target for adjunctive therapy in lung cancer treatment [237]. The GF9 peptide also
showed therapeutic potential against pancreatic cancer. Its administration in three human pancreatic
cancer xenograft mouse models resulted in a strong anti-tumor effect, which was significantly correlated
with the suppression of TAM infiltration, reduction of pro-inflammatory cytokine serum levels, and
increased animal survival [232]. In addition, blocking TREM-1 signaling with GF9 treatment in
orthotopic HCC-bearing models abrogated the TREM-1+TAM-mediated immunosuppressive effects
by significantly reducing Treg recruitment and CD8+T cell apoptosis/dysfunction, showing inhibitory
effects on tumor growth and improving mouse survival [205]. Interestingly, GF9 treatment also
significantly attenuated resistance to PD-L1 blockade, improving its therapeutic efficacy [205].

These data suggest that TREM-1-specific peptide inhibitors have a cancer type-independent
anti-tumor activity and can potentially be used as a stand-alone therapy or as a component of
combinational therapy for several types of solid tumors.

8. Concluding Remarks

In this review, we have summarized some general trends emerging from the published data
concerning MPs’ role in the inflammatory circuit that promotes tumor progression and their potential
as effectors of cancer immunotherapy. Outlined studies emphasize the complex level of control
exerted by PRRs and IRS receptors expressed on MPs on the development and perpetuation of chronic
inflammatory conditions that predispose patients to cancer and highlight the promises of their targeting
with specific mAbs or agonist/antagonist ligands to reprogram immunosuppressive/ pro-tumoral MPs
toward an anti-tumor direction. A clear conclusion is that MP receptor-targeted immunotherapeutic
approaches have the potential to complement and synergize with current treatments to improve their
efficacy. The identification of novel targets of treatment would be helpful to create new combination
anti-cancer therapies.

The TREM-1 pharmacological inhibition with specific peptide inhibitors has recently proven to
be effective in various mouse models of chronic inflammation-associated malignancies, conferring
protection from tumor growth and survival advantages through the attenuation of MP inflammatory
responses, pointing to TREM-1 as a novel attractive target for clinical application in cancer. The
advantage of such an approach is that it blunts, but does not totally abrogate, inflammatory responses,
which are essential for tumor control. So far, however, the therapeutic use of TREM-1 inhibitors has been
limited to preclinical models, and only studies designed to measure the prognostic/diagnostic value of
TREM-1 expression and/or sTREM-1 levels in samples from patients with inflammation-associated
cancer have been carried out [37,157]. Recently, a phase I clinical trial has been run to evaluate the
safety, tolerability, and pharmacokinetics of the synthetic peptide nangibotide (LR12), the first drug
candidate targeting TREM-1 to reach clinical stage development [239], and future assessment of this
agent for cancer therapy is expected.

Therapeutic applications directed to TREM-1 revolve around antagonizing its function. Small
synthetic peptide antagonists have been widely tested because of their low immunogenicity [157].
The TREM-1/Fc fusion protein has emerged by studies in microbial sepsis [162,240,241] and other
inflammatory conditions [185,220,242,243] as an alternative TREM-1 inhibitor, potentially able to
overcome the limited pharmacological effects of synthetic peptides in humans due to their short
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half-life. Studies to derive new peptides or small molecules able to counteract the TREM-1 pro-tumoral
effects, but also to activate innate immunity via TREM-1/DAP12 pathways in the context of vaccination,
are currently ongoing (for a review see Reference [157]). Clinical testing of antagonist anti-TREM-1
Abs is likewise warranted because Abs bind directly to TREM-1, whereas peptides might only bind to
its ligands or DAP12 (Table 2). A better understanding of the identity of the TREM-1 ligand might
reveal novel targets for tumor treatment.

Further research is crucial before immunotherapeutic strategies based on TREM-1 targeting could
be translated into clinical settings. Divergent results were in fact reported by Zhang et al. [244], who
showed that TREM-1 expression in TAMs and Mn were decreased during lung tumor progression. An
additional level of complexity is given by the evidence of TREM-1 expression on other myeloid and
non-myeloid cells involved in anti-tumor responses [37]. TREM-1 is highly expressed in neutrophils,
where its activation results in ROS, lactoferrin, myeloperoxidase, and NO production, with consequent
increased neutrophil degranulation, oxidative burst, and phagocytosis [45,156,173]. In addition, this
molecule has been recently reported to be required for successful NK cell anti-tumor activity in a
mouse lung tumor model. Lee et al. [245] demonstrated that lung tumor development and metastasis
were suppressed via an increase in TREM-1-dependent NK cell cytotoxicity. TREM-1 blockade with
LP-17 prevented NK cell killing, whereas TREM-1 mAb recovered NK cytotoxic effects. Under this
scenario, the inhibition of TREM-1 would lead to increased tumor growth. Therapeutic effects of
TREM-1 targeting will thus be ultimately dictated by the functional interplay among the different
TREM-1+ immune cell populations recruited to tumor sites, suggesting that caution should be exerted
in modulating its activity.

Finally, evidence linking low pO2, HIF-1 expression, deregulated MP receptor expression/activities,
and MP pro-tumoral activation at tumor sites have potential implications for the design of new
HIF-1-targeted therapies (Figure 2). The inhibition of hypoxia-mediated tumor promotion by blocking
the HIF-1 expression/activity is currently being investigated as a therapeutic approach for various
malignancies [91]. Several putative small molecule HIF-1 inhibitors have been tested in clinical
trials [82,246,247] and may have potential efficacy in counteracting MP receptor deregulation and
promoting MP anti-tumor responses.
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Abbreviations

TME tumor microenvironment
IBD inflammatory bowels disease
MPs mononuclear phagocytes
PAMPs/DAMPs pathogen- or damage-associated molecular patterns
TREM 1 triggering receptor expressed on myeloid cells
Mn monocytes
TAMs tumor-associated macrophages
TADCs tumor-associated dendritic cells
ROS reactive oxygen species
NO nitric oxide
pO2 partial oxygen pressure
PRRs pattern recognition receptors
IRS immunoregulatory signaling
ADCC Ab-dependent cell-mediated cytotoxicity
TLRs toll-like receptors
MSR macrophage scavenger receptor 1
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MARCO macrophage receptor with collagenous structure
NSCLC non-small cell lung cancer
SIRPα signal regulatory protein-alpha
CD47 cluster of differentiation 47
PD1 programmed cell death-1
PDL1 programmed cell death-1 ligand
LILRB1 leukocyte immunoglobulin-like receptor B1
β2M β2-microglobulin
TIM-3 T cell Ig and mucin domain 3
HMGB1 high mobility group box 1
mAbs monoclonal antibodies
FcRs Fc region of Igs
ADP Ab-dependent phagocytosis
CYT cytoplasmic tail
DAP12 DNA activating protein 12
ITAM immunoreceptor tyrosine-based activatory motif
sTREM-1 soluble TREM-1
MMP metalloproteinase
LCs Langerhans cells
HRE hypoxia response element
HIF1 hypoxia-inducible transcription factor
HCC hepatocellular carcinoma
siRNA small interfering RNA
HSCs hepatic stellate cells
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