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Abstract: The emerged field of non-thermal plasma (NTP) shows great potential in the alteration
of cell redox status, which can be utilized as a promising therapeutic implication. In recent years,
the NTP field considerably progresses in the modulation of immune cell function leading to promising
in vivo results. In fact, understanding the underlying cellular mechanisms triggered by NTP remains
incomplete. In order to boost the field closer to real-life clinical applications, there is a need for
a critical overview of the current state-of-the-art. In this review, we conduct a critical analysis
of the NTP-triggered modulation of immune cells. Importantly, we analyze pitfalls in the field
and identify persisting challenges. We show that the identification of misconceptions opens a
door to the development of a research strategy to overcome these limitations. Finally, we propose
the idea that solving problems highlighted in this review will accelerate the clinical translation of
NTP-based treatments.
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1. Introduction

Implementation of technologies from physics in medical practice has a long history [1] and still
shows significant renovation and progress [2]. As a result, there are expectations that physics-based
techniques will bring novel diagnostics and treatment modalities in post-genomic personalized
medicine [1]. In the last two decades, the research has shown that non-thermal plasma (also known as
cold atmospheric plasma or non-equilibrium atmospheric pressure plasma) has significant potential in
various biomedical applications [3–5]. Indeed, non-thermal plasma (NTP) has emerged as a promising
tool for the sterilization of medical equipment [6–8], wound healing [9,10], bacteria eradication [11–14],
dental hygiene [6,15], blood coagulation [16], angiogenesis suppression [17], cancer treatment [4,18,19],
and food decontamination [20,21]. It is worth noting here that, while some studies show angiogenesis
suppression [17], others describe accelerated angiogenesis by NTP [10,22].

Among those various biomedical applications of NTP, bacteria eradication and wound healing
showed significant progress toward clinical application [23,24]. Indeed, several clinical trials revealed
the potential applicability of NTP to decrease the bacterial load on chronic wounds in patients [25–28].
This success resulted in the commercialization of a number of plasma sources for wound healing and
skin treatment [29,30]. Finally, in 2013, some NTP sources got CE certification as medical devices for
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the treatment of chronic wounds and pathogen-based skin diseases [23,24]. However, the research on
NTP sources continues to develop extensive characterization and optimization of plasma systems and
their biological effects [30,31]. Studies related to novel biomedical applications of NTP are currently
actively expanding [30]. Thus, it is expected that, in the near future, the NTP field will bring other
interesting possibilities for biology and medicine [30,32].

Basically, NTPs represent ionized gases with ion temperatures close to room temperature [33].
The composition of an NTP is very complex and consists of ions, charged molecules, electrons, electric
fields, free radicals, low amounts of UV radiation, and neutral molecules [33]. Emerging evidence
suggests that among other components, reactive oxygen species (ROS) and reactive nitrogen species
(RNS) act as key mediators of biological responses triggered by NTP treatment [34–37]. In fact, ROS and
RNS are well-known to regulate and influence key cellular processes, such as cell growth, migration,
proliferation, differentiation, death, aging, inflammation and regeneration [38–44]. Different studies
repeatedly showed that NTP is able to generate a number of ROS, such as O, •OH, O2

•−, 1O2, NO•,
NO2

•, H2O2, NO2
−, NO3

−, or O3 [45]. Therefore, it is not surprising that NTP has such various
biological effects. It is worth noting here that ROS and RNS intracellular actions also include promotion
or suppression of inflammation, immunity, and carcinogenesis [44]. Thus, recent studies of the plasma
field have focused on the potential immunomodulatory effects of NTP [46–48]. Research of such NTP
applications is relatively new, but there are already substantial efforts and promising results toward
immunomodulation by NTP. Therefore, this review aims to critically revisit the current literature
about the NTP effects exerted on immune cells. One of the core principles of the scientific method
is critical analysis. When we neglect critical assessment of the scientific literature, it leads to that
questionable and irreproducible studies more likely stay unnoticed [49]. Irreproducible research not
only wastes resources, hampers progress, and leads to frustration in academic science [50], but it also
has devastating economical and personal consequences [51]. Thus, we herein describe and identify
gaps in our understanding of underlying cellular mechanisms triggered by NTP. Identification of
gaps in the scientific knowledge helps to shape the research process and provides a basement for the
design of reliable and reproducible technologies. It is crucial to know the cellular mechanism of the
treatment’s action. Lack of such knowledge may result in severe clinical failure of desired treatment
modality [52,53]. Indeed, identification of molecular targets of NTP action will enable better clinical
transition of the technology. Finally, we discuss current challenges and perspectives in the biomedical
applications of NTPs.

2. A Brief Physicochemical Characterization of NTP for Biomedicine

In this section, we would like to give only a brief overview with key points on the complicated
question of the physicochemical characterization of NTP. There are many high-quality and
comprehensive reviews on this issue [24,30,33,45,54,55]. Here, we give only a short description
that is necessary to further understand the cellular effects of NTPs.

Current progress in the design and fabrication of various NTP systems allows us to relatively easy
generate plasmas with temperature under 40 ◦C using different gases, e.g., helium, argon, nitrogen,
ambient air, or a mixture of gases [55,56]. One can divide NTP systems into two generalized categories
based on device principles, i.e., dielectric barrier discharge (DBD) and atmospheric pressure plasma
jet (APPJ) [29,33]. DBD generates plasma in the gap between an isolated (dielectric) high-voltage
electrode and a biological specimen (serving as a counter electrode) being exposed to NTP [33,57].
A non-thermal discharge is formed between these two electrodes when an alternating current (AC)
high voltage of varying kV and up to MHz is applied [33,45,57]. In fact, the majority of DBD devices
utilize atmospheric air as working gas [33,45,57]. One disadvantage of DBD systems is the high
ignition voltage (10 kV or more depending on the system’s configuration). Thus, certain precautions or
isolations are essential in DBD devices [33,45,57]. Due to the direct contact with tissue, DBD devices
have shown a very promising effect in blood coagulation and tissue sterilization [16]. It is possible
to replace one of the electrodes with an object with high charge storage capacity, creating a so-called
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“floating electrode” (FE) [58]. One can utilize living tissue for charge storage [58]. The system is called
a “floating electrode DBD” (FE-DBD) [58]. The advantage of the FE-DBD system is in the absence of
thermal or chemical damages during application on living tissues [58,59]. However, one should not
forget that DBD systems operate with a relatively high current that has to pass through living tissue.
Therefore, caution should be taken into account not to exceed safety limits [33,45,57].

Contrary to DBD, APPJ sources do not use the target area (namely biological object) as a counter
electrode [24,30,33,45,54,55]. Instead, two electrodes within a device are utilized to create NTP, and then
the NTP is transported to a desired biological object via diffusion or by a carrier gas. Different carrier
gases can be used to create NTP. This allows the plasma-generated reactive species to be modified
relatively easily. Thus, one can tune the chemical composition of the resulting NTP to reach the desired
plasma compositions for specific biomedical applications [24,30,33,45,54,55]. Indeed, APPJ-based
devices vary greatly in design and performance. One can produce systems that range from thin plasma
needles, jets, and multiple jet applications up to large-size plasma torches [24,30,33,45,54,55].

The aforementioned complexity of NTP composition leads to the long list of up to 96 chemical
reactions taking place in air NTP [60]. This illustrates how complex the entire NTP composition
is (Figure 1). In fact, the quality and quantity of chemical entities that form NTP greatly vary
depending on the type of gas being used to generate plasma [24,30,33,45,54,55,60–62]. Additionally,
there is a number of ROS and RNS being produced as a result of plasma–liquid interactions
(Table 1) [24,30,33,45,54,55,60–62]. The actual state of knowledge indicates that the biological effects of
NTPs are mediated to a large extent by ROS, RNS generated in NTP and/or transferred into irradiated
tissue [24,30,33,45,54,55,60–62].
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Figure 1. Schematics of atmospheric pressure plasma jet (APPJ) system with an image of the plasma
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Table 1. Major types of reactive oxygen and nitrogen species form by non-thermal plasma (NTP).

ROS or RNS Name Chemical Formula

Superoxide anion O2
−

Hydrogen peroxide H2O2
Hydroxyl radical •OH

Singlet oxygen 1O2
Ozone O3

Organic radicals RO•, RO2
•

Nitric oxide •NO
Nitrogen dioxide •NO2

Peroxynitrite ONOO−

One has to bear in mind that those ROS/RNS generated by NTP can be sub-divided in short-lived
with a half-life in the µs range (O, •OH, O2

−, 1O2, NO•, NO2
•) and relatively long-lived with a half-life

in the ms range (H2O2, NO2
−, NO3

−, O3) [63,64]. Additionally, one of the most abundant component of
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NTP (O3) has been shown to generate reactive oxygen intermediates (ROIs) with the chemical lifetime
exceeding 100 s [65]. Thus, it is feasible that NTP would modulate redox reactions in living tissues.
Of note, the penetration depth of plasma in tissues is relatively low [36,63,66]. It has been shown
that NTP can reach a depth of 2 mm in vitro, contrary in in vivo conditions NTP penetrates only up
to ~400 µm [36,63,66]. It was proposed that the oxidizing nature of NTP may trigger alterations in
redox-sensitive reactions and in a way affecting the microenvironment in deeper layers of the irradiated
tissues [34,36,67,68].

Indeed, ROS and RNS regulate the plethora of cellular processes [38–44]. As a result, NTP has been
implicated to modify very distinct biological processes, ranging from increased proliferation [69,70] to
cell death by necrosis [71] or apoptosis [72–74]. Furthermore, the biological effects of NTPs greatly
depend on the physical and chemical characteristics of plasma used for the treatment [62,75–77].
Another degree of variability in NTP devices is a very big range (from 0.5 kV up to 100 kV) of
the voltage producing discharges [33]. Furthermore, voltage frequencies that are used in different
NTP sources vary enormously [33]. To sum up, different NTP sources vary in following major
parameters of the system: feed gas compositions (e.g., N2, O2, artificial air (80% N2 + 20% O2),
ambient air, Ar, He, mixture of gases), input power, discharge voltage, gas flow rate, jet length, voltage
frequencies [24,30,33,45,54,55]. All these parameters affect the resulted physicochemical composition
of NTP [24,30,33,45,54,55].

3. Critical Clinical View on NTP—Potential Side Effects and Clinical Validation

Another very important topic that we want to touch before going to effects on immune cells is
potential side effects. Indeed, we feel that this is a very important topic that is not comprehensively
covered in plasma literature. There are only a few studies that mention the side effects of NTPs [78–80].
Generally, adverse drug reactions or side effects occur almost daily in healthcare institutions and
have to be carefully considered in the optimization of treatment modalities [81–83]. It is plausible
that such a complex composition of NTP may trigger different effects including side effects on human
cells. For instance, it has been shown that ROS and RNS, as well as radiation energy of NTP, may
trigger cellular toxicity and cause DNA damage [84,85]. Moreover, in redox biology, it is well-known,
that intracellular accumulation of excessive levels of ROS damages cellular structures, leading to
distinct types of cell death [86–89]. In fact, it has been shown that NTP may induce focal mucosal
erosion with superficial ulceration and necrosis accompanied by a mild inflammatory reaction [79].
We summarized current studies that assessed side effects of NTP in Table 2. We performed this analysis
to illustrate that the question about side effects elicited by NTP is still open. As one can see from Table 2,
there is very limited number of studies that address side effects of NTP. In fact, the parameters of
NTP treatment (duration, NTP voltage, frequency of treatment, etc.) in different studies varied, which
precluded direct comparison and analysis. However, our intention was to highlight the necessity and
importance of such studies. Generally, the assessment of side effects of a treatment is very important
because side effects are crucial parameters in successful clinical performance [90]. Additionally, side
effects threaten patient compliance [90].
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Table 2. Studies that assessed side effects of NTP.

Plasma Type Pathological Condition Side Effects Type of Study Ref.

APPJ Chronic leg ulcers No signs of cytotoxicity Cohort study [91]
DBD Skin infection eczema No side effects Case study [92]

APPJ Chronic infected skin
wounds Pain (before and after treatment) Clinical trial [25]

APPJ Skin ulcers No side effects Case study [23]

APPJ Head and neck cancer Bad taste, pain, collateral edema,
bleeding, sialorrhea, necrosis Case control study [78]

APPJ Skin herpes zoster No side effects Clinical trial [93]
APPJ Skin psoriasis vulgaris No side effects Case study [94]
APPJ Skin chronic wounds No side effects Case control study [95]

APPJ Skin wounds

Focal mucosal erosion with
superficial ulceration and necrosis

accompanied by a mild
inflammatory reaction.

Animal study [79]

One can see that available studies indicate that NTP treatment has no severe but only mild side
effects and is well-tolerated (Table 2). Indeed, wounds and skin diseases represent the majority of
pathological conditions where the side effects of NTP were assessed (Table 2). However, NTP treatment
endeavors to attain different clinical applications (not only wound healing) [4,18,19]. Therefore, studies
on potential side effects and those related to treatment complications should be scaled up.

As we will see further, NTP-induced immune cell modulation has significant potential to be a new
treatment modality for cancer pathologies [46,96]. This is very appealing and encouraging. However,
before we come close to NTP-induced immunomodulation, we need to at least very briefly discuss
current views on clinical verification of treatment efficacy and good clinical practice. In fact, bias
can explain extraordinary results that were not confirmed further in many individual studies [97].
The study design of meta-analysis and randomized clinical trials helps to avoid bias in questions
of treatment effectiveness [97]. As a result, importance and influence of evidence-based research in
medicine is constantly growing worldwide [97,98]. Indeed, evidence-based research becomes one
of the most crucial medical milestones that affects the development of clinical guidelines [97–99].
It is worth noting here that clinical practice guidelines (CPGs) now represent concrete practice
recommendations for healthcare providers [100–104]. CPGs represent a component of evidence-based
medicine [100–104]. According to the principles of evidence-based medicine, CPGs are based on the
extensive evaluations of whether evidence likely supports the efficacy of the treatment when taking into
account risk-of-bias concepts [100–104]. This evaluation led to formulation of the so-called “evidence
pyramid” (Figure 2) [105–108].

In fact, each ascending level of the pyramid (Figure 2) is represented by improved quality of
evidence and decreased risk of bias [105–108]. Meta-analysis performs a crucial role in the formulation
of CPGs [109–112]. Careful analysis of studies dealing with NTP side effects clearly shows that the
majority of the reports are either case studies or case-control studies (Table 2). There are only a few
randomized controlled trials with no meta-analysis performed (Table 2). It is important to realize the
necessity of such analysis. Lack of systematic summaries leads to extreme inconsistency between
evidence and expert recommendations [97–99]. If such recommendations rely on low-quality evidence
from individual studies and/or preconceptions, this leads to destructive and disastrous consequences
in clinical practice [97–99]. Thus, we have to be careful in our justifications of the efficacy of NTP
treatment and the absence of side effects.
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4. Effects of NTP on Immune Cells

In the above section, we summarized that NTP has a very complicated physicochemical
composition. However, ROS/RNS are now emphasized as major biological players of plasma.
It is, indeed, plausible that ROS/RNS produced in plasmas are not necessarily the species directly
affecting cells [113]. It is very likely that secondary products of oxidation and ROS/RNS formed
and/or accumulated in cells play a greater role as biological effectors of NTP [36]. Taking into account
that ROS and RNS participate, regulate, and modulate activity and responses of immune cells [44],
NTP researchers have undertaken studies showing that NTP may also possess immunomodulation
consequences [48].

It is worth noting here that a major function of the human immune system is to protect the
body from infectious agents by different effector cells and proteins. In general, we recognize an
innate immune system and an adaptive immune system. The innate immune system, consisting of
phagocytic cells and natural barriers, is involved in unspecific host defense [114]. On the other hand,
the adaptive immune system includes the antibody production and development of immunological
memory in response to pathogens [115]. The progenitor hematopoietic stem cell may develop in
myeloid (granulocytes, monocytes) or lymphoid (T, B, and natural killer cells) cells [115]. Monocytes,
as effectors of the innate immune system, are responsible for engulfing pathogens and cellular debris
in the human body [116]. In addition, monocytes are able to produce ROS and RNS, particularly
nitric oxide radical (NO•) and hydrogen peroxide H2O2, to destroy phagocytized bacteria [117]. Upon
infection, signal monocytes are recruited from the bloodstream to the place of inflammation and are
differentiated into M1 or M2 macrophages. The process of macrophage polarization is driven by
microenvironment at the site of inflammation [118].

It becomes evident that not only biochemical stimuli but also physical agents can stimulate the
polarization of the macrophage and modulate the immune system [119,120]. Indeed, NTP treatment
has shown the potential to enhance macrophage activation and polarization in vitro [121–123]. In fact,
the literature on NTP effects on various immune cells is rapidly growing. Therefore, we propose here
a critical overview of this topic. First of all, we summarized current state-of-the-art studies on NTP
affecting immune cells in vitro in Table 3.



Int. J. Mol. Sci. 2020, 21, 6226 7 of 24

Table 3. Generalized summary of NTP modulation of immune cell activity in vitro.

Plasma Device
Physicochemical Parameters

Cell Lineage Signaling Pathway Main Results Ref.
Gas Voltage (kV) Frequency

kiNPen 11 Ar N.A. ~1 MHz THP-1 Inflammation
↑IL-8 mRNA level and secretion; [124]

↑HMOX mRNA level

kINPen 09 Ar 2–6 ~1 MHz Jurkat and THP-1

Jurkat cells apoptosis, ↑resistance of THP-1 to plasma-treated
medium in comparison to Jurkat cells;

[125]
THP-1 anti-oxidant

defense

differences in expression levels of genes
involved in redox and anti-oxidant system

regulation and apoptosis.

APPJ Air 2 N.A.
THP-1, U937 and

RAW264.7, PBMCs
Apoptosis

Inhibition of cell growth;

[126]

↓Glucose consumption,
intracellular ATP and lactic acid production;

mitochondria membrane depolarization,
cytochrome c release and induction of

apoptosis.

DBD N4 1.08 30 kHz

T98G and A549 in
co-culture Macrophage activation,

cancer cells death
induction

↑expression of iNOS and TNF-α genes on
mRNA and protein levels;

[121]
with RAW264.7

plasma-activated macrophages induced the
cell death of glioma and adenocarcinoma in

co-culture

kINPen 11 Ar N.A. 1 MHz
Neutrophils

isolated from NETosis
Activation of NETosis in neutrophils; Release

of DNA, extracellular DNA.
[127]

venous blood

kINPen Ar N.A. N.A.

THP-1, A375,
primary

monocytes

Alternation in metabolic
activity

Altered the morphology of THP1 cells;
changes in surface markers expression; ↑IL8

and MCP-1 in PMA-stimulated THP-1 ↑
IL1β, IL6, and IL8

[122]

isolated from
PBMCs and morphology ↑HLA-DR (an M1 macrophage marker) and

fibronectin (and M2 macrophage marker)
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Table 3. Cont.

Plasma Device
Physicochemical Parameters

Cell Lineage Signaling Pathway Main Results Ref.
Gas Voltage (kV) Frequency

DBD Air 29 15 and 30 Hz THP-1, A549 in
co-culture

ICD

induction of ICD in A549 cells

[128]
(↑calreticulin, ROS production,

ATP secretion);
↓viability of Plasma treated A549 cells,

when co-cultured with M0 macrophages

DBD N.A. 29 5, 15, 30, 75 Hz CNE-1, THP-1 ER stress, ICD
↑ immunogenic cell death of cancer cells;

[129]↑ATP secretion;
↑ER stress proteins (↑ATF4-STC2 pathway).

kiNPen Ar 2–6 1.1 MHz Jurkat, THP-1 Apoptosis

↑resistance of THP-1 cells to plasma
treatment in comparison with Jurkat cells,

[130]↑ caspase 3 dependent apoptosis;
↑ERK 1/2 and MEK 1/2 and p38 MAPK and

JNK 1/2;
↑HSP27 in THP-1.t

kiNPen Ar N.A. 1 MHz Jurkat, U-937 Apoptosis, Ferroptosis

Plasma treatment in combination with
pulsed electric fields (electro square porator)

[19]
resulted in ↑cytotoxicity in Jurkat cells.

Contrary, the additive effect was smaller in
U937 cells;

activation of apoptosis;
↑ROS production, caspase 3/7 activation).

DBD Air 20 500 Hz Jurkat Apoptosis

↑p53 protein, but not on mRNA level 48 h
post plasma treatment;

[131]

↑Bax and Bcl-2 proteins after 24 h,
slightly ↑caspase-8;

↑mRNA levels of antioxidant enzyme SOD1,
CAT, and GSR2 6 and 24 h post

NTP treatment
as a response to ROS elevated

oxidative stress
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Table 3. Cont.

Plasma Device
Physicochemical Parameters

Cell Lineage Signaling Pathway Main Results Ref.
Gas Voltage (kV) Frequency

kINPen Ar N.A. N.A. TK6 DNA damage response
↑γH2AX post plasma treatment as a

consequence of ROS induced [132]
oxidative stress in apoptosis

DBD Air 25 20 kHz

Human monocytes
isolated from
venous blood,

MDM

ROS production, surface
markers expression

↓CD86, CD36, CD163 and CD206;

[133]

↓CD16 post NTP treatment;
NTP treatment of MDM led to

time-dependent ↓M1 population,
significantly after 30 sec of treatment,

following ↑M2 population.

kINPen MED Ar N.A. N.A. MBMDc, PDA6606
in co-culture

Macrophage
polarization

↑NOS2 in TAM;

[123]

slight ↑M2 polarized macrophages post
exposure with plasma- treated medium;
↑CXCL1 and CCL4 in non-polarized

macrophages post plasma-treated medium;
↓CXCL1, CCL4, MCP1 in TAM.

kINPen Ar 2–6 1 MHz

splenocytes of
mice spleens,

B16F10 in
co-culture

Immune cells activation

↓metabolic activity in naive and
PMA-stimulated splenocytes;

[134]

↑IL-10, CCL4, IL-4, IL-12, and IL-1β in
naive splenocytes;

↑calcium influx in splenocytic T-cells, but not
in macrophages;

Co-culturing of monocytes with
plasma-treated melanoma cells ↑CD115,
IL-10 and CCL4, with a slightly ↑IL-1β,

IL-12p70, TNFα, and TGFβ.
Co-culture of CD4+ T helper and CD8+

cytotoxic T cells with plasma-treated
melanoma cells showed an increase of CD4

over CD8 cells (↑CD28).

ATP—adenosine triphosphate; ATF4—activating transcription factor 4; CAT—catalase; CCL4—carbon tetrachloride; CXCL1—C-X-C motif ligand 1; ER—endoplasmic reticulum;
HLA-ABC—human leukocyte antigen ABC; HMOX—heme oxygenase; HSP27—heat shock protein 27; ICD—immunogenic cell death; iNOS—nitric oxide synthase gene;
MBMDc—murine bone-marrow derived cells; MCP1—monocyte chemoattractant protein; MDM—monocyte-derived macrophages; N.A.—not assessed; NET—neutrophil extracellular
traps; NETosis—neutrophil extracellular traps activation and release; NOS2—nitric oxide synthase; PBMCs—peripheral blood mononuclear cells; PMA—phorbol-12-myristate-13-acetate;
SOD1—superoxide dismutase 1; STC2—stanniocalcin-2; TAM—tumor-associated macrophages; TGFβ—transforming growth factor beta; TNFα—tumor necrosis factor alpha; VBN—venous
blood neutrophils; Z-VAD-FMK—carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone; ↑—upregulation; ↓—downregulation.
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Indeed, there are more publications showing NTP effects on immune cells. However, we selected
those that have shown a verifiable biological effect supported by rigorous methodology. We will
come back to this point later, when discussing challenges with deciphering molecular mechanisms
of NTP action. From Table 3, one can clearly see that NTP has potential in modulating immune cell
activity with outcomes ranging from immune cells activation to induction of different kinds of cell
death. A closer look at the results presented in Table 3 reveals that many studies used NTP treatment
of immune cells not just for cellular function modulation solely but rather as a potential modality for
cancer immunotherapy. In fact, recent advances in cancer immunotherapy showed that significant
improvement in patient survival is possible with modern immunotherapy treatments [135,136]. Thus,
the development of novel treatments (even maybe additive or complementary) in combination with
existing immunotherapies is of a great importance. NTP may play here an emerging role to potentially
improve clinical outcomes by supporting immunomodulatory effects.

THP-1 (acute monocytic leukemia cell line) showed greater resistance to plasma treatment in
comparison to primary monocytes [137] and Jurkat (acute T cell leukemia cell line) cells [125,130].
NTP-treatment led to p53 [131] and caspase3/7 [130] activation and apoptosis execution in Jurkat
cells. On the other hand, Kaushik et al. revealed that NTP led to the mitochondria membrane
depolarization; cytochrome c release; and induction of apoptosis in THP-1, U937, and RAW264.7
cells [126]. Furthermore, NTP-treatment triggered neutrophil extracellular traps (NET) formation and
the IL-8 release, perhaps as an outcome of cell death [127].

Further analysis of the Table 3 brings us to the conclusion that the majority of the research is
done utilizing monocytic cell lineages. Furthermore, studies summarized in Table 3 show that NTP
modulates immune cells via redox signaling consistent with the current hypothesis of NTP cellular
action. Indeed, NTP-derived ROS and RNS can induce the immunological response in many cell
types (for more information, see Table 3). In general, ROS and RNS are involved in many cellular
processes, and at lower concentrations, they positively regulate the immune system [138]. Thus, the
manipulation of ROS balance may be an interesting therapeutic approach in many diseases, including
cancer [139]. Recently, a number of studies reported the activation of immunogenic cell death in cancer
cells post NTP-treatment in vitro [128,129,140,141]. However, assessment solely enhanced levels of
damage-associated molecular patterns (DAMPs, such as ATP increase, CRT activation) as a final proof
of ICD in vitro is not sufficient. Thus, the potential of an agent to activate bona fide ICD has to be
evaluated in vivo [142,143]. In fact, only a limited number of reports shows the ICD stimulation
post direct or indirect (NTP-treated liquids) NTP treatment in vivo in appropriate animal models of
oncogenesis [46,96].

However, in order to come closer to the real-life clinical approach, thorough in vivo validation
should be performed. NTP shows some promising results in vivo as well. We summarized current
in vivo studies on NTP-induced modulation of immune cell activity in Table 4. We have to say,
that there are more in vivo studies dealing with NTP modulation of immune cell activity. However,
the vast majority of those reports is rather descriptive in nature. Thus, it is not surprising that the
molecular foundations for the alleged immunomodulatory effects remain generally enigmatic. In the
absence of a hypothetical mechanism to guide experimental design, proper adjustment and control
of the experimental parameters are usually precluded. Therefore, we selected in Table 4 studies that
comply with following criteria: availability of statistical assessment, presence of positive controls for
immunomodulatory assays, orthogonal validation of immunomodulation, and several replicates of
proof of the concept experiments.
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Table 4. Summary of NTP modulation of immune cell activity in vivo.

Plasma Device
Physicochemical Parameters

Animal Model Signaling Pathway Main Results Ref.
Gas Voltage (kV) Frequency

kINPen MED Ar N.A. N.A. C57BL/6 mice Immuno-modulation

↓total number of tumor nodes;

[144]

↑infiltration of macrophages, but not CD206+
cells into tumors;

↑ number of macrophages and T cells,
with no changes in numbers of dendritic cells
and neutrophils. Increased level of calreticulin

kINPen MED Ar N.A. 1 MHz C57BL/6 mice Apoptosis in tumor
tissue

Induction of apoptosis in tumor tissues;

[145]

No significant differences in the number of
granulocytes, monocytes, and lymphocytes

in general;
No changes in cytokines secretion of IL6, IL10,

IL12, MCP1, IFNγ, or TNFα.

APPJ O2 or N2 24 N.A.
CD2F1 and

C57BL/6 mice
Tumor growth

inhibition

↓tumor size in CD2F1 mice;

[146]

↑IFN-γ, no changes in TNF-α from
splenocytes of the plasma-treated CD2F1 mice;

In the C57BL/6 mice very weak response to
plasma-treatment;

Discussion on immune response, but no data
are provide to

support it.

kINPen Ar N.A. N.A. Balb/C mice ICD

↑immunogenic cell death markers in
CT-26 cells;

[96]
heat shock protein 70 (HSP70), and

high-mobility-group-protein B1 (HMGB1);
↑IL1β, IL6, IL12p70, CCL4, and TNFα.

↑number of macrophages and T cells in mice
with CT26 peritoneal carcinomatosis post
treatment with oxidized saline solution.
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Table 4. Cont.

Plasma Device
Physicochemical Parameters

Animal Model Signaling Pathway Main Results Ref.
Gas Voltage (kV) Frequency

DBD Air 17 50–500 Hz C57BL/6J mice ICD

Activation of immunogenic cell death marker
(calreticulin);

[48]↑survival rate of mice post vaccine injection
prepared from B16F10 melanoma cells treated

with DBD plasma.

kINPen

Ar,
Ar+O2,

He,
He+O2

N.A. 1 MHz C57BL/6 mice ICD

↓tumor growth

[46]

↑CD8+ cytotoxic T-cells;
↑macrophages;

↑CD11c+ dendritic cells (DCs);
↑CD127 in both CD4+ and CD8+ T-cells;

↑ICD markers in B16F10 (↑CRT, HSP90, CD47);
Co-culture of splenocytes isolated from

vaccinated mice with B16F10 ↑marker CD69 in
CD8+ T cells and ↑CXCL1, CXCL10, IFNγ,

IL1α, IL6, and TNFα;
↓GM-CSF, CCL17.

APPJ N2 N.A. N.A. C57/BL6 mice Anti-inflammatory
effect

↓immune cells infiltration (CD4+ T cells,
CD11c+ cells, CD11b+ cells, and Gr-1+ cells);

[147]

↓pro-inflammatory cytokine and chemokine
(IL-6, IL-17, IL-22, CCL20 and CXCL1);
↓Th17 cell differentiation in lymph node;

In vitro suppressed differentiation of naive
CD4+T cells into Th17 cells and Th1 cells;
↓CD80, CD86, and MHCII in BDCM and ↓IL-6

expression TNF-α and IL-6.
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Table 4. Cont.

Plasma Device
Physicochemical Parameters

Animal Model Signaling Pathway Main Results Ref.
Gas Voltage (kV) Frequency

APPJ N2 5 15 kHz NC/Nga mice Anti-inflammatory
effect

In vivo: NTP treatment ↓HDM-induced
infiltration of mast cells and eosinophil into

the dermis and ↓Th2 cell differentiation;

[148]↓TSLP and CCL17 post NTP treatment in
HDM-induced AD;

In vitro: Activated mast cells incubation in
plasma- treated medium resulted in ↓NF-κB,

TNF-α, IL-6 and IL-13

AD—atopic dermatitis; BMDC—bone marrow-derived dendritic cells; CCL17—chemokine (C-C motif) ligand 17; CRT—calreticulin; CXCL1—C-X-C motif ligand; DCs—dendritic cells;
GM-CSF—granulocyte-macrophage colony-stimulating factor; HDM—house dust mite; HMGB1—high mobility group protein B1; HSP70—heat shock protein 70; IFNγ—interferon
gamma; IL—interleukin; MHC II—major histocompatibility complex class II; N.A.—not assessed; NF-κB—nuclear factor kappa B; NK cells—natural killer cells; PBS—phosphate-buffered
saline; TNFα—tumor necrosis factor alpha; TSLP—thymic stromal lymphopoietin; ↑—upregulation; ↓—downregulation.



Int. J. Mol. Sci. 2020, 21, 6226 14 of 24

According to Table 4, the majority of in vivo studies utilized NTP-induced immune cell modulation
in some kind of immunotherapeutic approach. Indeed, NTP technology has been shown to be effective
in immunoprotection against malignant melanoma [46] or as a potential adjuvant melanoma treatment
via induction of immunogenic cell death (ICD) [48]. Overall, this analysis of in vitro and in vivo
studies on the immunomodulatory effects of NTP shows that NTP has the potential in mediating the
activity of immune cells. Such modulation of immune cells functions by NTP shows the potential to
effectively control tumor growth at least in a mouse model of melanoma [46]. However, the molecular
mechanisms of NTP-induced immune cell modulation remain unclear. There is a need for future
studies to elucidate this gap in knowledge.

5. Challenges in Deciphering Molecular Targets of NTP Action

Contrary to previous reviews on biomedical applications of NTP, we would like to add a bit of
critical analysis here. In judging results and making straightforward conclusions, we have to be very
careful. Biomedical literature faces rising concerns that a substantial fraction of published research
findings are false [149,150]. Overall, modern science is hampered by the issue of reproducibility of
the research [151,152]. Specifically, in many cases, biomedical studies take shortcuts around the used
methodology, resulting in devastating consequences [153,154]. It is estimated, that low reproducibility
rates within life science research result in approximately $28 billion USD/year being wasted on
irreproducible preclinical research in the United States [155]. Thus, it is an imperative to critically
assess potential treatment modalities.

Although NTP shows great potential, we have identified certain pitfalls in the current research,
which create challenges in the identification of molecular mechanisms of NTP action. Importantly,
in a long run strategy such challenges may result in the clinical fail of the treatment. Further, we
briefly describe the major challenges in NTP-immune cell modulation. In Section 2, we summarized
that NTP sources vary in used gas composition power, discharge voltage, gas flow rate, jet length,
and voltage frequencies, which in turn dramatically affect the chemistry of NTP [24,30,33,45,54,55].
This variability in design and physicochemical composition of NTP greatly affect biological outcome
modulated by NTP. In fact, NTP shows sometimes bewildering biological effects. As an example, from
Tables 3 and 4, one can see, that there is a huge variability in the type of device, gas composition,
voltage and frequency. Bearing in mind how NTP-triggered biological effects vary, it is very difficult
to compare isolated studies. Thus, there is a significant challenge in the standardization of NTP
treatments. In order to reasonably compare different NTP effects in different laboratories, there is an
unmet need for standardization of the treatment protocols. Just to illustrate how cautious one has
to be, here is an example of how a very tiny handling protocol alteration may lead to irreproducible
results [156]. Two laboratories could not reproduce each other’s cell-sorting profiles of breast cells,
notwithstanding the fact that they utilized identical methods, reagents, and even specimens [156].
After long-term struggle, the researchers realized that the stirring procedure made a difference [156].

Another challenge lies in the usage of cell lines. From Table 3, it is apparent that the majority of
studies, for instance, are done utilizing the THP-1 cell line. In fact, monocytic cell lines of varying degrees
of differentiation represent a very nice initial model that can substitute primary innate immune cells,
e.g., macrophages in vitro [157–159]. In order to closer mimic macrophages features, differentiation
protocols using phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D3 are frequently
used. Indeed, such differentiation may recapitulate certain macrophage functions [160,161]. However,
the phenotype of the differentiated cells is very different when compared with primary cells, reflecting
differences in gene expression and altered cellular functions [160,162]. Thus, a broad involvement of
human primary cells is crucial for deciphering mechanisms of NTP-induced immunomodulatory effects.

Further, despite the fact that trends in biomedical research are changing, to get US Food and Drug
Administration (FDA) treatment approval, it is not necessary to identify the mechanism(s) of treatment
action [52,53]. However, we should remember that such an approach might lead to severe failure at the
final stages of clinical trials [52,53]. In fact, deciphering the mechanism of treatment action really matters
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and starts with target identification [52]. Importantly, target verification requires a thorough biological
understanding [163]. As a result, target verification contributes greatly to a reduction in the rate of
clinical failure of a treatment in early clinical development [163]. Knowledge of the mechanism by which
a drug/treatment acts greatly helps to optimize the therapeutic window of a treatment [164]. When the
mechanism of action is known, it is possible to perform better dosing for a patient via monitoring the
drug’s effects on the target pathway [52,53,164]. Knowledge of how a drug/treatment works is essential
to stratify clinical trials optimizing patient enrollment [52,53,164]. In case of developing a treatment that
utilizes cytotoxic or cytostatic effects (e.g., anticancer or antibacterial), understanding the mechanisms
of resistance and action at the molecular level is essential to develop a therapeutic modality capable of
preventing or blocking resistance effect [165]. It is true that studies revealing molecular mechanisms of
treatment action are costly, time-consuming, and require a lot of effort. After all, this knowledge pays
off in the long run by increasing the chances for drug approval and saving money and time at the stage
of clinical trials [52]. However, most importantly, it saves the lives of patients [52]. Therefore, it is very
important to identify cellular and molecular mechanisms of NTP action. We have to admit that several
studies have been undertaken (Tables 3 and 4). However, there is a significant lack of research that
utilizes gene-editing techniques to verify obtained findings. Indeed, the genetic background of cells
may dramatically influence the susceptibility of cells to NTP treatment [37]. The cases of such research
are unfortunately isolated. We have to grasp the necessary information from replicated robust studies
to achieve effective NTP-based treatments. Thus, we definitely need more studies that reveal the
underlying molecular mechanisms of NTP-induced immunomodulatory effects. Only the knowledge
of the spatiotemporal mechanisms of the NTP-induced effects will enable the deliberate exploitation of
such signals, e.g., for the potential clinical translation. Additionally, we need to realize our current
misunderstandings on NTP-based treatments. This will put NTP in a better position to become a
progressive treatment modality.

6. Conclusions

Concluding our review, we would like to emphasize that NTP really has great potential in
various biomedical applications and particularly as an immunomodulatory effector. From the cellular
biological point of view, the field is still in its infancy. The pitfalls that the NTP field faces are
typical for developing research directions. Overall, in recent years, pharmaceutical drug research and
development show declining output in terms of the number of new drugs [166]. However, as scientists,
we must remember that the main goal of our research is to finally help patients by developing clinically
useful treatments [167].

In this review, we summarized critical challenges that have to be addressed by the researchers in
order to make NTP a reliable clinical treatment. We hope that our critical analysis will help researchers
to overcome the aforementioned challenges and develop better controlled, safer, and more robust
NTP-based treatment modalities.
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Abbreviations

NTP Non-thermal plasma
ROS Reactive oxygen species
RNS Reactive nitrogen species
DBD Dielectric barrier discharge
APPJ Atmospheric pressure plasma jet
ROI Reactive oxygen intermediates
CPGs Clinical Practice Guidelines
ICD Immunogenic cell death
ATP Adenosine triphosphate
ATF4 Activating transcription factor 4
CAT Catalase
CCL4 Carbon tetrachloride
CXCL1 C-X-C motif ligand 1
ER Endoplasmic reticulum
HMOX Heme oxygenase
HSP27 Heat shock protein 27
iNOS Nitric oxide synthase
MBMDc Murine bone-marrow derived cells
MCP1 Monocyte chemoattractant protein
MDM Monocyte-derived macrophages
NET Neutrophil extracellular traps
NETosis Neutrophil extracellular traps activation and release
NOS2 Nitric oxide synthase
PBMCs Peripheral blood mononuclear cells
PMA Phorbol-12-myristate-13-acetate
SOD1 Superoxide dismutase 1
STC2 Stanniocalcin-2
TAM Tumor-associated macrophages
TGFβ Transforming growth factor beta
TNFα Tumor necrosis factor alpha
VBN Venous blood neutrophils
AD Atopic dermatitis
BMDC Bone marrow-derived dendritic cells
CCL17 Chemokine (C-C motif) ligand 17
CRT Calreticulin
DCs Dendritic cells
GM-CSF Granulocyte-macrophage colony-stimulating factor
HDM House dust mite
HMGB1 High mobility group protein B1
HSP70 Heat shock protein 70
IFNγ Interferon gamma
IL Interleukin
MHC II Major histocompatibility complex class II
NF-κB Nuclear factor kappa B
NK cells Natural killer cells
PBS Phosphate-buffered saline
TSLP Thymic stromal lymphopoietin
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