
molecules

Article

Heterologous Machine Learning for the Identification
of Antimicrobial Activity in Human-Targeted Drugs

Rodrigo A. Nava Lara 1, Longendri Aguilera-Mendoza 2, Carlos A. Brizuela 2, Antonio Peña 3 and
Gabriel Del Rio 1,*

1 Department of biochemistry and structural biology, Instituto de Fisiología Celular, UNAM,
Mexico City 04510, Mexico; rnava@email.ifc.unam.mx

2 Computer Science Department, CICESE Research Center, Ensenada, Baja California 22860, Mexico;
longendri@gmail.com (L.A.-M.); cbrizuel@cicese.mx (C.A.B.)

3 Department of genetics, Instituto de Fisiología Celular, UNAM, Mexico City 04510, Mexico;
apd@ifc.unam.mx

* Correspondence: gdelrio@ifc.unam.mx; Tel.: +52-55-5622-5663

Academic Editor: Julio Caballero
Received: 1 February 2019; Accepted: 14 March 2019; Published: 31 March 2019

����������
�������

Abstract: The emergence of microbes resistant to common antibiotics represent a current treat to
human health. It has been recently recognized that non-antibiotic labeled drugs may promote
antibiotic-resistance mechanisms in the human microbiome by presenting a secondary antibiotic
activity; hence, the development of computer-assisted procedures to identify antibiotic activity in
human-targeted compounds may assist in preventing the emergence of resistant microbes. In this
regard, it is worth noting that while most antibiotics used to treat human infectious diseases
are non-peptidic compounds, most known antimicrobials nowadays are peptides, therefore all
computer-based models aimed to predict antimicrobials either use small datasets of non-peptidic
compounds rendering predictions with poor reliability or they predict antimicrobial peptides that are
not currently used in humans. Here we report a machine-learning-based approach trained to identify
gut antimicrobial compounds; a unique aspect of our model is the use of heterologous training sets,
in which peptide and non-peptide antimicrobial compounds were used to increase the size of the
training data set. Our results show that combining peptide and non-peptide antimicrobial compounds
rendered the best classification of gut antimicrobial compounds. Furthermore, this classification
model was tested on the latest human-approved drugs expecting to identify antibiotics with
broad-spectrum activity and our results show that the model rendered predictions consistent with
current knowledge about broad-spectrum antibiotics. Therefore, heterologous machine learning
rendered an efficient computational approach to classify antimicrobial compounds.

Keywords: machine-learning; antimicrobial peptide; non-peptidic antimicrobial compound;
antimicrobial activity

1. Introduction

Drug-resistant microbes are one of the most important challenges for modern medicine [1]
considering the increased rate in morbidity and mortality associated with antibiotic-resistant
pathogens [2]. It is now commonly accepted that misuse of antibiotics is a major factor that promotes
microbial resistance to these agents [3]; such is the case of broad-spectrum antibiotics that tend to
promote resistance and are now prescribed in very restricted situations [4]. Furthermore, it has
been noted that many non-antibiotic human-targeted drugs alter the gut microbiome in patients
taking such drugs [5,6]. This alteration has been shown to be the consequence of a non-reported
colateral antimicrobial activity, suggesting that microbe resistance to an antibiotic may emerge as
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a consequence of using those human-targeted drugs [7]. Furthermore, some antibiotics may have
not been tested against the gut microbiome and may as well promote the emergence of resistant
microbes. Since the experimental validation of antimicrobial activity for the gut microbiome requires
tests on hundreds/thousands of cultivable and non-cultivable microorganisms and the number of
new human-targeted drugs may include dozens of compounds, it is relevant to develop efficient
computational strategies for the identification of secondary antimicrobial activity of human-targeted
drugs. In the present work we present a computational strategy aimed to improve the identification of
compounds with antimicrobial activity using machine-learning-based approaches.

Previous computational approaches to identify antibiotics using Quantitative Structure-Activity
Relationships (QSAR) [8,9] and machine-learning-based [10,11] procedures have been reported.
In these computational approaches, non-peptidic chemical compounds (from now on referred to as
NPCC) are represented by chemical descriptors (e.g., LogP, molecular weight, polarizability) and each
compound is labeled as antibiotic or non-antibiotic; then a clustering algorithm separates antibiotics
from non-antibiotics. An important limitation of these previous studies is that the number of chemical
compounds used to train the models is limited (less than one thousand NPCC have been described with
antimicrobial activity) and the reliability of these models requires further improvement. Alternatively,
antimicrobial peptides now accumulate in more than 10,000 in different databases [12–14], and several
computational models have been reported to effectively classify antimicrobial from non-antimicrobial
peptides [15–17]. Although peptides represent an important new focus to develop pharmaceuticals,
most human-targeted drugs are NPCC; therefore computational models to identify antimicrobial
activity in these compounds should focus on NPCC. The need to use common molecular descriptors
between polypeptides and NPCC has been previously noted for protein-ligand recognition and
protein folding, as a fundamental aspect to deal with induced-fit or conformer selection mechanisms
for molecular recognition [18]; the aim of this work though, is not to find common descriptors to
peptides and NPCC since there are already packages that solve this problem (see below). Here we
propose that combining peptides and NPCC increases the training set size and this should improve
the reliability of the computational models. The present work tests this proposal and validates the
idea that heterelogous (NPCC and peptides) training sets render the best classifying models. We then
show how this improved model may assist in the identification of broad-spectrum antibiotics on
FDA-approved NPCC.

2. Results

2.1. Training and Testing Gut Antimicrobial Classifiers

Building data sets to combine peptides and NPCC required the use of molecular descriptors
common to both types of compounds; in our case, we used 1444 descriptors calculated by
PadelDescriptor (see Methods). Then, to identify the best machine-learning model to classify gut
antimicrobials, three groups of training sets were used (see Table 1). The first group included only
peptides (TrOnlyPeptides), the second group comprises 4 sets and included only NPCC (TrNPCC1-4)
and the third group combined these two previous sets (TrHeterologous1-4) resulting in a total of
9 training sets (see Table 1); this rendered a total of 45 training sets. These 45 sets were further
processed to substitute any null or "Infinity" values using three different approaches, and a reduction
of dimensions was performed via principal-component analysis (PCA, see Methods). This procedure
rendered a total of 50 Training Sets; all these sets are included in Supplemental Tables S1(A–E)–S9(A–E).

Nine testing sets were built using the NPCC recently reported by Maier et al. [7] with and without
gut antimicrobial activity (see Table 2). The same processing of these testing sets was performed as in
the case of the training sets (see above), rendering again a total of 50 data sets (see Supplemental Tables
S10(A–E)–S18(A–E)). Please note that in both training and testing sets all peptides included were tested
against only one gut microbe assayed against the NPCC used in these sets and that although there are
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many more peptides than NPCC in our training and testing sets, this imbalance is not relevant to find
the border between antimicrobials and non-antimicrobials compounds.

Table 1. Training data sets.

Training Set Entries Description

TrOnlyPeptides 11,546 8000 antimicrobial peptides, 3546 peptides with no known
antimicrobial activity

TrNPCC1 431 164 antimicrobial non-peptides, 267 non-peptides with no known
antimicrobial activity

TrNPCC2 430 164 antimicrobial non-peptides, 266 non-peptides with no known
antimicrobial activity

TrNPCC3 430 164 antimicrobial non-peptides, 266 non-peptides with no known
antimicrobial activity

TrNPCC4 431 164 antimicrobial non-peptides, 267 non-peptides with no known
antimicrobial activity

TrHeterologous1 6204 4164 antimicrobial compounds (4000 peptides and 164 non-peptidic
compounds), 2040 no antimicrobial compounds (1773 peptides and 267

non-peptidic compounds)
TrHeterologous2 6203 4164 antimicrobial compounds (4000 peptides and 164 non-peptidic

compounds), 2039 no antimicrobial compounds (1773 peptides and 266
non-peptidic compounds)

TrHeterologous3 6203 4164 antimicrobial compounds (4000 peptides and 164 non-peptidic
compounds), 2039 no antimicrobial compounds (1773 peptides and 266

non-peptidic compounds)
TrHeterologous4 6204 4164 antimicrobial compounds (4000 peptides and 164 non-peptidic

compounds), 2040 no antimicrobial compounds (1773 peptides and 267
non-peptidic compounds)

The original NPCC from Maier et al. [7], here referred to as OnlyNonPeptides, was used to build TrNPCC1 by
taking only the odd listed compounds, TrNPCC2 by taking even listed compounds, TrNPCC3 and TrNPCC4,
included the first and second half of the data set respectively. The OnlyPeptides data set was divided to generate
TrHeterologous1, TrHeterologous2, TrHeterologous3 and TrHeterologous4 by taking the odds listed peptides, even
listed peptides, first and second half, respectively. Then, these TrHeterologous1-4 data sets with peptides were
combined with the TrNPCC1-4 to complete these sets.

Table 2. Testing data sets.

Testing Set Entries Description

TeOnlyPeptides 861 328 antimicrobial and 533 non-antimicrobial non-peptides

TeNPCC1 430 164 antimicrobial non-peptides, 266 non-peptides with no known
antimicrobial activity. Same as TrNPCC2.

TeNPCC2 431 164 antimicrobial non-peptides, 267 non-peptides with no known
antimicrobial activity. Same as TrNPCC1.

TeNPCC3 431 164 antimicrobial non-peptides, 267 non-peptides with no known
antimicrobial activity. Same as TrNPCC4.

TeNPCC4 430 164 antimicrobial non-peptides, 266 non-peptides with no known
antimicrobial activity. Same as TrNPCC3.

TeHeterologous1 430 Same as TeNPCC1.
TeHeterologous2 431 Same as TeNPCC2.
TeHeterologous3 431 Same as TeNPCC3.
TeHeterologous4 430 Same as TeNPCC4.

The original NPCC from Maier et al. [7], here referred to as OnlyNonPeptides, was used to build all Testing Sets.
TeOnlyPeptides was built taking all the 861 listed compounds. TeNPCC1 and TeHeterologous1 were built by
taking only the even listed compounds. TeNPCC2 and TeHeterologous2 included only the odd listed compounds.
TeNPCC3 and TeHeterologous3 included the second half of OnlyNonPeptides, TeNPCC4 and TeHeterologous4
included the first half of the data set. Testing sets were built so they were the complement of the compounds listed
for their Training sets, so, for example, if a training set was built using the even listed compounds (e.g., TrNPCC1),
its Testing set would be built with the odd listed compounds (e.g., TeNPCC1). Heterologous Testing Sets were the
same as OnlyNonPeptides Testing sets, due to the fact that the interest compounds are of non-peptidic nature.
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Five different statistical parameters (adjusted estimated error rate on the training set (AEER);
correctly classified instances in the training set after splitting 33% for testing (%Split); 10-fold
cross-validation (%10FCV); correctly classified instances on the testing set (%CC); area under the
receiver operator characteristic curve on the testing set (AUROC)) that evaluated the performance on
either the training or testing sets (see Methods) were used to identify the best classifier.

As shown in Figure 1, the best models included heterologous compounds (peptides and NPCC):
circles in Figure 1 represent heterologous training sets and accumulate on the upper part of Figure 1,
that is, those models with highest statistical parameters evaluating the model performance (the actual
data in this figure for these models are included in Supplemental Table S19). Treating the training set
rendering the best model with the K-nearest neighbor or mean-imputation approaches did not improve
the performance of the best model (see Supplemental Tables S6G, S6I, S6J and its corresponding test
set in Table S15G; supplemental Tables S6K, S6L and their corresponding test sets in Supplemental
Tables S15I and S15J).Molecules 2018, 23, x FOR PEER REVIEW  5 of 14 
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heterologous or non-heterologous training sets (green and yellow circles or triangles) have better 
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optimizes, hence for all the reported models is close to 1.0 and consequently does not contribute to 
differentiate the performance of the models. This statistical parameter is shown in Figure 1 to note 

Figure 1. Classifiers performance. Five statistical parameters (yellow circle: Correctly classified
instances in the test set after 67% of split validation of the training set; green circle: 10-fold
cross-validation on training set; red circle: Correctly classified instances on the testing set; blue circle:
AUROC on the testing set; purple circle: adjusted estimated error rate on the training set where the
minimum error was represented by number 1.0) are sorted from highest to lowest values. Hence, the
best parameter values are located on the left-upper part of the figure. The models using heterologous
data are represented as circles; triangles are used otherwise. The actual data of this plot can be found in
Supplementary Table S19.

Yet, none of these models surpassed the others in all 5 parameters. To aid in the visualization of
this aspect of our results, Figure 1 displays the values in descending order from left to right; therefore,
the models on the left side of the plot have better scores than those on the right. For instance, models
using heterologous (represented by circles) testing sets (the red and blue circles, corresponding with
the statistical parameters correctly classified instances and AUROC, respectively) laying on the left side
of Figure 1, have better performance than those models using heterologous testing sets on the right
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side of the plot, yet, those on the right side including either heterologous or non-heterologous training
sets (green and yellow circles or triangles) have better scores than those models using heterologous
or non-heterologous training sets on the left side of the plot. The models in the middle of the plot
have on the other hand, intermediate performances. Please note that the statistical parameter adjusted
estimated error rate is the value that AutoWeka optimizes, hence for all the reported models is close to
1.0 and consequently does not contribute to differentiate the performance of the models. This statistical
parameter is shown in Figure 1 to note that all models have similar error rates, yet different statistical
parameters, hence, the best model obtained from AutoWeka cannot be selected simply by considering
the error rate value reported.

Thus, to aid in the identification of the best models, we used a previous score developed by our
group that takes into account multiple statistical parameters, the Combined Score or simply CScore [19]:

CScorei =
1
5

5

∑
n=1

[√
MaxSn − Si,n

MaxSn − MinSn

]
(1)

where MaxSn and MinSn represent the maximum and minimum scores for a given statistical parameter
n over all models; Si,n is the score observed for a given statistical parameter n and model i; n represents
the index of the statistical parameter to evaluate (in our case were 5 parameters: AEER, %Split, %10FCV,
%CC and AUROC). Thus, formula 1 calculates CScore for each model i.

CScore averages the difference of each statistical parameter to its best value (e.g., true-positive rate
best value is 1, so the difference between the observed true positive rate and 1 is included in the CScore),
therefore the lower the CScore value the better the classifying model. Figure 2 (and Supplementary
Table S20) shows that the five best models are those using heterologous training sets (the ones below
the 0.3 line in Figure 2). Furthermore, we noticed that the top 5 best models overlapped on average in
more than 70% of their classifications hence, these were mainly redundant (see Figure 3).
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Figure 3. Classifiers overlap. The predictions of antimicrobial compounds of the top 5 models were
compared to quantify their overlap. The image shows the 10 pairs of models generated from these 5
top models. The comparison was performed on the discovery set (see Methods) because not every
model had the same testing set.

Therefore, we selected the best model based on the lowest CScore; such model was built using
the RandomCommittee algorithm (see Supplemental Table S21 for the algorithm parameters) on
the TrHeterologous1 set (see Table 1) that included 86 molecular PCA-reduced descriptors and
achieved the following performance: AEER: 0.99955; %Split: 87.4; %10FCV: 87.3; %CC: 77.2; AUROC:
0.83 (model named TrHeterologous1-Reduced-With-99M-CRC20_CRF in Supplemental Table S21;
the corresponding data set for this model is reported in Supplemental Table S6E).

2.2. Identifying Broad-Spectrum Antibiotics among FDA-Approved Compounds

We used the best model to predict NPCC with expected gut antimicrobial activity among
FDA-approved drugs. The motivation to perform this prediction is not for testing purposes, as
in the case of the training and testing sets used before. Hence, the set of compounds used in
this prediction stage is referred to as the discovery set, because we aimed to discover potential
compounds with gut antimicrobial activity. We used 756 FDA-approved compounds included in the
ZINC database (see Methods) that were not part of the training or testing sets; these compounds
included 111 antimicrobials and 645 compounds without any known antimicrobial activity; we also
added 73 NPCC that included 22 antifungal compounds and 51 without any reported antifungal
activity (see Supplementary Table S22). We have previously reported that these 22 antifungals work
through a mechanism (alter calcium intake [20]) different from antibacterial compounds (e.g., penicillin
derivates, sulphonamides, etc), thus we expected our model to predict few of these compounds
as antibacterials. FDA-approved compounds on the other hand are expected not to have, or to
have minor, gut antimicrobial activity otherwise their secondary gastrointestinal effects would be
significant. We would expect that FDA-approved drugs would be less likely predicted to act against
non-athogenic gut microbes than antifungals. To evaluate the reliability of our predictions using
the discovery set, we considered that antibiotic compounds against the non-pathogenic gut flora
among the FDA-approved drugs should be considered broad-spectrum antibiotics; please note that our
classifier was not trained to predict this class of antibiotics, yet the combination of the predictions of our
classifier on the FDA-approved drugs would render this information. The definition of broad-spectrum
antibiotics is somehow arbitrary, for instance, it is considered that antibiotics that act on G(+) and
G(−) are broad-spectrum antibiotics for some authors, while those acting against pathogenic and
non-pathogenic microorganisms are classified as broad-spectrum antibiotics by others [21,22]. The list
of broad-spectrum antibiotics was obtained from five recent works (see Methods), including 19
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broad-spectrum and 3 narrow-spectrum antibiotics (see Supplementary Table S22). We were able to
identify 72 true positives (FDA-approved antibiotics against pathogenic microbes predicted to act
against non-pathogenic gut microbes) in the discovery set that we predicted should be considered as
broad-spectrum antibiotics (see Table 3).

Table 3. Confusion matrix for the discovery set.

Predicted Gut Antimicrobial Predicted No Antimicrobial

Pathogenic antimicrobial 72 61
No antimicrobial 140 556

The actual data for this table can be found in Supplementary Table S22.
From these 72 antimicrobials, only 16 had been annotated as broad-spectrum antibiotics and 3 as

narrow-spectrum antibiotics (see Supplemental Table S22). Hence, we propose that these 3 annotated
narrow-spectrum antibiotics should be considered more likely as broad-spectrum antibiotics (see
Table 4).

Table 4. True pathogenic antimicrobials predicted by the best classifier on the discovery set.

Compound Name Annotation

Amoxicillin Narrow spectrum
Phenoxymethylpenicillin Narrow spectrum

Cephalexin Narrow spectrum

On the other hand, among the 61 false negatives, 3 compounds were annotated as broad-spectrum
antibiotics (see Supplemental Table S22). This annotation is consistent with our predictions, since these
antibiotics directed towards pathogenic microorganisms are unlikely to affect the non-pathogenic gut
microbes. Furthermore, 17 out of the 22 antifungal compounds were predicted as antimicrobials.

Thus, in total we were able to correctly identify 16 out of the 19 known broad-spectrum antibiotics
and we suggest that 3 of the annotated narrow-spectrum antibiotics should be re-evaluated; hence,
the reliability to identify broad-spectrum antibiotics was 84.2%. Furthermore, our results suggest that
56 (61 true negatives less 5 antifungals) (50.4%) out of 111 antibiotics approved by the FDA included in
our discovery set are unlikely to affect gut microbes. In comparison, 5 (22.7%) out of 22 antifungals
were predicted not to act against the gut microbes (see Supplemental Table S21). Thus, it is twice as
much less likely that FDA-approved antibiotics would be toxic against gut microbes than antifungals.

3. Discussion

The identification of antimicrobial compounds assisted by machine-learning techniques has
multiple advantages, such as reduction of the invested time to develop novel pharmaceuticals or to
flag molecules that could have secondary antimicrobial activity [17]. An important aspect of these
techniques is how to improve the reliability of these predictions. One way to achieve this is to increase
the number of examples in the training and testing sets. In this work we propose that it is possible
to use chemical compounds of different nature (peptides and NPCC) that are commonly modeled
separately as antimicrobials to improve the reliability of the predictions. Here we show that indeed,
the training sets that rendered the best classifiers of antimicrobial compounds were heterologous, those
including NPCC and peptides (see Figures 1 and 2). We can compare our best classifier with previous
works in terms of the learnability of our classes, that is, how well gut antimicrobial compounds
are differentiated from non-antimicrobial gut compounds. In that sense, the numeric performance
achieved by the best classifier on the testing set (AUC = 0.83) is comparable with the performance
achieved with one of the best antimicrobial peptide classifiers (AUC = 0.85) recently reported [23],
indicating that the learnability of heterologous training sets is as good as those of only peptides.
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Another important aspect of our work is the molecular descriptors obtained to best classify
gut antimicrobial compounds that included both peptides and NPCC. Although our goal was not
to identify common descriptors for NPCC and peptides (these are already calculated by available
packages, see Methods), we did look for those descriptors that are relevant to learn the difference
between antimicrobials from non-antimicrobials. Our results indicate that the solution to this
problem requires the transformation of 86 computed molecular descriptors, suggesting that other
molecular descriptors, most likely associated to these 86 descriptors, may improve the current
best-model performance.

In terms of improving the performance reported in this work, it is worth mentioning that we
used peptides that were not tested by Maier et al. [7] yet, these peptides had reported antibiotic
activity against at least one microorganism (Escherichia coli) found in the gut and tested by Maier and
collaborators. On the other hand, the NPCC included in our work had antibiotic activity against at
least one of the 40 gut microorganisms tested by Maier and collaborators. Hence, one alternative
approach to improve the performance of classifiers aimed at identifying gut microorganisms would
be to include antibiotics that target more common gut microorganisms; that would require further
experimental data that is not currently available at present.

To the best of our knowledge, no previous machine-learning efforts to assist in the identification of
broad-spectrum antibiotics have been reported; here the definition of broad-spectrum antibiotics was
restricted to those acting against both pathogenic and non-pathogenic microorganisms. Hence, using a
classifier trained to identify gut non-pathogenic antimicrobial compounds to predict this activity in
FDA-approved antibiotics targeted against pathogenic microorganisms represents a way to identify
broad-spectrum antibiotics. Our results suggest that half of the FDA-approved antibiotics are likely to
have antimicrobial activity against the gut microorganisms indicating that these require further testing
or investigation. For instance, two annotated narrow-spectrum antibiotics, amoxicillin and cephalexin,
that were predicted to alter gut microbes are known to affect the gastrointestinal flora [24]. On the
other hand, the broad-spectrum antibiotic ceftaroline fosamil recently approved by the FDA to treat
bacterial pneumonia and skin infections, which was not predicted to affect the gut flora, was reported
to have minor gastrointestinal effects during clinical trials [25].

How significant is our finding that almost half of the FDA-approved antibiotics are predicted to
have a broad-spectrum activity? To address this question, we included in the discovery set a group of
antifungal compounds. All microorganisms used to train our models were bacteria, hence we expected
that these antifungals that act through a mechanism different from those reported for bacteria would be
unlikely predicted to act against bacteria; lets refer to this negative prediction as expectation-antifungal.
On the other hand, most FDA-approved antibiotics should unlikely present antibiotic activity against
gut microbes, otherwise these would frequently have secondary gastrointestinal effects on patients;
lets refer to this negative prediction as expectation-FDA. Then, to address the significance of our findings
about broad-spectrum antibiotics requires evaluating expectation-antifungal and expectation-FDA;
if FDA-approved drugs are less likely to act on gut microbes than antifungals then expectation-FDA <
expectation-antifungal. Indeed, we observed that FDA-approved antibiotics are twice as much less likely
to act against gut microbes than antifungals. Thus, our results indicate that even when FDA-approved
antibiotics are safer (do not act against non-pathogenic resident gut bacteria) than our control group
(antifungals), we identified some of these compounds that need to be re-assessed as potential promoters
of resistance among microbes for their potential broad-spectrum activity.

In summary, we report a computational approach to use heterologous antimicrobial compounds
(peptides and non-peptides) to improve the discriminatory power of machine-learning approaches.
We show that training a classifier to identify antibiotics against the gut flora using heterologous training
sets correctly anticipate adverse gastrointestinal reactions in patients receiving these antibiotics.
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4. Materials and Methods

4.1. Materials

Peptides included in the training sets were obtained from the non-redundant data set of 20 public
databases (see Table 5). Testing sets were derived from the work reported by Maier and collaborators
(see Supplemental Tables S10–S18). Finally, a discovery set containing 750 FDA-approved drugs for
treating human infectious diseases and 76 antifungal drugs was built from the ZINC database [26].
Molecular descriptors were computed with PadelDescriptor [27]. For every training and test set,
we performed five different approaches to process the molecular descriptors for each peptide and/or
NPCC. These included: no processing; eliminate every null value; substitute every “Infinity” value for
0 or 99,999,999; reduction of the dimensionality applying a principal component analysis implemented
in WEKA package (see below). Since the substitution of Infinity values for 0 or 99,999,999 is not a
conventional strategy, we performed an imputation of the Infinity and null values using the K nearest
neighbor or mean imputation approaches, but only on the best model data set for comparison. That is,
from the 9 training sets we generated a total of 45 training sets following the different approaches
described before; the same applies to the 9 testing sets. For the discovery set only the transformation
applied to the best classifier was performed.

Table 5. Antimicrobial peptide databases used in the present study.

Database Focused on Reference

BACTIBASE Bacteriocins [28]

Bagel Bacteriocins [29]

CAMP General and Patented AMPs [14]

DADP Anuran AMPs [30]

DAMPD General AMPs * [31]

DBAASP General AMPs [13]

Defensins Defensins [32]

HIPdb Anti-HIV peptides [33]

LAMP General and Patented AMPs [34]

MilkAMP AMPs of dairy origin [35]

PhytAMP Plant AMPs [36]

PenBase Penaeidin AMPs [37]

Peptaibol Peptaibols [38]

RAPD Recombinant AMPs [39]

AMPer Eukaryotic AMPs [40]

UniprotKb General AMPs [41]

YADAMP General AMPs [42]

AMSDb Eukaryotic AMPs [43]

APD General AMPs [44]

AVPdb Antiviral peptides [45]

* AMPs stands for Antimicrobial Peptides.

4.2. Method

To identify the best model to classify gut antimicrobial compounds, we followed a systematic
method previously reported by our group [46]. Briefly, given the training sets, 52 different
machine-learning algorithms implemented in WEKA [47] and their parameters were systematically
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analyzed to identify the algorithm, parameters and molecular descriptors that renders the lowest
possible error in classification; this systematic analysis was performed by the Bayesian optimization
algorithm implemented in AutoWEKA [48]. We ran AutoWEKA against any training set for 10, 90, 720,
2880 and 4320 minutes to identify when the optimization has reached a plateau in the classification
error. Afterwards, a 10-fold cross validation and 67% split tests were performed in WEKA. Finally,
these classifiers were evaluated against their corresponding testing sets. Two statistical parameters
were chosen to evaluate the performance of the classifiers during the testing, including: Area under
the ROC curve and correctly classified instances on the testing set. Therefore, a total of 5 statistical
parameters were used to define the best classifiers, three for the training phase (adjusted estimated error
rate on the training set; correctly classified instances in the training set after splitting 33% for testing;
10-fold cross-validation) and two for the testing phase (AUROC and correctly classified instances).

To identify the intersection set between the top 5 classifiers, we compared the predictions of these
classifiers rendering 10 possible pairs of predictions on the discovery set; we used this set because not
every classifier had the same testing set. The best model was identified using a combined score (see
formula 1): the model with the lowest combined score was chosen. The model then was used to predict
gut antimicrobial compounds in the discovery set using WEKA command line (see Supplemental File
S1). To annotate as broad-spectrum or narrow-spectrum antibiotics, we used five different previous
works that classified antibiotic action [22,49–52].

Supplementary Materials: The following are available online at http://bis.ifc.unam.mx:8080/ironbios/
heteroml/, File S1: Script to execute the best model to predict antimicrobials on FDA-approved drugs, Table S1A–E:
Training sets in ARF format for TrOnlyPeptides, Table S2A–E: Training sets in ARFF format for TrNPCC1, Table
S3A–E: Training sets in ARFF format for TrNPCC2, Table S4A–E: Training sets in ARFF format for TrNPCC3, Table
S5A–E: Training sets in ARFF format for TrNPCC4, Table S6A–L: Training sets in ARFF format for TrHeterologous1,
Table S7A–E: Training sets in ARFF format for TrHeterologous2, Table S8A–E: Training sets in ARFF format for
TrHeterologous3, Table S9A–E: Training sets in ARFF format for TrHeterologous4, Table S10A–E: Testing sets in
ARF format for TeOnlyPeptides, Table S11A–E: Testing sets in ARF format for TeNPCC1, Table S12A–E: Testing
sets in ARF format for TeNPCC2, Table S13A–E: Testing sets in ARF format for TeNPCC3, Table S14A–E: Testing
sets in ARF format for TeNPCC4, Table S15A–J: Testing sets in ARF format for TeHetrelogous1, Table S16A–E:
Testing sets in ARF format for TeHetrelogous2, Table S17A–E: Testing sets in ARF format for TeHetrelogous3,
Table S18A–E: Testing sets in ARF format for TeHetrelogous4, Table S19: Parameter values for all models tested,
Table S20: CScore values for all model tested, Table S21: Best models algorithms and corresponding parameters
and Table S22: Discovery set.
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