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Motivation: Long non-coding RNAs (lncRNAs) play important roles in cancer
development. Prediction of lncRNA–cancer association is necessary for efficiently
discovering biomarkers and designing treatment for cancers. Currently, several methods
have been developed to predict lncRNA–cancer associations. However, most of them
do not consider the relationships between lncRNA with other molecules and with cancer
prognosis, which has limited the accuracy of the prediction.

Method: Here, we constructed relationship matrices between 1,679 lncRNAs, 2,759
miRNAs, and 16,410 genes and cancer prognosis on three types of cancers (breast,
lung, and colorectal cancers) to predict lncRNA–cancer associations. The matrices were
iteratively reconstructed by matrix factorization to optimize low-rank size. This method
is called detecting lncRNA cancer association (DRACA).

Results: Application of this method in the prediction of lncRNAs–breast cancer,
lncRNA–lung cancer, and lncRNA–colorectal cancer associations achieved an area
under curve (AUC) of 0.810, 0.796, and 0.795, respectively, by 10-fold cross-validations.
The performances of DRACA in predicting associations between lncRNAs with three
kinds of cancers were at least 6.6, 7.2, and 6.9% better than other methods,
respectively. To our knowledge, this is the first method employing cancer prognosis
in the prediction of lncRNA–cancer associations. When removing the relationships
between cancer prognosis and genes, the AUCs were decreased 7.2, 0.6, and
5% for breast, lung, and colorectal cancers, respectively. Moreover, the predicted
lncRNAs were found with greater numbers of somatic mutations than the lncRNAs
not predicted as cancer-associated for three types of cancers. DRACA predicted many
novel lncRNAs, whose expressions were found to be related to survival rates of patients.
The method is available at https://github.com/Yanh35/DRACA.

Keywords: lncRNA, cancer, prognosis, survival, mutation

Frontiers in Genetics | www.frontiersin.org 1 June 2021 | Volume 12 | Article 639872

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.639872
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.639872
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.639872&domain=pdf&date_stamp=2021-06-28
https://www.frontiersin.org/articles/10.3389/fgene.2021.639872/full
https://github.com/Yanh35/DRACA
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-639872 June 21, 2021 Time: 18:27 # 2

Yan et al. Detecting lncRNA–Cancer Associations

INTRODUCTION

The human genome consists of protein-encoding mRNA and
non-coding RNAs (ncRNAs), but only a small portion of the
human genome corresponds to the protein-coding genes (PCGs;
Atkinson et al., 2012; Ezkurdia et al., 2014). Among ncRNA,
long non-coding RNAs (lncRNAs) are transcription length over
200 nucleotides (Wilusz et al., 2009; Evans et al., 2016) that
play important roles in a variety of biological processes and
pathological conditions of cancers. The abnormal transcriptions
of lncRNA may cause changes in the expression of target genes
related to cancer pathways (Prensner and Chinnaiyan, 2011; de
Lena et al., 2017). For example, lncRNA PTENP1 is a pseudogene
of the tumor suppressor PTEN, which inhibits the induction of
autophagy in liver cancers (Chen et al., 2015). Another lncRNA
GAS5 has been shown to regulate cancer proliferation in many
human cancer systems (Mazar et al., 2017). In recent years,
a portion of lncRNAs has gradually been used as biomarkers
of cancers. For example, in human hepatocellular carcinoma
cells (HCCs), the lncRNA, uc002mbe.2, is expressed at lower
levels than normal cells, but its expression can be increased
300-fold after treatment with histone deacetylase inhibitor
Trichostatin A (TSA, Yang et al., 2013). The lncRNA SChLAP1
is a tissue biomarker that can be used to identify prostate
cancer patients at high risk of fatal progression, according to a
study of prostate cancer patients in the United States (Mehra
et al., 2016). Unfortunately, efficiently identifying lncRNAs–
cancers associations is a challenge due to the complexity of
relationships between them.

Detecting associations of lncRNAs and common cancers is
important for early diagnosis and improving overall survival
rate. Currently, breast, lung, and colorectal cancers are the most
frequently diagnosed cancers. Although the overall survival rate
of breast cancer has improved significantly, it is still an important
cause of global death (Kalimutho et al., 2019). Therefore, it
is necessary to identify lncRNAs associated with cancers for
improving the early diagnosis. In recent years, a growing number
of evidences demonstrate that lung cancer is one of the main
causes of cancer death in men and women all around the
world (Jemal et al., 2011). Simultaneously, colorectal cancer is
the third most common cancer worldwide, with 1.36 million
people diagnosed in 2012 (Ferlay et al., 2015). Thus, the
occurrence of these three types of cancers is a serious threat
to human health. Predicting potential lncRNAs associated with
these cancers can provide useful information for prevention,
diagnosis, and treatment.

Many lncRNAs play important roles through interacting with
miRNAs. miRNA is a class of single-stranded RNAs with about 22
long chains of nucleotides, which act as either oncogene or tumor
suppressor (Bartel, 2004). Accumulating evidences demonstrated
that lncRNA–miRNA crosstalk has emerged as core roles in the
pathogenesis and development of human cancer (Xue et al.,
2017). Thus, constructing lncRNA–miRNA relationship may help
to identify lncRNA–cancer associations.

By using interactions between lncRNA with other molecules,
many methods have been developed to predict potential lncRNA–
cancer associations (Chen et al., 2017). Liu et al. (2015)
proposed a method that utilized the expression profiles of

lncRNAs and PCGs in cancers to construct lncRNA–PCG
bipartite network, which was then used to identify cancer-
associated lncRNAs via random walks. It has previously used
human phenotypic ontologies to annotate disease to improve
the predictive power of lncRNA associated with disease (Le and
Dao, 2018). Recently, based on the relationships of lncRNA or
miRNA with other molecules, matrix factorization methods were
used to predict lncRNA–disease associations (Fu et al., 2018) and
miRNA–disease associations (Xuan et al., 2019). LION model
applied the characteristics of lncRNAs, genes, and diseases to
predict the relationships between lncRNAs and diseases through
network diffusion (Sumathipala et al., 2019). At the same time,
there are also related study based on heterogeneous clustering
methods to predict the unknown relationships between lncRNAs
and diseases based on the relationship network constructed
by diseases, lncRNAs, microRNAs, and genes (Barracchia
et al., 2018). LP-HCLUS uses multi-type hierarchical clustering
methods to predict potentially lncRNA–disease relationships
(Barracchia et al., 2020). However, all these methods only
discriminate disease-associated lncRNAs without relating the
lncRNAs with specific cancer types.

Moreover, all these methods overlooked the relationships
between lncRNAs and cancer prognosis. The presence of
lncRNAs in cancers can be an important factor clinically
determining the prognosis of patients. Recently, an approach
has been proposed to estimate the relationship between genes
and the cancer prognosis by analyzing multi-omics data and
clinical information from The Cancer Genome Atlas (TCGA)
database (Wang et al., 2018). More recently, a method was
presented to determine the gene and patient prognosis for
13 types of cancers (Chai et al., 2019), which reminds us
to use the relationships between genes and the prognosis
of three types of cancers in the prediction of lncRNA–
cancer association.

In this study, we constructed a method, called detecting
lncRNA cancer association (DRACA), to predict associations
between lncRNAs and three common cancers. This method
integrated the relationships between lncRNAs, cancer prognosis,
miRNAs, genes, and cancers into a matrix and utilized
matrix factorization to fuse multiple effective biological features
in the prediction. This is the first method using cancer
prognosis to detect lncRNA–cancer associations, which was
indicated as a critical feature in the prediction. Further analyses
indicated that the predicted cancer-associated lncRNAs contain
significantly more somatic mutations than the average. In
addition, several novel cancer-associated lncRNAs predicted
by this study were significantly correlated with the survival
rates of cancer patients and were expressed to be significantly
different in cancer tissues and paracarcinomatous tissues.
Thus, the predicted lncRNAs are biologically meaningful in
the cancer process.

METHODS

Matrix Factorization
The matrices were constructed by the relationships
between N (N = 5) kinds of features. The main
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framework of the model is to optimize the equation:

min
G ≥0O (G, S, W) =

∑
Rij∈R

Wij||Rij − GiSijGT
j ||

2
F + α||vec(W)||2F

(1)

s.t. W ≥ 0,
∑

vec (W) = 1

where α is used to control the complexity of vec(w) (set as
1 × 105 in the study), Rij is a collection of relations across
data sources that include RLM , RLG, RLC, RGP, RMG, RMC,
and RGC (Table 1), i and j are the ith and jth features from
two different data sources, respectively, Rij is reconstructed as
GiSijGT

j by singular vector decomposing (SVD), W is calculated
by Equation 2, i and j are two kinds of features, and || · ||2F is
the Frobenius norm.

The low-rank size of reconstructed matrix in Equation
1 was optimized according to the prediction of lncRNA–
cancer relationships in the training set by giving appropriate
weights (Wij). Wij was calculated by Equation 2, where
γ is the Lagrangian multipliers. Here, the performance of
the prediction was evaluated by Area Under Curve (AUC).
To avoid overfitting, 10-fold cross-validation was employed.

wij =

{
γ−Hij

2α
, if γ−Hij > 0 and Rij ∈ R

0, if γ−Hij ≤ 0 and Rij /∈ R
(2)

(Hij = ||Rij − GiSijGT
j ||

2
F )

Dataset Construction
The dataset includes five kinds of features and their relationships,
which are lncRNAs, miRNAs, genes, cancers, and cancer
prognosis. The relationships between these features were
collected from public databases. The lncRNA–miRNA
relationships (RLM) were downloaded from starBase v2.0
(Li et al., 2014); the lncRNA–gene interactions (RLG)
were from lncReg (Zhou et al., 2015); the lncRNA–
cancer associations (RLG) were from lncRNADisease (Bao
et al., 2018); the miRNA–gene relationships (RMG) were
from miRTarbase (Chou et al., 2018); the miRNA–cancer
relationships (RMC) were from MNDR v2.0 (Cui et al., 2018);
the gene–cancer (RGC) relationships were from DisGeNet
(Pinero et al., 2017).

TABLE 1 | The matrix size and the number of associations in the dataset.

Relationships Matrices Size Associations

lncRNA–miRNA RLM 1,679 × 2,759 10,120

lncRNA–gene RLG 1,679 × 16,410 511

lncRNA–cancer RLC 1,679 × 3 542

miRNA–gene RMG 2,759 × 16,410 380,639

miRNA–cancer RMC 2,759 × 3 3,343

Gene–cancer RGC 16,410 × 3 9,015

Gene–prognosis RGP 16,410 × 3 1,169

FIGURE 1 | The network of five features. The five features include lncRNAs,
miRNAs, genes, cancers, and cancer prognosis. The line represents the
relationship matrices.

Additionally, we calculated the gene–prognosis relationships
(RGP) by integrating multi-omics data from TCGA as
described in a previous study (Chai et al., 2019). Briefly, we
downloaded multi-omics data including RNA expression
data, DNA methylation data, and copy number variation data
of 614 breast cancer patients, 733 lung cancer patients, and
255 colorectal cancer patients from TCGA dataset1; then,
we employed Autoencoder to rebuild composite features
that were subsequently used by Cox proportional hazard
model to estimate the prognosis risk of patients. Finally,
XGboost was used to classify the prognosis of patients
into high and low risks by scoring relationships between
genes and the prognosis. The scores of genes were ranged
from 0 to 1. The genes with scores higher than 0.5 were
defined as highly correlated. The relationships between the
genes and the prognosis of three kinds of cancers were
included in the matrix factorization model. In summary,
this study constructed a dataset including 1,679 lncRNAs,
2,759 miRNAs, 16,410 genes, and 16,410 genes–prognosis
relationships and three kinds of cancers (breast, lung,
and colorectal).

The relationships between these data are provided
in Table 1. By using these relationships, we constructed
lncRNA–cancer network as shown in Figure 1. The lncRNA–
cancer relationships in lncRNADisease were used as golden
standards to determine the lncRNA–cancer associations.
As shown in Table 1, 542 lncRNA–cancer associations in
the database were considered as the positive dataset, and
4,495 lncRNA–cancer with no relationships were included
as the negative dataset. Briefly, 185, 179, and 178 lncRNAs
associated with breast cancer, lung cancer, or colorectal
cancer were collected as the positive dataset, whereas
1,494, 1,500, and 1,501 lncRNAs not associated with breast
cancer, lung cancer, or colorectal cancer were collected as the
negative dataset.

1https://www.cancer.gov/tcga
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Statistical Measurements in Evaluating
the Methods
The 10-fold cross-validation was used to evaluate the
performance of DRACA. We randomly divided positive and
negative genes into 10-fold and used nine-fold as training and
one-fold for testing. This process was repeated for 10 times. The
prediction AUC was calculated for the testing fold. The average
AUC was used as 10-fold cross-validation result of the model.
In this study, we used AUC, maximum Matthews correlation
coefficient (MCC), accuracy (ACC), precision, sensitivity, and
specificity to evaluate the performance of DRACA. Calculations
of these measurements were shown in Equations 3–7.

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(3)

ACC =
TP + TN

TP + TN + FP + FN
(4)

precision =
TP

TP + FP
(5)

sensitivity =
TP

TP + FN
(6)

specificity =
TN

FP + TN
(7)

RESULTS

The Influences of the Low-Rank Size (k)
The low-rank size (k) of decomposed matrix in Equation 1
was optimized according to the performance of prediction. The
performance was evaluated by AUC. In this study, k1 was the
low-rank size of R[lncRNA] that was the relationship between
lncRNA with other features and was kept as 1,679; k4 and k5 were
the low-rank sizes of R[cancer] and R[cancer prognosis] that were the
relationships between cancers with other features and were kept
as 3. k2 and k3 were the low-rank sizes of R[miRNA] and R[gene]
that were relationships between miRNA and gene with other
molecules and cancers, respectively. k2 and k3 were optimized.

The k2 was optimized from 10 to 2,759 by a step of 100 and
keeping k3 as 50 to reduce the computational cost. As a result,
when k2 = 1,610, the highest AUC of 0.787 was achieved. Then,
k3 was trained by keeping k2 = 1,610. The best AUC of 0.789 was
provided when k3 = 1,810. Then, we examined the performance

of the model in predicting the lncRNA associations with breast
cancer, lung cancer, and colorectal cancer, respectively. AUC
values of 0.806, 0.801, and 0.778 were achieved, respectively, for
three types of cancers.

We expected that the model gave a better performance when
it was trained for a specific cancer. Here, this model was trained
for prediction of associations between lncRNA and breast cancer,
lncRNA and lung cancer, and lncRNA and colorectal cancer,
respectively. In the training procedure, k2 and k3 were optimized,
and 10-fold cross-validation was applied to avoid over training.
For breast cancer, when k2 = 2,210 and k3 = 2,510, the highest
AUC of 0.810 was obtained, which was slightly higher than the
AUC of 0.806 obtained by the model trained for predicting all
associations between the cancers and lncRNA. For lung cancer,
when k2 = 1,110 and k3 = 3,110, the AUC was 0.796 that was a
marginal decrease compared with 0.801 obtained by the model
trained for prediction of all associations between the cancers and
lncRNA. For colorectal cancer, k2 = 1,610 and k3 = 710 provided
the highest AUC of 0.795 that was higher than the AUC of 0.778
reached by predicting all associations between the cancers and
lncRNA. The results are shown in Table 2. We further used
this method in liver hepatocellular carcinoma. Result indicated
that the 10-fold cross-validation AUC achieved 0.749 and MCC
achieved 0.313 (Table 2).

Measuring the Contribution of the
Features
To measure the contribution of each feature in the prediction,
we individually removed the relationships between features
and examined their influence on AUC areas. For prediction
of breast cancer-associated lncRNAs, when the relationship
between genes and cancer prognosis (RGP) was removed, the
AUC of DRACA was reduced from 0.810 to 0.738 (7.20%).
In removing the relationship RGP in the prediction of lung
cancer, the AUC was reduced from 0.796 to 0.790 (0.60%).
In the prediction of lncRNA–colorectal cancer association, the
removal of RGP dramatically reduced the AUC values from
0.795 to 0.745 (5.00%). We also examined the contributions
of the relationships, RLM , RLG, and RMG, in the prediction
of the associations of lncRNA with three types of cancers,
respectively. The results are shown in Table 3. As shown in
Table 3, the lncRNA–miRNA (RLM) was the most important
feature in the prediction. Meanwhile, we found that removing the
gene–cancer relationships or miRNA–cancer relationships can
also reduce the prediction.

TABLE 2 | The performance of DRACA in the prediction of associations between lncRNA and three types of cancers.

Cancer AUC (AUCa) MCC ACC Precision Sensitivity Specificity

Breast cancer 0.810 (0.806) 0.336 0.658 0.232 0.910 0.625

Lung cancer 0.796 (0.801) 0.404 0.764 0.294 0.858 0.764

Colorectal cancer 0.795 (0.778) 0.371 0.714 0.254 0.888 0.694

Liver hepatocellular carcinoma 0.749 0.313 0.676 0.236 0.841 0.656

aThe AUC values of the DRACA model that was trained to predict the association between lncRNA and three cancers.

Frontiers in Genetics | www.frontiersin.org 4 June 2021 | Volume 12 | Article 639872

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-639872 June 21, 2021 Time: 18:27 # 5

Yan et al. Detecting lncRNA–Cancer Associations

TABLE 3 | The AUCs and MCCs for DRACA predictions after removing the associations between features.

Breast cancer Lung cancer Colorectal cancer

AUC MCC AUC MCC AUC MCC

All 0.81 0.336 0.796 0.404 0.795 0.371

-RLM 0.57 0.048 0.585 0.056 0.549 −0.010

-RLG 0.749 0.333 0.756 0.356 0.731 0.312

-RMG 0.668 0.258 0.685 0.313 0.569 0.154

-RGP 0.738 0.347 0.79 0.387 0.745 0.303

-RMC 0.715 0.338 0.734 0.339 0.722 0.294

-RGC 0.5 0 0.5 0 0.5 0

FIGURE 2 | The influences of cancer types in detecting lncRNA cancer association (DRACA) prediction. The black lines represent the ROC curves of DRACA without
removing any features in predicting associations between lncRNA and cancers. The red and green lines denote the ROC curves of DRACA removing cancer
information. (A) The ROC curves to show the influences of removing lung cancer information (yellow curve) or removing colorectal cancer information (green curve) in
predicting breast cancer associated lncRNAs; (B) The ROC curves to show the influences of removing breast cancer (red curve) or removing colorectal cancer
information (green curve) in predicting lung cancer associated lncRNAs; (C) The ROC curves to show the influences of removing breast cancer information (red
curve) or lung cancer (yellow curve) in predicting colorectal cancer associated lncRNAs.

When all the miRNA-related features (lncRNA–miRNA,
miRNA–gene, and miRNA–cancer features) were removed
from the prediction or all the gene-related features (gene–
cancer, gene–prognosis, gene–cancer, and miRNA–gene features)
were removed from the prediction, the AUC values of
DRACA are close to random. More details are included in
Supplementary Table 1.

The Impact of Other Cancers on the
Prediction
This study constructed DRACA by including the information
of three types of cancers that may have influences on the
prediction. These influences were tested through excluding
cancer information individually. As shown in Figure 2, in the
prediction of lncRNA–breast cancer associations, removing the
lung cancer and removing the colorectal cancer individually
resulted in the AUCs of 0.791 and 0.753, respectively, which
are lower than the AUC value 0.810 obtained by using all the
features. Figure 2 also describes the impacts of breast cancer
and colorectal cancer in the prediction of lung cancer-associated
lncRNA and the impacts of breast cancer and lung cancer in
the prediction of colorectal cancer-associated lncRNAs. When
removing breast cancer or colorectal cancer information in
predicting lung cancer-associated lncRNAs, the AUC values were
decreased from 0.796 to 0.753 or from 0.796 to 0.765, respectively.

The contributions of breast cancer and lung cancer in the
prediction of lncRNAs associated with colorectal cancer were
indicated by the reduced AUCs from 0.795 to 0.777 and to 0.754,
respectively. Thus, colorectal cancer contributed more in the
predictions of lncRNA–breast cancer and lncRNA–lung cancer
associations than two other cancers. Moreover, removing lung
cancer had reduced more AUC values in predicting lncRNA–
colorectal cancer associations than in removing breast cancer.

Comparison With Other Methods
Detecting lncRNA cancer association was compared with the
Naïve Bayesian classifier to predict potential lncRNA–disease
associations (NBCLDA; Yu et al., 2018) in terms of MCC
on the same dataset by 10-fold cross-validation. NBCLDA
is a method constructing a global tripartite network that
combines lncRNA–cancer, miRNA–cancer, and miRNA–lncRNA
associations, including gene–miRNA interactions, gene–lncRNA
associations, and gene–disease interactions, to predict potential
lncRNA–disease associations. Table 4 uncovers that DRACA
always performed better in MCCs (0.336, 0.404, and 0.371) than
NBCLDA (0.265, 0.256, and 0.245).

We also compared the predictions of DRACA with the method
developed by integratinglncRNA—disease network, lncRNA
functional similarity network, and the disease semantic similarity
network (BPLLDA, Xiao et al., 2018). This method inferred the
lncRNA–disease association according to the paths connecting
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TABLE 4 | Comparing DRACA with three methods on MCC values.

Breast cancer Lung cancer Colorectal cancer

DRACA 0.336 0.404 0.371

NBCLDA 0.265 0.256 0.245

BPLLDA 0.330 0.248 0.393

MFLDA 0.161 0.141 0.057

them and their lengths in the network. BPLLDA was developed
based on a database including 156 lncRNAs and their associated
diseases. Among these lncRNAs, 56 were included in the DRACA
database, which were used to compare these two methods.
The comparison was performed by 10-fold cross-validation and
measured by MCC. As shown by Table 4, DRACA performed
significantly better than BPLLDA in the prediction of lncRNA–
breast cancer associations, lncRNA–lung cancer associations, and
lncRNA–colorectal cancer associations.

Furthermore, we compared DRACA with the method
developed to predict the lncRNA-disease associations based on
matrix factorization approaches MFLDA (Fu et al., 2018). It is
different from DRACA in two respects. First, it is a method
without considering the relationship between lncRNA and cancer
prognosis. Second, it has been constructed by 214 lncRNAs that
is much less than the number of lncRNAs in DRACA. Out of
214 lncRNAs, 98 were from the DRACA database, which were
used for the comparison. The results indicated that DRACA
was superior to MFLDA in predicting the relationships between
lncRNAs and three types of cancers.

In summary, DRACA was compared with three recently
developed methods in predicting lncRNA–cancer associations.
The results indicated that DRACA performed always better than
NBCLDA, BPLLDA, and MFLDA in the prediction of three types
of cancers. Moreover, DRACA has been constructed by 1,679
lncRNAs that are 7 and 11 times more than lncRNAs in BPLLDA
and MFLDA, respectively. Thus, DRACA can potentially discover
more novel lncRNA–cancer associations.

Testing the Predicted lncRNA–Cancer
Associations
Detecting lncRNA cancer association gives each lncRNA a score
to indicate its relationship with certain cancer. The higher the
score, the higher the probability that the lncRNA and the cancer
are related. In order to select candidate lncRNAs, we used the
maximum MCC to obtain the score threshold. The MCC was
calculated by Equation 3. The best MCCs of 0.336, 0.404, and
0.371 were achieved for breast cancer, lung cancer, and colorectal
cancer, respectively. When DRACA achieved the best MCC, we
also calculated other statistical measurements including accuracy
(ACC), precision, sensitivity, and specificity, as shown in Table 2.

By using the thresholds given by the best MCCs for the three
types of cancers (0.785, 0.965, and 0.815), 636, 521, and 616
lncRNAs were predicted as related to breast cancer, lung cancer,
and colorectal cancer, respectively. From them, we checked the
top 20 candidate lncRNAs (a total of 60 lncRNAs for three types of
cancers) that were not collected in the lncRNADisease database.
We searched these lncRNAs in PubMed to obtain the literatures
regarding their relationships with cancers. For breast cancer, lung

FIGURE 3 | Five genes that were predicted as cancer-associated by DRACA were found expressed significantly different between carcinoma tissues and
paracarcinomatous tissues. (A) Lnc-LAMC2-1:1 was found expressed significantly different in breast cancer tissues and paracarcinomatous tissues; (B) DGKK
expressed significantly different in lung cancer tissues and paracarcinomatous tissues; (C–E) EPB41L4A-AS2, MANCR, and lnc-HOXC4-3:1 expressed significantly
different in colorectal cancer tissues and paracarcinomatous tissues.
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FIGURE 4 | The survival curves of two groups of patients who highly and lowly expressed ucoo2kmd.1, MIR155HG, lnc-HOXC4-3:1, and EFNA3, respectively. The
patients were divided into two groups using the surv_cutpoint function of the survminer R package according to the gene expression levels, which were represented
as “High-expression” and “Low-expression,” respectively. The red lines denote the relationship between survival time and overall survival for the patients in the
“High-expression” group, and the blue lines represent the relationship between the survival time and the overall survival for the patients in the “Low-expression”
group. (A) The survival curves of two groups of the breast cancer patients who highly and lowly expressed ucoo2kmd.1 gene, respectively; (B) The survival curves of
two groups of the lung cancer patients who highly and lowly expressed MIR155HG gene, respectively; (C) The survival curves of two groups of the colorectal cancer
patients who highly and lowly expressed lnc-HOXC4-3:1 gene, respectively. (D) The survival curves of two groups of the colorectal cancer patients who highly and
lowly expressed EFNA3 gene, respectively.

cancer, and colorectal cancer, respectively, 10, 10, and 13 out 20
lncRNAs were reported as related with cancers. More details are
included in Supplementary Tables 2–4.

For these predicted new lncRNAs, we examined if they
were expressed to be significantly different in carcinoma
tissues and paracarcinomatous tissues. Out of 60 predicted
top cancer-associated lncRNAs, 20 were included in TCGA
database, which included seven predicted as associated with
breast cancer, five predicted as associated with lung cancer,
and eight predicted as associated with colorectal cancer.
From TCGA database, we downloaded gene expression data
for 106 breast cancer patients, 52 lung cancer patients, and
38 colorectal patients. By comparing the gene expression
data of these 20 lncRNAs in the carcinoma tissues and the
paracarcinomatous tissues using edgeR R package (FDR < 0.05,
| logFC| > 1), five lncRNAs were found to be expressed
significantly different, which included one lncRNA for
breast cancer, one lncRNA for lung cancer, and three
lncRNAs for colorectal cancer (Figure 3). The statistical
evaluations on the differences of gene expression are shown in
Supplementary Table 5.

We also analyzed the relationships between 20 lncRNAs and
the patient survival rates. From TCGA database, we downloaded
survival information for 611 breast cancer patients, 439 lung
cancer patients, and 251 colorectal cancer patients. Patients were
divided into the high-expression group and low-expression group
by using the surv_cutpoint function of the survminer R package
according to the gene expression. Then, we compared the overall
survival rates of two groups. The results were shown in Kaplan–
Meier plots (Figure 4). The differences of the survival rates
were tested by the log-rank (Mantel–Cox) test. Here, the overall
survival rates were the numbers of cases living for a certain
period divided by the total numbers of patients in this group
at the beginning. Genes were defined as significantly related
with patient survival rates if the Mantel–Cox test P-value is
lower than 0. Out of 20 genes, 5 were found to be significantly
related with the patient survival rates. Briefly, patients in the
low-expression and high-expression groups of ucoo2kmd.1 were
found to be significantly different in survival rates according
to Mantel–Cox test (P-value = 0.032) as shown in Figure 4A.
Similarly, the expression of MIR155HG (Figure 4B) was found
to be significantly (P-value = 0.019) associated with the overall
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FIGURE 5 | The mutation rates in the lncRNAs predicted as cancer-associated by DRACA are higher than in the lncRNAs not predicted as cancer-associated.
“*” denotes t-test P-value < 5.0–2E; “**” represents t-test P-value < 1.0–2E.

survival of lung cancer. At the same time, the expressions of lnc-
HOXC4-3:1 (Figure 4C), EFNA3 (Figure 4D), and LINC00520
(Supplementary Figure 6) were identified to be significantly
related with the overall survival of colorectal cancer patients
with P-values of 0.002, 0.008, and 0.021, respectively. Among
these genes, lnc-HOXC4-3:1 and EFNA3 were also found to
be expressed significantly different in carcinoma tissues and
paracarcinomatous tissues as shown in Figure 3C.

The Numbers of Somatic Mutations in
lncRNAs Predicted as
Cancer-Associated by Detecting lncRNA
Cancer Association
A greater number of mutations in lncRNAs raise their probability
for causing cancers (Beroukhim et al., 2010; Huarte, 2015).
Hence, we explored whether the predictions of the DRACA
model are correlated with the number of mutations in lncRNAs.
We collected somatic mutation data from the international
cancer genome consortium (ICGC) database, which contained
somatic mutations of 651 lncRNAs for breast cancer, 568
lncRNAs for lung cancer, and 526 lncRNAs for colorectal
cancer. Then, we examined the difference between the number

of mutations in the lncRNAs that were predicted as cancer-
associated and in the lncRNAs that were not predicated as
cancer-associated by DRACA. The lncRNAs were defined as
cancer-associated if their scores were higher than the threshold
giving the best MCC. For three types of cancers, the numbers of
mutations in the lncRNAs that are predicted as cancer-associated
are higher than those in the lncRNAs that are not predicted
as cancer-associated. The lncRNAs predicted as breast cancer-,
lung cancer-, and colorectal cancer-associated were indicated
with more somatic mutations than the lncRNAs not predicted as
cancer related with P-values, 3.5e-1, 3.5e-3, and 7.4e-2 (Figure 5).
Thus, the lncRNAs predicted as cancer-associated tend to occur
with more somatic mutations.

CONCLUSION

In this study, we presented a method, DRACA, that is an
approach using miRNAs, genes, lncRNAs, and cancer prognosis
to construct matrices in the prediction of lncRNA–cancer
associations. DRACA utilizes matrix factorization technology to
decompose different heterogeneous data matrices into low-rank
matrices by tri-factorization and optimizing weight for matrices.
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Using 10-fold cross-validation, we searched the appropriate sizes
of low-rank matrices and verified the validity of the features.
In a 10-fold cross-validation experiment, the method obtains
AUCs of 0.810, 0.796, and 0.795 in predicting lncRNA-related
breast cancer, lung cancer, and colorectal cancer. DRACA was
compared with three methods, NBCLDA, BPLLDA, and MFLDA,
and was indicated with significantly better performances. To
illustrate the biological meaning of the prediction, we compared
the predicted score with the number of somatic mutations
in each lncRNA. We found that the lncRNAs predicted
as cancer-associated have more somatic mutations than the
lncRNAs not predicted as cancer-associated. Thus, integrating
the relationships among lncRNAs, miRNAs, genes, and cancer
prognosis with matrix factorization technology can accurately
predict potential lncRNA–cancer associations. Moreover, among
20 novel lncRNAs predicted as cancer-associated by DRACA,
nine were indicated to be expressed significantly different
between the carcinoma tissues and the paracarcinomatous
tissues, and five were significantly correlated with the survival
rates of patients.

DISCUSSION

lncRNAs had been viewed as “junk” in the genome. Recently,
lncRNAs have attracted much attention due to the discovery
that they are key regulators of cancer transformation and
progression. Thus, discovering novel lncRNA–cancer association
has possibilities to lead to early diagnosis and new treatment of
cancers. Despite the rapid increase in the catalog of roles reported
for lncRNAs, one of the greatest challenges is in the identification
of cancer risk lncRNAs efficiently.

In this study, we presented an approach, DRACA, to predict
lncRNAs associated with three specific cancers. DRACA is
different from previously developed methods in several aspects.
DRACA includes the feature of cancer prognosis, which greatly
improves prediction ability but was missed by other methods. We
used AUC to train the model and calculated the best MCC for

each model. AUC and MCC are commonly used for evaluating
the reliability of the model (Chicco and Jurman, 2020). However,
MCC is easy to be fluctuated because MCC value is dependent on
the prediction of score of each gene.
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