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Summary
Background The heterogeneity of major depressive disorder (MDD) significantly hinders its effective and optimal
clinical outcomes. This study aimed to identify MDD subtypes by adopting a data-driven approach and assessing
validity based on symptomatology and neuroimaging.

Methods A total of 259 patients with MDD and 92 healthy controls were enrolled in this cross-sectional study. Latent
profile analysis (LPA) was used to identify MDD subtypes based on validated clinical symptoms. To examine whether
there were differences between these identified MDD subtypes, network analysis was used to test any differences in
symptom patterns between these subtypes. We also compared neural activity between these identified MDD subtypes
and tested whether certain neural activities were related to individual subtypes. This MDD subtyping was further
tested in an independent dataset that contains 86 patients with MDD.

Findings Five MDD subtypes with distinct depressive symptom patterns were identified using the LPA model, with
the 5-class model selected as the optimal classification solution based on its superior fit indices (AIC = 6656.296,
aBIC = 6681.030, entropy = 0.917, LMR p = 0.3267, BLRT p < 0.001). The identified subtypes include atypical-like
depression, two melancholic depression (moderate and severe) subtypes with distinct patterns on feeling anxious,
and two anhedonic depression subtypes (moderate and severe) with different manifestations on weight/appetite
loss. The reproducibility of the classification was also confirmed. Significant differences in symptom structures
between melancholic and two anhedonic subtypes, and between anhedonic and atypical subtypes were observed
(all p < 0.05). Furthermore, these identified subtypes had differential neural activities in both regional
spontaneous neural activity (pFWE < 0.005) and functional connectivity between different brain regions
(pFDR < 0.005), linked to different clinical symptoms (FDR q < 0.05).

Interpretation The network analysis and neuroimaging tests support the existence and validity of the identified MDD
subtypes, each exhibiting unique clinical manifestations and neural activity patterns. The categorisation of these
subtypes sheds light on the heterogeneity of depression and suggest that personalised treatment and management
strategies tailored to specific subtypes may enhance intervention strategies in clinical settings.
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Research in context

Evidence before this study
The heterogeneity of major depressive disorder (MDD)
significantly hinders its diagnosis, effective clinical
management, and patient-centred recovery paths. Numerous
studies have attempted to uncover this heterogeneity using
data-driven approaches to classify MDD subtypes based on
various sources of information, including symptomatology,
medication response and multi-level biomarkers. However,
clinical translation remains challenging because rich biological
information is often difficult to obtain in clinical practice and
may not be feasible for accurately distinguishing subtypes at
the individual level. As a result, it is a challenge to implement
findings of MDD biotypes in clinical practice, leaving ongoing
challenges in fully unveiling the heterogeneity of MDD and its
clinical translation.

Added value of this study
The current study provided a person-centred method to
identify MDD subtypes at the individual level based on
standard DSM depressive symptoms. Using this method, five
subtypes with unique symptom patterns were identified, and

the existence and validity of these identified MDD subtypes
were verified at both the symptomatology and
neurophysiology levels. Notably, the reproducibility of the
classification was also confirmed in an independent dataset,
demonstrating good generalisability. This work contributes to
the literature by advancing the understanding of MDD
heterogeneity through the identification of clinical subtypes
characterised by distinct symptom patterns and unique
associated neural activity alterations, and highlights their
incremental value for clinical translation.

Implications of all the available evidence
These findings could help to address the challenges of clinical
implementation faced by prior studies. By utilising accessible
standard DSM depressive symptoms combined with the
model generated by the current study, clinicians can more
effectively identify patient subtypes. This enables clinicians to
provide targeted and specialised treatments focussing on
relevant therapeutic targets based on the neuroimaging
characteristics of each subtype, thereby helping to yield
optimal treatment outcomes.
Introduction
The heterogeneity of major depressive disorder (MDD)
presents challenges for orientating individuals towards
the treatment to which they are most likely to respond,1

significantly hindering diagnosis, effective clinical
management, and patient-centred recovery paths.2,3

Earlier and more accurate identification of MDD sub-
types can enable personalised treatment and
management.4–7 Most studies on MDD subtyping have
utilised data-driven approaches to classify MDD sub-
types based on symptomatology,8–13 genetics,14 neuro-
transmitter distributions,15–17 medication response (e.g.,
netamiftide, ketamine),18,19 as well as shared brain
alteration signatures.20–24 These pioneering works have
initiated a novel but early stage of subtyping MDD.22

Studies utilising depressive symptoms to character-
ise MDD subtypes have generally identified three to five
subtypes: atypical, melancholic,25 seasonal,26 psychotic,27

and anxiety/agitated subtypes.28,29 These discoveries, to
some extent, have direct clinical implications,30 with
some evidence reporting that patients with melancholic
MDD have shown a response to tricyclic antidepres-
sants, whereas those with atypical MDD were more
responsive to monoamine oxidase inhibitors.31 Howev-
er, most symptom-based studies, particularly those
relying on statistical clustering of symptom profiles,
have primarily identified subtypes that differed in
severity rather than different symptom patterns,8,10,11

which may be partially explained by the lack of inclu-
sion of all of the Diagnostic and Statistical Manual of
Mental Disorders (DSM) criterion symptoms. Further-
more, some studies attempting to distinguish DSM-
defined melancholic or atypical subtypes have not
provided further evidence to support the validity of the
classification.8–13

Despite the promising emerging trend in recent
years to use multiple data sources (e.g., data on symp-
tomatology, genetic, biochemical, and neuroimaging,
etc.) to identify MDD subtypes, these findings have
shown substantial heterogeneity and inconsistency, and
are often limited by restricted clinical relevance and a
lack of validation and replication, limiting their clinical
application, generalisability as well as the mechanistic
insights they provide. Moreover, some studies have
worked with a small sample size, which restricts the
identification of MDD subtypes with subtle differ-
ences.23,32 For instance, some studies were based on
neurotransmitter distributions and found that there
might be MDD subtypes with and without disturbed
neurotransmitter levels.15–17 However, little is known
about how these identified subtypes are connected to
clinical manifestations and outcomes. One study
www.thelancet.com Vol 116 June, 2025
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attempted to use genetic information for subtyping and
yielded an inconclusive answer on MDD subtypes due
to its small sample size, limited choice of the studied
genetic markers, and no replication study.14 Others have
utilised data on medication response (e.g., netamiftide,
ketamine) to categorise MDD subtypes.18,19 These
studies either had a small sample size or limited bio-
logical relevance. More recent studies have tried to
identify neurophysiological subtypes, or biotypes by
clustering subjects according to shared signatures of
brain alterations,20–24,32,33 but the identified subtypes
significantly differed between studies. For example, one
study used functional magnetic resonance imaging
(fMRI) data and unveiled two subtypes, but these two
subtypes only had differences in symptom severity and
duration.24 A diffusion tensor imaging study only un-
veiled two distinct subtypes within different age groups
(early onset vs. later onset), but the effects of age vs. age
of onset could not be well distinguished because there
were many first-episode subjects.23 Drysdale et al.22 and
Dunlop et al.33 discovered certain biotypes using fMRI
which accounted for individual differences in clinical
symptom profiles, holding promise in terms of clinical
value. However, patients may not be able to directly
benefit from these biologically-based subtyping findings
in clinical practice, primarily due to the challenges
associated with data accessibility and the high costs
involved in acquiring such data.

In contrast, depressive symptoms are easier to assess
in clinical settings, are more directly linked to clinical
manifestations, and offer a more immediate means for
informing personalised treatment strategies. Therefore,
symptom-based subtyping, if rigorously validated, holds
greater translational potential for improving clinical
decision-making and management of MDD. Nonethe-
less, the methodological limitations of prior symptom-
based subtyping studies have impeded progress
towards this objective. To realise this potential, stand-
ardised and rigorously validated research on symptom-
based MDD subtypes is urgently needed, to ensure the
validity, generalisability, and clinical applicability of the
subtypes identified. Therefore the current study aimed
to identify latent MDD subtypes that connect diversified
clinical manifestations and neural activities by utilising
three methodologically rigorous approaches. First, we
attempted to unveil distinct MDD subtypes based on the
DSM-5 depressive symptoms by using latent profile
analysis (LPA), which is a person-centred approach that
pays attention to the heterogeneity of individual
response patterns and defines unique subgroups in a
sample. We then re-assessed symptom networks and
neural activities between the identified MDD subtypes
to verify the validity and the actual existence of these
identified MDD subtypes. Network analysis was used to
explore differences in symptom structures between
these identified subtypes. The distinction of neural ac-
tivity profiles between these identified MDD subtypes
www.thelancet.com Vol 116 June, 2025
was also tested by using resting-state functional neuro-
imaging data. Both regional autonomic neural activity
and functional connectivity networks were examined.
Finally, the associations between symptoms of identified
MDD subtypes and specific neural activity alterations
were established. Moreover, the reproducibility of the
classification was validated in an independent dataset.
We hypothesised that: a) MDD could be further classi-
fied into more than one subtype based on the selected
depressive symptoms; b) the symptom structures of the
identified MDD subtypes would be significantly
different between subtypes; and c) statistically signifi-
cant associations would be expected between brain
function and specific MDD subtypes, and subtype-
specific abnormalities in brain function would be
linked to the dominant symptoms of certain subtypes.
Methods
Ethics
The study was approved by the Ethics Committee of the
Second Xiangya Hospital of Central South University
(reference no. 2017020). All study participants agreed to
participate in the study and provided written informed
consent.

Participants
This cross-sectional study included two datasets from
two different Chinese MDD outpatient cohorts, namely
a discovery dataset and a replication dataset.

Discovery dataset
The discovery dataset originates from a large Chinese
longitudinal MDD outpatient cohort, including out-
patients with MDD and demographically matched
healthy controls (HC). All participants were Chinese and
had detailed clinical and neuroimaging data.

A total of 270 patients with MDD were recruited at the
baseline of the cohort from 2016 to 2022 from the psy-
chological clinic at the Second Xiangya Hospital of Central
South University, Changsha, China. The MDD diagnosis
was established by two experienced psychiatrists using the
Structured Clinical Interview for DSM-IV-TR Axis I (SCID-
I). Individuals who meet DSM-IV criteria for (unipolar)
major depressive disorder and seek treatment for a
currently active, nonpsychotic major depressive episode
were included. The exclusion criteria for patients were
diagnosis of other axis I psychiatric disorders, a history of
major medical or neurological problems, and the presence
of psychotic symptoms during major depressive episode.
The present study utilised data from its baseline data
collection, which had complete information on de-
mographic and clinical characteristics, as well as neuro-
imaging data (including resting-state functional and T1
structural MRI). Meanwhile, a total of 105 HC were
simultaneously recruited from local colleges and commu-
nities in Changsha from 2017 to 2022. The exclusion
3
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criteria for HC were a history of any psychiatric disorders
and any major medical or neurological problems. Of note,
HC were not used for LPA-based MDD subtype identifi-
cation but were used to help identify differences in neural
activity between identified subtypes. Specifically, in addi-
tion to direct pair-wise comparison of brain activity be-
tween the identified MDD subtypes, another approach was
used to uncover the differences between MDD subtypes
which indirectly identifies different neural activity patterns
between MDD subtypes by comparing them to the same
HC sample.22,34 In this case, HC were treated as a reference
group for all MDD subtypes, and the differences between
MDD subtypes would be indirectly discovered when
different MDD subtypes presented various patterns
compared to same reference group.

To accurately verify the differences in brain function
between identified MDD subtypes, participants who failed
to complete the magnetic resonance acquisition or had
poor fMRI data quality (e.g., participants who demon-
strated a maximum displacement greater than 2-mm or
more than 2◦ of angular rotation on functional neuro-
image) were excluded (see more detail in MRI
preprocessing). All participants included were right-
handed as assessed by the Edinburgh Handedness
Inventory (EHI)35 to exclude participants who were left-
handed since potential differences in brain structure and
function exist based on handedness.36 Finally, a total of 259
patients with MDD and 92 demographically matched HC
were included in the discovery dataset after screening the
above criteria, while the age range at inclusion for MDD
was 16–48 years, and 18–36 years for HC.

Replication dataset
The replication dataset comes from another Chinese
cross-sectional MDD outpatient cohort with detailed
clinical data but without neuroimaging data. A total of
92 patients with MDD were recruited from 2016 to 2024
from psychological clinic, also from the Second Xiangya
Hospital of Central South University. The inclusion and
exclusion criteria were the same as the discovery dataset.
To ensure comparability between MDD patients in
discovery and replication datasets, the patients with
MDD in the replication dataset were matched with those
patients in discovery dataset on demographic charac-
teristics. Finally, a total of 86 patients with MDD were
included in the replication dataset, to test the repro-
ducibility of classification observed in the discovery
dataset (see Classification testing in an independent
replication dataset for details). The age range at inclu-
sion was 16–44 years.

Measurements
Sociodemographic and clinical characteristics were
collected. Depressive symptoms were assessed by the
Beck Depression Inventory (BDI) and Hamilton
Depression Rating Scale-17 items (HAMD-17). The
medication status (yes or no) of patients was confirmed
by clinical interviews and medical records, and defined
according to previous studies as “not taking medication
for at least 4 weeks”, to serve as a “wash-out” state,37–39

referring to a medication-free period long enough to
allow the medication’s effects to subside and minimise
its potential influence on brain function. In the current
study, “yes” means they were using antidepressants or
antipsychotic medications when enrolled, and “no”
means that the patients were medication-naïve, or they
had washed off medications for at least 4 weeks prior to
the day when they were enrolled.38 The details of the
medication status (including medication types, duration
of medication, and dosage) for each patient with MDD
are presented in Supplemental spreadsheet. Intelligence
was assessed by the age-adjusted scores of subtests
(information, similarity, arithmetic, and digit span) of
the Chinese version of the Wechsler Adult Intelligence
Scale-Revised (WAIS-RC)40 to control participants’ in-
telligence levels (WAIS-RC was not assessed in the
replication dataset).

To identify MDD subtypes, ten symptoms were
extracted and recoded from the BDI and HAMD-17
reflecting the nine depressive symptoms in the DSM-5
definition and an additional “feeling anxious” symp-
tom. The reasons for including the “feeling anxious”
symptom were: (1) as the DSM-5 declared, anxious
distress has been noted as a prominent feature of both
bipolar and major depressive disorder in both primary
care and speciality mental health settings with highly
prevalence41; (2) previous studies have demonstrated
that anxiety symptoms can influence neurobiological
and treatment response patterns within MDD42; and (3)
other MDD subtyping studies also revealed that anxiety
symptoms demonstrate a high degree of discriminative
capacity in parsing the heterogeneity of MDD.11,22,43

Thus, incorporating anxiety symptoms helps capture
overlapping and distinct symptom profiles, enhancing
the granularity of subtypes. All symptoms were extrac-
ted from BDI and HAMD-17 (Suppl. eTable S1 provides
the item sources and their scoring ranges). The scores of
all symptoms were recoded based on the item scores
that constituted each symptom because some symptoms
were measured by a single item, whereas others were
assessed through combination of multiple items. For
symptoms measured by a single item, the symptom
score remains unchanged. For symptoms consisting of
multiple items, the maximum value on any one of these
items was used as the symptom score to represent the
individual’s severity of the symptom (since different
items jointly reflect the same symptom dimension).
Thus, a total of ten symptoms (depressed mood, loss of
pleasure, worthlessness/guilt, suicidal ideation, weight/
appetite loss, sleep reduction, psychomotor symptom, fatigue/
loss of energy, indecisiveness, and feeling anxious) were used
for subsequent analyses. The range of scores for psy-
chomotor and feeling anxious are 0–4, and range of other
symptoms are 0–3.
www.thelancet.com Vol 116 June, 2025
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MRI acquisition and processing
MRI acquisition
The MRI was conducted on a Siemens Skyra 3.0T
magnetic resonance scanner at the Second Xiangya
Hospital of the Central South University. Subjects were
asked to lie on the scanner, foam pads were used to fix
their head to minimise head motion. The scanning
sessions and the parameters were as follows: (1) three-
dimensional T1-weighted, magnetisation-prepared
rapid gradient echo (MPRAGE) sagittal images: repeti-
tion time (TR) = 1900 ms; echo time (TE) = 2.01 ms;
slices = 176; slice thickness = 1 mm; voxel
size = 1.0 × 1.0 × 1.0 mm; flip angle = 9◦; inversion
time = 900 ms; field of view (FOV) = 256 mm; ma-
trix = 256 × 256. (2) resting-state fMRI series using the
echoplanar imaging sequence: TR = 2500 ms;
TE = 25 ms; axial slices = 39; slice thickness/gap = 3.5/
0 mm; voxel size = 3.8 × 3.8 × 3.5 mm, 200 volumes; flip
angle = 90◦; FOV = 240 mm; matrix = 64 × 64. During
the scanning, participants were instructed to keep their
eyes closed but remain awake.

MRI preprocessing
MRI data preprocessing were performed using the Data
Processing & Analysis for Brain Imaging (DPABI version
5.2, https://rfmri.org/DPABI/)44 in Matlab R2013b. The
preprocessing procedures were as follows: (1) raw
DICOM data were converted to NIfTI format; (2) the first
ten volumes were discarded to allow the magnetisation to
reach equilibrium and for the participants to adapt to the
scanning noise; (3) slice-timing correction and realign-
ment of head motion. Participants who demonstrated a
maximum displacement greater than 2 mm or more than
2◦ of angular rotation were excluded from this study; (4)
T1-weighted images of each participant were co-
registered to the mean functional images; (5) linear
detrending, regressing out of nuisance covariates (WM
signal, CSF signal, and Friston-24 head motion parame-
ters) were performed to remove low-frequency drift; (6)
functional images were normalised to the standard
Montreal Neurological Institute (MNI) space using the
transformation (co-registered T1 to standard MNI) pa-
rameters and resampled to 3 × 3 × 3 mm.

After preprocessing, three local indicators, namely
the amplitude of low-frequency fluctuation (ALFF),
fractional ALFF (fALFF), and regional homogeneity
(ReHo), were calculated to reflect regional autonomic
neuronal activity. In addition, one global indicator, the
functional connectivity network (FCN), was computed to
capture the coordination and interaction of neural ac-
tivity between anatomically distributed but functionally
related brain regions. These measures were used for
further statistical analyses.

ALFF, fALFF, and ReHo calculation
For local indicators, ALFF, fALFF, and ReHo were ob-
tained to reflect spontaneous neural activity. For ALFF
www.thelancet.com Vol 116 June, 2025
value, spatial smoothing with a 6 mm full-width half
maximum (FWHM) Gaussian filter was performed
after preprocessing to reduce spatial noise. Then, the
filtered time series was transformed into the frequency
domain with a fast Fourier transform (FFT), and the
power spectrum was obtained. To obtain ALFF value,
the power spectrum was square-rooted and averaged
(mean) across 0.01–0.08 Hz at each voxel, the obtained
square root was referred to as the ALFF.45 In order to
standardise ALFF value across participants, the ALFF
of each voxel was divided by the global mean of ALFF
values for each participant.45 For fALFF, the sum of the
amplitude values in the 0.01–0.08 Hz low-frequency
power range was divided by the sum of the ampli-
tudes over the entire detectable power spectrum
(range: 0–0.25 Hz).46 Then, the fALFF value of each
voxel was then divided by the global mean fALFF value
for each participant to reduce the global effects. For
ReHo value, temporal bandpass filtering at
0.01–0.08 Hz was performed to reduce physiological
low-frequency drift and high-frequency noise. Then,
Kendall’s Coefficient of Concordance (KCC) was
applied to calculate the similarity between a single
voxel and the surrounding 26 voxels,47 producing a
regional homogeneity (ReHo) map for each subject.
Subsequently, mean ReHo transformation was per-
formed for standardisation purposes, by dividing the
KCC among each voxel by the averaged KCC of the
whole brain. Finally, the data were smoothed with a
6 mm FWHM Gaussian kernel.

Functional connectivity network calculation
In addition to local indicators, FCN was also calcu-
lated. For FCN, spatial smoothing with a 6 mm
FWHM Gaussian filter was performed after pre-
processing to reduce spatial noise, and then temporal
bandpass filtering at 0.01–0.08 Hz was performed to
reduce physiological high-frequency noise. The
frame-wise displacement (FD) by Jenkinson et al.48

was calculated to take into account voxel-wise differ-
ences in motion in its derivation. According to rec-
ommendations,49 a “scrubbing routine” was used to
censor any frame with an FD > 0.2 mm from the
following FCN calculation. After scrubbing, all
including participants had at least 79.5% of frames
that remained to be calculated, which satisfied the
analysable requirements (60%) outlined in Power
et al.50 (see mean FD and % frames censored in
Table 1). The mean FD was further controlled as a
covariate in the group-level imaging statistical anal-
ysis. Schaefer multiresolution atlas (100 cortical re-
gions)51 and Xiao’s structural connectomic atlas (22
subcortical structures)52 were used to generate a
whole-brain correlation matrix for each subject. Thus,
we calculated 122 × 122-element correlation matrices
for all participants and 7381 connections for each
participant were obtained.
5
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Characteristics Discovery dataset Replication dataset Between MDD in two
datasets

Discovery dataset
MDD vs. HC

MDD (N = 259) HC (N = 92) MDD (N = 86) t/χ2 p t/χ2 p

Age (years) 22.78 (5.95) 22.29 (3.95) 21.84 (6.02) 1.275 0.203 0.887 0.376

Sex (male/female) 86/173 39/53 21/65 2.329 0.127 2.499 0.114

Intelligence scorea 47.44 (8.53) 51.67 (6.84) NA NA NA −4.762 <0.001

Duration (month) 22.06 (28.05) NA 26.67 (30.65) −1.288 0.199 NA NA

Age of onset 20.52 (5.95) NA 19.22 (6.55) 1.713 0.088 NA NA

Medication (yes/no)b 100/159 NA 32/54 0.054 0.817 NA NA

HAMD 19.59 (5.94) NA 19.98 (5.80) −0.534 0.594 NA NA

BDI 29.92 (9.12) 6.38 (6.03) 29.09 (10.75) 0.697 0.486 27.791 <0.001

FD 0.05 (0.02) 0.05 (0.03) NA NA NA −0.037 0.971

Frame censored (%)c 0.02 (0.04) 0.02 (0.03) NA NA NA 0.310 0.757

Notes: Means with standard deviations in parentheses. t/χ2: variables of age, intelligence score, BDI, HAMD, and FD were tested by two-sample t-test as indicated by t;
variable of sex was tested by chi-square test. The significance was set as p < 0.05 (two-tailed, t-test or chi-square test). Abbreviations: MDD, major depressive disorder; HC,
healthy controls; HAMD, Hamilton Depression Rating Scale; BDI, Beck Depression Inventory; FD, frame displacement; NA, not applicable; WAIS-RC, the Chinese version of
the Wechsler Adult Intelligence Scale-Revised. aIntelligence score: age adjusted scores of subtests of the short form of the WAIS-RC (including Information, Similarity,
Arithmetic, and Digit span), which is only used for controlling the participants’ intelligence level, rather than an estimation of intelligence quotient. bMedication: number of
patients taking medicine yes/no. “No” means that the patients were medication-naïve, or they did not take any antidepressant or antipsychotic medication at least for 4
weeks prior to the day when they were enrolled in the study. “Yes” means they were using at least one medication when enrolled (including selective serotonin reuptake
inhibitors, serotonin and norepinephrine reuptake inhibitors, tricyclic antidepressants, and atypical antidepressants and/or antipsychotics). cFrame censored (%): percentage
of frames that were excluded from the further analysis after “scrubbing routine”, which is a method used to remove unreliable data point due to excessive head motion
(FD > 0.2 mm) in the functional neuroimaging data.

Table 1: Demographic, clinical, and fMRI measures between two datasets and between MDD and HC in Discovery dataset.
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Statistics
Demographic and clinical characteristics were
compared using chi-square tests and two-sample t-tests:
between patients with MDD across the two datasets and
between patients with MDD and HC in the discovery
dataset. The significant p-value was set to 0.05 (two-
tailed). There was no structured missingness in the
current data (Suppl. eMethod S1), and the missingness
of all the studied variables was less than 5%. The group
mean values of continuous variables were used for
imputation. There were no missing values for the cate-
gorical variables (e.g., sex and medication status). These
statistical analyses were conducted with SPSS 29.0
software. Fig. 1 illustrates the overall analytical proced-
ures for the present study, starting with the identifica-
tion of MDD subtypes in the discovery dataset, followed
by the validity verification of identified subtypes from
both the symptom structure and neural activity per-
spectives, and ending with the testing of the reproduc-
ibility of the classification in the replication dataset.

Identification of MDD subtypes
LPA was used to characterise MDD subtypes based on
heterogeneous clinical symptoms. LPA is a person-
centred approach that pays attention to the heterogene-
ity of individual response patterns and defines unique
subgroups in a sample.53 LPA has fewer prerequisites
for application, more reasonable clustering criteria and
result testing, and less arbitrariness than traditional
clustering methods (e.g., k-means),54 which makes LPA
particularly well-suited for exploring the latent structure
of symptom profiles in psychiatric research (Suppl.
eMethod S2).

LPA requires different estimation methods for data
with different distributions. If the data satisfies normal
distribution, the maximum likelihood (ML) should be
used; but if the variables are skewed or non-normally
distributed, more robust estimators were more appro-
priate for robust estimation (e.g., ML with robust stan-
dard error (MLR)).55,56 We tested LPA models by using
the MLR method due to the non-normal distributions of
the 10 symptoms being investigated. The number of
clusters was determined by the model fit statistics and
interpretability.57 According to the guidelines for fit
indices, Akaike’s information criteria (AIC), Bayesian
information criteria (BIC), and sample-size adjusted
BIC (aBIC) were used, with a lower value indicating
superior fit. Lo–Mendell–Rubin (LMR) tests and boot-
strapped likelihood ratio tests (BLRTs) were also con-
ducted to evaluate the significance of model
improvement between k-profile solution and k-1 profile
solution. In addition, the relative entropy value was re-
ported to evaluate the classification accuracy, with the
entropy value greater than 0.8 indicating an acceptable
model fit, and greater than 0.9 indicating a good model
fit. Models with one to six clusters were tested. More-
over, we took “depression severity” (BDI total score) and
“illness duration” as covariates when performing LPA.
Some previous symptom-based classifications have
identified different subtypes that differ primarily in
symptom severity,8,43,58 however, the current study as-
sumes that different depression subtypes differ in
www.thelancet.com Vol 116 June, 2025
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Fig. 1: A schematic diagram of the analytical procedures in the current study. The analytical procedures start with the identification of MDD
subtypes in the discovery dataset, followed by the validity verification of identified subtypes at both the symptom structure and neural activity
levels, and ending with the classification reproducibility test in the replication dataset. The sample sizes of patients with MDD and healthy
controls in the discovery dataset are 259 and 92, respectively. The sample size of patients with MDD in the replication dataset is 86. Ab-
breviations: MDD, major depressive disorders; rs-fMRI, resting-state functional magnetic resonance imaging; BDI, Beck depression inventory;
HAMD-17, Hamilton depression rating scale-17 items; DSM-5, Diagnostic and Statistical Manual of Mental Disorders: fifth edition; ALFF,
amplitude of low-frequency fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; FC, functional connectivity; ROIs, regions of
interest.
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clinical symptom manifestation patterns, with the aim
of identifying depression subtypes with different
symptom structures. Therefore, the overall severity of
depressive symptoms was controlled for and we do not
expect to obtain different classification results simply
due to different symptom severity. At the same time,
since the chronicity of depression (longer illness dura-
tion) is linked to more severe depressive symptoms and
manifests as symptoms which are difficult to relieve,59

“illness duration” was also controlled. Overall, by con-
trolling “depression severity” and “illness duration”, we
ensure that differences between subtypes reflect
inherent distinctions in symptom profile rather than the
progressive changes associated with severity and chro-
nicity. A total of 259 patients with MDD in the discovery
dataset were included in the LPA model. All analyses
were performed in Mplus version 8.3. Once the MDD
subtypes were identified, two sets of verification tests
(network analysis and fMRI analysis) were then con-
ducted to validate the existence of the identified MDD
subtypes.

Comparisons of symptom patterns across the identified MDD
subtypes
To explore whether the identified MDD subtypes
differed clinically in their symptom structures, the
network estimation and network comparison tests were
performed. Network analysis is a computational
www.thelancet.com Vol 116 June, 2025
method, which is used to assess symptom-symptom
interactions and identify ‘central’ symptoms of the
network.60 Network analysis was performed in R version
4.3.1.

Network estimation and centrality. The graphical Least
Absolute Shrinkage and Selection Operator (glasso) was
employed to estimate network structure of ten symp-
toms in patients with MDD by using the “bootnet” R
package (version 1.5.3),61 which could control for false
positive edges with very small edges shrinking to zero.
Edges with an edge weight (strength of connection) of
0 are not included in the network, suggesting that the
relevant nodes are independent after controlling for all
other relationships within the network. A network in-
cludes nodes (symptoms) and edges (connections be-
tween symptoms). Thicker and more saturated edges
indicate stronger correlation between nodes.

The network structure was quantified by network
centrality using “qgraph” R package (version 1.9.5).62

Two centrality indices, node strength and expected in-
fluence, were estimated. Node strength to reflect the
sum of all associations of a given node with all other
nodes, which is a common and stable central metric,63

while expected influence is the sum of the edge
weights, accounting for the edges’ signs, which is more
sensitive when a node has both positive and negative
edges. The accuracy of edge weights was tested using
7
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“bootnet” R package (version 1.5.3),61 using non-
parametric bootstrapping (1000 bootstrap samples) to
estimate the 95% confidence intervals (CIs), with the
narrower the CIs, the higher the accuracy of edge
weights. The correlation stability coefficient (CS-coeffi-
cient) was also estimated to assess the stability of the
order of edge weights and strength centrality, with a total
of 1000 bootstrapped samples used. The CS coefficient
discerns the maximum proportion of participants that
can be omitted from the analysis while still obtaining
results with a strong correlation (r > 0.70) compared to
the original findings, which a CS coefficient of >0.25
indicating adequate stability and preferably above 0.50.61

Network comparison test. To test whether symptom
connectivity differs between MDD subgroups, network
comparison tests (NCTs) were carried out using the
“NetworkComparisonTest” R package (version 2.2.1).64

Permutation tests with 1000 permutations were adop-
ted to compare the networks of different subgroups on
invariance of global network structure, global strength
(overall level of connectivity of a network), and individ-
ual edge strength (post-hoc test if significant differences
in global network structure were found). A resulting p
value < 0.05 (network comparison test) indicates a sig-
nificant difference.

Comparison of neural activity across the identified MDD
subtypes
To explore whether the identified MDD subtypes
differed in neural activity, analyses of covariance
(ANCOVAs) within a general linear model (GLM)
framework were used to test the differences in both local
(ALFF, fALFF, and ReHo, conducted with Statistical
Parametric Mapping 12 toolbox, SPM12, https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/) and global
(FCN using Network-based statistic toolbox, NBS,
version 1.2, https://www.nitrc.org/projects/nbs/) brain
function indicators in Matlab R2013b, with age, sex,
intelligence, and mean frame-wise displacement were
adjusted as covariates in all tests.

First, neural activity differences between the overall
patients with MDD and HC were examined. To determine
how each MDD subtype contributed to these differences
between overall MDD and HC, post-hoc tests were per-
formed on the signals and/or the values extracted from
brain regions and FCs that showed significant differences
in the overall MDD vs. HC comparison, thereby identi-
fying both shared and subtype-unique neural activity ab-
normalities. False discovery rate (FDR) correction was
adopted for post-hoc tests in Matlab R2013b and all p-
values from these tests were adjusted by considering both
the number of comparisons (5 MDD subtypes vs. HC) and
the total number of neural activity indicators, with a sig-
nificance threshold of pFDR < 0.05.

Then, two different approaches were used for testing
neural activity features that differed between identified
MDD subtypes: one was a direct pairwise comparison of
brain activity between the identified MDD subtypes, and
another was an approach as has been done in previous
studies22,34 to uncover the differences between MDD
subtypes, which indirectly identifies different neural
activity patterns between MDD subtypes by comparing
them to the same HC. The differences between MDD
subtypes would be indirectly discovered when different
MDD subtypes presented various patterns compared to
the same HC. For both local and global indicators, one-
tailed tests were applied to examine the differences be-
tween groups in both directions by defining comparison
contrasts (e.g., Group 1 < Group 2, and/or Group
1 > Group 2) in SPM12 and NBS version 1.2, specifically
testing whether the indicators were either increased or
decreased in MDD compared to HC, as well as in
comparisons between MDD subtypes.

For local indicators, ALFF, fALFF, and ReHo maps
were enhanced by the probabilistic threshold-free clus-
ter enhancement (pTFCE) method65 to increase the
detectability of neuroimaging signal, and image com-
parisons were corrected for multiple comparisons at the
whole-brain level using family-wise error (FWE)
correction to reduce potential false positives, with a
significant threshold of cluster-level p < 0.05, starting
from an uncorrected p < 0.001 at the voxel level. As
suggested by Spisák et al.,65 this method is robust to the
cluster topology and provides a strict control over false
positives, balancing the sensitivity and robustness. For
the global indicator-FCN, permutation tests with 10,000
permutations and FDR correction were adopted for
multiple comparisons corrections with the significance
threshold set at 0.05 to reduce false positives due to a
large number of FCs (7381 edges) (Suppl. eMethod S3
provides the rationale of utilising different multiple
comparison correction methods for local and global in-
dicators and their respective advantages). Moreover,
since a total of ten comparisons were made when
directly comparing between subtypes, Bonferroni
correction was further adopted to correct the p values of
the group differences between subtypes, with the sig-
nificance threshold of pFWE or pFDR < 0.005 (0.05/10
comparisons). In the indirect comparisons of different
subtypes with the same HC, a total of five comparisons
were made, and Bonferroni correction (with a threshold
of pFWE or pFDR < 0.01) was also performed (0.05/5
comparisons).

Association between neural activity and depressive symptoms
To further explore specific associations between func-
tional alterations and depressive symptoms, the signals
of brain regions in local indicators and the strengths of
FCs that exhibited significant differences between MDD
subtypes were extracted for subsequent partial correla-
tion analyses with symptoms, controlling for age, sex,
and intelligence score. Given the multiple comparisons
involved in the partial correlation analyses, the p-values
www.thelancet.com Vol 116 June, 2025

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.nitrc.org/projects/nbs/
http://www.thelancet.com


Articles
were corrected using FDR, with the significance
threshold of FDR q < 0.05. Partial correlation analyses
were performed in SPSS 29.0, followed by FDR
correction of p values in Matlab R2013b.

Sensitivity analysis
To test whether taking the medication would influence
our MDD classification and their neural activities, we
conducted the following sensitivity analyses: 1) The
status of medication use was controlled during the LPA
modelling process, to test whether the classification of
MDD would be changed; 2) We divided the MDD group
into MDD medicated and MDD unmedicated groups
and tested if these two groups were comparable in terms
of their sociodemographic characteristics using two-
sample t-test and chi-square test, with the significant
p-value of 0.05 (two-tailed). We then conducted LPA
models separately for medicated and unmedicated
groups to test the stability of identified MDD subtypes
in the medicated and unmedicated groups; 3) We tested
whether there were significant differences between
MDD medicated and MDD unmediated groups in
neural activity by using ANCOVA within a framework of
GLM, with age, sex, intelligence score, and frame
displacement as covariates, to clarify whether the dif-
ferences in neural activity between the identified sub-
types were influenced by medication status. FDR
correction was applied for multiple comparisons, as
multiple indicators were compared simultaneously.
Significance was set as pFDR < 0.05.

Classification testing in an independent replication dataset
To further test the generalisability of the MDD subtypes
classification, the same LPA procedures as in the dis-
covery dataset were performed in the replication dataset
(n = 86) to determine whether the number and charac-
teristics of subtypes identified in the discovery dataset
could also be observed in the replication dataset.

Role of funders
The funders had no role in study design, data collection,
data analyses, interpretation, or writing of reports.
Results
Identification of latent MDD subtypes
Table 1 summarises demographic and clinical charac-
teristics of all participants, and Suppl. eTable S2 pro-
vides demographic and clinical characteristics for males
and females separately. In the discovery dataset, 259
patients with MDD (66.8% females) and 92 demo-
graphically matched HC (57.6% females) were included.
There were no significant differences between patients
with MDD and HC in age (two-tailed p = 0.376, two-
sample t-test) and sex ration (two-tailed p = 0.114, chi-
square test), while a significant difference was found
between them in the intelligence score (two-tailed
www.thelancet.com Vol 116 June, 2025
p < 0.001, two-sample t-test). Patients with MDD
showed significantly higher scores in BDI compared to
HC (two-tailed p < 0.001, two-sample t-test). In addition,
no significant differences were observed in FD and
proportion of frame censored between patients with
MDD and HC (two-tailed p > 0.05, two-sample t-tests).

A total of 259 Chinese patients with MDD in the
discovery dataset were included to characterise the
subtypes based on the DSM-5 depressive symptoms by
utilising the LPA model. After considering the model fit
and interpretability, the optimal 5-class solution of the
LPA model was selected to characterise MDD subtypes
(AIC = 6656.296, aBIC = 6681.030, entropy = 0.917,
LMR p = 0.3267 [Lo–Mendell–Rubin test], BLRT
p < 0.001 [bootstrapped likelihood ratio test]) (Suppl.
eTable S3 provides the fit indices for each solution of
LPA). Suppl. eTable S4 presents the mean posterior
probabilities for patients in each class, and the results
showed that the average probability of each class of pa-
tients belonging to their respective class was more than
90%, indicating a high accuracy of classification. The
final LPA-derived classification revealed five clinical
distinct MDD subtypes with differential prevalence
patterns: class 2 comprised the largest proportion
(38.6%, n = 100), followed by class 5 (19.3%, n = 50).
Classes 1 and 4 each accounted for 15.4% of the total
sample of the patients with MDD (n = 40 for class 1 and
n = 40 for class 4), while class 3 constituted the smallest
subtype (11.2%, n = 29). Demographic and clinical fea-
tures of each identified subtype are presented in Suppl.
eTable S5.

Fig. 2 illustrates the symptom profiles of the five
identified MDD subtypes. As shown in Fig. 2, class 1
exhibited the lowest severity of all the symptoms studied,
especially symptoms that reflect melancholic features
(e.g., weight/appetite loss, sleep reduction). The dominant
symptoms of patients in this group were depressed mood,
worthlessness/guilt, fatigue/loss of energy, accompanied by
feeling anxious (Suppl. eTable S6 provides the ranked
dominant symptoms of each identified subtype).
Although we were unable to measure atypical features
(for instance, increased weight/appetite, hypersomnia)
directly, the present characteristics as well as evidence of
abnormal brain activities (see Differences in brain
function between MDD subtypes for details) suggested
that this group may represent some atypical-like features
among these patients with MDD. Therefore, we labelled
class 1 as “atypical-like depression, AD” (n = 40).

Class 2 captured those with relatively higher scores
on melancholic features, but a lower score on loss of
pleasure. This class was defined as “moderate melan-
cholic depression, mMD” (n = 100).

Class 3 had a higher score on loss of pleasure, which
was the most discriminating symptom compared to the
other groups. Meanwhile, patients in this class also
showed higher scores on depressed mood, worthlessness/
guilt, sleep reduction, and indecisiveness. This class was
9
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Fig. 2: Symptom profiles of the identified five subtypes of major depressive disorder. The sample sizes of five identified subtypes are:
atypical-like depression (AD, n = 40); moderate melancholic depression (mMD, n = 100); severe anhedonic depression (sAnD, n = 29); severe
melancholic depression (sMD, n = 40); moderate anhedonic depression (mAnD, n = 50). a) Five MDD subtypes identified based on the raw
scores of considered symptoms in the latent profile analyses; b) Radar plot showing symptom patterns of identified subtypes using normalised
scores, where values range from 0 to 1, representing the relative severity of each symptom; c) Bar charts using normalised symptom scores, with
error bars representing 95% confidence intervals. Abbreviations: MDD, major depressive disorder; DM, depressed mood; LOP, loss of pleasure;
WG, worthlessness/guilt; SUI, suicidal ideation; WA, weight/appetite loss; SLP, sleep reduction; PM, psychomotor symptom; FE, fatigue/loss of
energy; IND, indecisiveness; ANX, feeling anxious.
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therefore defined as “Severe anhedonic depression,
sAnD” (n = 29).

Class 4 showed higher scores on those symptoms
that were associated with melancholic features and
showed a lower score on loss of pleasure. Another distinct
feature is that patients in this group were more likely to
report lower scores on feeling anxious. We named this
class as “Severe melancholic depression, sMD” (n = 40).

Class 5 demonstrated moderate scores on depressed
mood, worthlessness/guilt, loss of pleasure, fatigue/loss of
energy. Patients in this class also reported sleep reduction
but no obvious weight/appetite loss. This class was enti-
tled as “moderate anhedonic depression, mAnD”
(n = 50). Notably, although both mMD and sMD had
melancholic features, they differed significantly on the
symptom of feeling anxious. Similarly, although the
dominant symptom in both mAnD and sAnD was loss of
pleasure, they were significantly different on the symp-
tom of weight/appetite loss. These distinctions were
identified by the LPA processing as well as supported by
their clinical manifestations, therefore they were classi-
fied as different subtypes.

Furthermore, the results of sensitivity analysis
showed that the status of medication use did not change
the result of MDD subtyping (Suppl. eTable S7 provides
the results of group comparison between medicated and
unmedicated groups in demographic and clinical char-
acteristics and revealed no significant differences,
Suppl. eResults S1 presents the detailed results of
sensitivity analysis, Suppl. eFigure S1 provides profiles
of MDD subtypes after adjusting medication status, and
Suppl. eFigure S2 provides profiles of MDD subtypes
observed in medicated and unmedicated groups
separately).

Symptom networks of the identified MDD subtypes
Network structure, network accuracy, and network sta-
bility estimation results of the overall patients with
MDD were presented in Suppl. eFigures S3–S5,
respectively, revealing that 38 (84.4%) of all the possible
45 edges were estimated to be non-zero. The strongest
edge was between “worthlessness/guilt” and “suicidal
ideation”. Besides, the network revealed strong associa-
tions between depressed mood with worthlessness/guilt and
loss of pleasure. A strong association between loss of
pleasure and fatigue/loss of energy was also found. Psy-
chomotor (agitation and retardation) was weakly corre-
lated with other symptoms. The symptoms with the
www.thelancet.com Vol 116 June, 2025
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greatest strength centrality were worthlessness/guilt, fa-
tigue/loss of energy, depressed mood, and loss of pleasure
(Suppl. eFigure S3b illustrates strength centrality and
expected influence for depressive symptoms). The cor-
relation stability (CS) coefficient for node strength
(CS = 0.44) and expected influence (CS = 0.517) cen-
tralities exhibited an acceptable and good level of sta-
bility, respectively.

To test whether the identified MDD subtypes had
distinct symptom structures, network comparison tests
were conducted. In the current study, since there were
some symptoms with no variance (only 1 level) in each
subtype, we then combined subgroups to compare them
indirectly. As we found four symptoms with the greatest
importance (determined by node strength and expected
influence, Suppl. eFigure S1b), including “worthlessness/
guilt”, “fatigue/loss of energy”, “depressed mood”, and “loss
of pleasure” in the network of overall MDD patients, we
then ranked the dominant symptoms of each subgroup
to identify groups with similar order of symptom
domination across these four central symptoms. Nor-
malised scores for each symptom were used to rank the
dominant symptoms within each identified subtype.
Since eight out of ten symptoms had a score range of
0–3 and the remaining two ranged from 0 to 4, we
normalised all symptom scores to ensure comparability.
The normalised scores were then ranked by severity to
identify the relative dominance of symptoms within
each subtype. Suppl. eTable S6 provides the ranked
dominant symptoms of each identified subtype. Thus,
mMD and sMD were combined accordingly since they
showed similar order of symptom domination and the
resulting subtype was named as “combined-melancholic
depression, cMD” for further verification analysis. The
CS-coefficient for node strength of cMD was 0.364. The
cMD was set as baseline network, then we added other
MDD subgroups into this combined group and tested if
the network structure changed. If the network structure
significantly changes after adding a subgroup, it sug-
gests this added subgroup has a different network
structure with cMD. The results of this method could
provide indirect evidence on whether there were dif-
ferences in the network structures of the added sub-
group and the combined group. Specifically, we first
added group AD, mAnD, sAnD into cMD, respectively
and performed network comparison tests to examine
whether there were significant differences between
cMD with cMD + AD, cMD + sAnD, and cMD + mAnD,
respectively. In order to test whether there were signif-
icant differences among AD, sAnD, and mAnD, we first
compared the network of cMD + AD and cMD + sAnD
to test the differences between AD and sAnD; then the
network comparison test between cMD + AD and
cMD + mAnD was also performed to test the differences
between AD and mAnD; Finally, to reduce sources of
heterogeneity, we compared networks between
AD + sAnD and AD + mAnD to test whether there was
www.thelancet.com Vol 116 June, 2025
significant difference between group sAnD and group
mAnD. These results showed that cMD significantly
differed from mAnD and sAnD in the symptom
network structures (p = 0.017, p = 0.048, respectively,
NCTs). The edge showing significant differences be-
tween cMD and both mAnD and sAnD was loss of
pleasure-weight/appetite, (p < 0.001 for cMD vs. mAnD,
and p = 0.035 for cMD vs. sAnD, NCTs with post-hoc
tests). AD exhibited significant differences from
mAnD and sAnD on network structures (p = 0.001,
p = 0.010, respectively, NCTs). In addition, mAnD and
sAnD showed significant differences on the global
strength (p = 0.036, network comparison test) rather
than the global network structure (p = 0.189, NCT).
Suppl. eFigure S6 and Suppl. eResult S2 present the
detailed results of network comparison tests.

Differences in brain function between MDD
subtypes
Differences in local indicators
No significant differences between the overall MDD and
HC groups were found in three local indicators. We
compared each MDD subtype with HC and the results
showed that some subtypes had unique brain functional
alterations compared to HC (all pFWE < 0.01, ANCO-
VAs based on GLM), whereas others did not (Table 2,
Suppl. eFigure S7). These results indicate that the het-
erogeneity of MDD can be tested at the neuroimaging
level and provide certain neurobiological evidence for
these identified MDD subtypes. To further explore the
differences in neuroimaging between subtypes, pairwise
comparisons between subtypes were performed, and the
results showed that sMD significantly differs from other
four subtypes in terms of spontaneous neural activities
(all pFWE < 0.005, ANCOVAs based on GLM), while no
significant differences were found between the other
four subtypes. Table 2 presents the results of group
comparisons based on these local indicators of brain
function, and the Suppl. eFigure S7 presents the visu-
alisation results of these brain regions that showed
significant differences between groups.

Differences in functional connectivity networks
As shown in Fig. 3a, significant differences between the
overall patients with MDD and HC in 17 FCs were
observed (10,000 permutations and adjusted
pFDR < 0.05, ANCOVA based on GLM), especially in
connections between the default mode network and
subcortical regions. To further explore shared and
subtype-unique neural activity abnormalities across
MDD subtypes, post-hoc tests were performed, and the
results suggested that AD, mMD, and sMD contributed
most of the differences between overall MDD and HC
within 17 FCs, they shared some FC alterations
(Fig. 3b). For instance, compared to HC, these three
subtypes shared FC alterations mainly involving in
dorsal/ventral attention networks, default model
11
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Brain region Voxel MNI
coordinate

Peak T
value

PFWE (one-
tailed)

x y z

Subtypes vs. HC

ALFF

sAnD > HC

L. medial prefrontal cortex/anterior
cingulate cortex (BA32)

165 −12 27 33 5.32 <0.001

sMD < HC

L. inferior/middle temporal gyrus/temporal
pole (BA20/36)

223 −33 6 −33 4.03 <0.001

R. inferior/middle temporal gyrus/
fusiform/temporal pole_(BA20/36)

491 42 0 −27 3.97 <0.001

fALFF

sMD < HC

B. praecuneus (BA7) 201 0 −63 45 4.61 <0.001

ReHo

sMD > HC

R. Precentral/postcentral gyrus (BA3/4) 40 39 −21 57 4.53 0.002

R. Superior temporal gyrus (BA22/48) 40 51 −6 3 3.69 0.002

Between subtypes

ALFF

mMD > sMD

R. Temporal pole/parahippocampal gyrus
(BA20/35)

208 42 3 −27 4.70 <0.001

sAnD > sMD

R. medial prefrontal cortex (BA11/47/48) 875 12 42 30 4.74 <0.001

L. medial prefrontal cortex (BA11/47/48) 637 −3 48 15 4.56 <0.001

sMD < mAnD

B. lateral prefrontal cortex/orbital frontal
cortex (BA9/44/46/47/48)

1107 30 33 39 4.28 <0.001

B. orbital frontal cortex (BA11/24) 177 9 12 −27 3.85 <0.001

fALFF

sMD < AD

B. praecuneus (BA7) 116 0 −51 42 4.24 <0.001

ReHo

mMD > sMD

R. anterior cingulate cortex (BA11) 38 15 30 6 4.46 0.004

Notes: The significance level for these brain regions was set at p < 0.05, cluster-level family-wise error (FWE)
corrected with voxel-level starting from p < 0.001 uncorrected after the probabilistic threshold-free cluster
enhancement (ANCOVAs based on GLM); age, sex, intelligence score, and FD were taken as covariates. For the
brain regions that are significantly different between subtypes, the significance was set at pFWE < 0.005
(Bonferroni corrected) due to a total of 10 comparisons being performed (ANCOVAs based on GLMs); for the
brain regions that are significantly different between each subtype and HC, the significance was set at
pFWE < 0.01 (Bonferroni corrected) due to a total of 5 comparisons being performed (ANCOVAs based on GLM).
The notation BA[number] represents the specific location of a brain region within the Brodmann area (BA)
system, with the number corresponding to a particular cortical area. Abbreviations: ALFF, amplitude of low-
frequency fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; FD, frame displacement; AD,
atypical-like depression (n = 40); mMD, moderate melancholic depression (n = 100); sAnD, severe anhedonic
depression (n = 29); sMD, severe melancholic depression (n = 40); mAnD, moderate anhedonic depression
(n = 50); HC, healthy controls (n = 92); BA, Brodmann area; x, y, z, coordinates of peak locations in the Montreal
Neurological Institute space (MNI); L, left hemisphere; R, right hemisphere; B, bilateral hemisphere; ANCOVAs,
analyses of covariance; GLM, general linear model.

Table 2: Group differences in local neural activity between MDD subtypes and between each
subtype and healthy controls.
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network, and subcortical regions (all pFDR < 0.05,
ANCOVAs with post-hoc tests). In addition, unique FC
alterations were also observed in each subtype. While
the two anhedonic depression subtypes were signifi-
cantly different from HC in a small amount of these FCs
(all pFDR < 0.05, ANCOVAs with post-hoc tests), espe-
cially in FCs involved in reward circuit (such as orbital
frontal cortex and caudate). We also compared each
subtype with HC in the whole-brain FCN, only AD
showed decreased FCs compared to HC after strict
multiple comparison corrections (Bonferroni correction
with a threshold of pFDR < 0.01, ANCOVA based on
GLM) (Suppl. eFigure S8 illustrates the differences in
whole-brain FCN between AD and HC).

We further examined whether there were differences
between subtypes in the whole-brain FCN by using
pairwise comparisons. As shown in Fig. 3c, significant
differences in certain FCs were observed across all
pairwise subtype comparisons (all pFDR < 0.005,
ANCOVAs based on GLM) except for comparisons be-
tween AD and sAnD, between mMD and mAnD, and
between sMD and mAnD.

In addition, sensitivity analysis revealed no signifi-
cant differences in neural activities between medicated
and unmedicated patients with MDD in the brain re-
gions/FCs where subtype differences were observed (all
pFDR > 0.05, ANCOVAs based on GLM, medication
effect on neural activities was presented in Suppl.
eTable S8), indicating that taking or not taking an an-
tidepressant or antipsychotic medication during the 4
weeks prior to study participation did not change the
main findings observed in the current sample (Suppl.
eResult S1 presents the detailed results of sensitivity
analysis).

Correlations between brain activities and symptoms
Fig. 4 presents the partial correlations between brain
activities and symptoms. The results indicated that most
of the neural activities that differed between subtypes
were significantly correlated with those symptoms that
were different between subtypes (Suppl. eTable S9
provides the detailed coefficients of partial correlation
analysis). In detail, sAnD and sMD differed in brain
activities in regions involved in reward function (e.g.,
medial prefrontal cortex, insula, and globus pallidus),
and brain activities in these regions were significantly
correlated with loss of pleasure (all FDR q < 0.05, partial
correlation analysis), which was the main difference in
symptoms between sAnD and sMD. AD showed dif-
ferences from other subtypes in FCs of insula-sensory
cortex, and these FCs correlated with differential
symptoms between AD and other subtypes (e.g., loss of
pleasure, weight/appetite loss, fatigue/loss of energy, indeci-
siveness, etc.), with all correlations reaching significance
after FDR corrections (all FDR q < 0.05, partial correla-
tion analysis). Meanwhile, mMD and sMD showed dif-
ferences in the ALFF value of the right parahippocampal
gyrus/temporal pole, the ReHo value of right anterior
cingulate cortex, and FCs of prefrontal cortex-substantia
nigra, and these brain activities were significantly
correlated with the certain symptoms (all FDR q < 0.05,
partial correlation analysis) that differed between mMD
www.thelancet.com Vol 116 June, 2025
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Fig. 3: Group comparisons in functional connectivity network. Circos plots and functional connectivity maps revealed significant differences
a) between overall MDD (n = 259) and HC (n = 92) in whole-brain FCN (MDD < HC, pFDR < 0.05, ANCOVA based on GLM); b) between different
MDD subtypes (AD, n = 40; mMD, n = 100; sAnD, n = 29; sMD, n = 40; mAnD, n = 50) and HC (n = 92) within 17 FCs that showed significant
differences between overall MDD and HC (pFDR < 0.05, ANCOVA with post-hoc test); c) Results from pair-wise comparisons between the
identified MDD subtypes (AD, n = 40; mMD, n = 100; sAnD, n = 29; sMD, n = 40; mAnD, n = 50), with the significance threshold of
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and sMD (loss of pleasure, feeling anxious, etc.). In addi-
tion, the differences in symptoms between mAnD and
sAnD were mainly manifested in loss of pleasure and
weight/appetite loss, and the differences in brain activities
between mAnD and sAnD were significantly related to
these symptoms (all FDR q < 0.05, partial correlation
analysis).

Reproducibility of subtyping in the replication
dataset
As shown in Table 1, in the replication dataset, a total of
86 patients with MDD were included (75.58% females),
and the demographic characteristics and clinical fea-
tures exhibited no statistical significance between pa-
tients with MDD in the discovery and replication
datasets (all two-tailed p > 0.05, two-sample t-tests or chi-
square tests), suggesting that the groups of patients with
MDD were comparable. The same LPA procedures as in
the discovery dataset were performed in the replication
dataset and the results also suggested that the 5-class
solution should be selected as the optimal classifica-
tion solution to characterise MDD subtypes in the
replication dataset (AIC = 1952.744, aBIC = 1907.898,
entropy = 0.933, LMR p = 0.6464 [Lo–Mendell–Rubin
test], BLRT p = 0.03 [bootstrapped likelihood ratio test])
after considering the model fit and interpretability.
Suppl. eTable S3 provides the fit indices for each solu-
tion of LPA. Suppl. eTable S4 also presents the mean
posterior probabilities for patients in each class that
were identified in the replication dataset. Similar to the
discovery dataset, the average probability of each class of
patients belonging to their respective class was more
than 90%, indicating a high accuracy of classification.
Meanwhile, like the LPA result in the discovery dataset,
five identified MDD subgroups in the replication dataset
exhibited similar latent symptom structures to those
subtypes identified in the discovery dataset (Suppl.
eFigure S9 illustrates the symptom profiles of the five
identified MDD subgroups in the replication dataset and
Suppl. eResult S3 provides detailed descriptions
regarding each subgroup).
Discussion
The present study utilised a data-driven approach to
explore clinical subtypes of MDD in real-world settings
without presupposing how symptoms would cluster,
presenting the MDD subtyping results based on both
pFDR < 0.005 after multiple comparisons corrections (ANCOVA based on G
on the circumference or brain template represents a brain region, with di
the links between nodes indicating significant functional connectivity diffe
using Circos package (version 0.69-9) in Python 3.11 and BrainNet Vie
depressive disorder; HC, healthy controls; AD, atypical-like depression;
depression; sMD, severe melancholic depression; mAnD, moderate anhed
linear model.
clinical features and neural activities, and neural corre-
lations of clinical symptoms supported the coherence of
these findings. Taken together, the functional neuro-
imaging discoveries and distinct patterns of symptom
networks characterising MDD through different lenses
and perspectives and the coherence of these findings
further constellated the existence of these identified
MDD subtypes. The replication analysis in an inde-
pendent dataset verified the reproducibility of the
identified MDD subtypes. Fig. 5 presents a summary of
the main findings of the current study. The findings of
the present study could have transformative potential in
clinical decision-making and personalised management.

We included standard depressive symptoms of DSM-
5 and identified five MDD subtypes. Unlike previous
studies in which the characterisation of depression
subtypes was based on symptom severity.8–12 The five
MDD subtypes in the current study showed different
symptom patterns, including atypical-like depression
(AD, n = 40, 16.3%), moderate melancholic depression
(mMD, n = 100, 37.8%), severe melancholic depression
(sMD, n = 15.7%), moderate anhedonic depression
(mAnD, n = 50, 19.0%), and severe anhedonic depres-
sion (sAnD, n = 29, 11.2%). Consistently, depressed
mood, worthlessness/guilt, as well as fatigue/loss of energy
were dominant symptoms for most patients with MDD,
which were stated in DSM-5.41 Symptoms of loss of
pleasure and weight/appetite loss were the most dis-
tinguishing symptoms among our identified subtypes.
The present study identified 53.5% of MDD as melan-
cholic depression (including moderate and severe
melancholic depression) and 16.3% with atypical-like
depression. These findings are consistent with previ-
ous studies that draw an overall picture of demographic
and clinical features of Chinese patients with MDD.
One study found that 53.4% of 1178 patients were
classified as melancholic depression.66 Another study
discovered that the prevalence of atypical depression
was 15.3%.67 Meanwhile, for 30.2% of patients with
MDD (50 patients in moderate anhedonic depression,
29 in severe anhedonic depression), their symptom
patterns were dominated by loss of pleasure in the current
study and were classified as anhedonic depression. As
one of the core symptoms of MDD, anhedonic features
are an important MDD phenotype. It is noted that, in
severe melancholic depression subtype (15.7%), patients
also showed obvious loss of pleasure symptoms, despite it
not being the dominant symptom. Our findings were
LM). In the Circos plots and functional connectivity maps, each node
fferent colours representing their corresponding brain networks, and
rences. Circos plots and functional connectivity maps were generated
wer 1.7 in Matlab R2013b, respectively. Abbreviations: MDD, major
mMD, moderate melancholic depression; sAnD, severe anhedonic
onic depression; FCN, functional connectivity network; GLM, general
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Fig. 4: A heatmap illustrates correlations between neural activity indicators and symptoms. Results from the partial correlation analysis,
with age, sex, intelligence score, and FD included as covariates. The sample sizes of five identified subtypes are: atypical-like depression (AD,
n = 40); moderate melancholic depression (mMD, n = 100); severe anhedonic depression (sAnD, n = 29); severe melancholic depression (sMD,
n = 40); moderate anhedonic depression (mAnD, n = 50). The significance level was set as 0.05 after false discovery rate (FDR) correction. *FDR
q < 0.05, **FDR q < 0.01 (Partial correlation analysis). Grey cells indicated missing values (NaN) due to the absence of variance in the cor-
responding symptom within this subgroup, making correlation analysis infeasible. The neural activity indicators presented on the right
represent the spontaneous brain activity (ALFF, fALFF, and ReHo) in specific brain regions and the functional connectivity (FC) between
different brain regions (nodes). For ALFF, fALFF, and ReHo, each feature is named as: [Hemisphere]_[Region], in which Region corresponds to
anatomical regions defined by the Automated Anatomical Labelling (AAL) template. Each FC is denoted using a hyphen between the two brain
regions names (node labels). Cortical brain regions were defined using the Schaefer multiresolution atlas (100 cortical regions), where each
region follows one of the two formats: [Hemisphere]_[Network]_[Region]_[Index], or [Hemisphere]_[Network]_[Index]. Subcortical regions were
defined based on Xiao’s structural connectomic atlas (22 subcortical regions), following the format: [Hemisphere]_[Region]. Here, Hemisphere
indicates the brain side, including left (L), right (R), or bilateral (B, if available), Network (cortical nodes only) refers to the functional network
affiliation of that brain region (DMN, Default Mode Network; Cont, Control Network; SomMot, Somatomotor Network; DA, Dorsal Attention
Network; SalVA, Salience/Ventral Attention Network; Vis, Visual Network), Region refers to the anatomical location, and Index denotes the parcel
number within that network or region. The heatmap was generated in Matlab R2019b. Abbreviations: ALFF, amplitude of low-frequency
fluctuation; fALFF, fractional ALFF; ReHo, regional homogeneity; FC, functional connectivity; FD, frame displacement; DM, depressed mood;
LOP, loss of pleasure; WG, worthlessness/guilt; SUI, suicidal ideation; WA, weight/appetite loss; SLP, sleep reduction; PM, psychomotor
symptom; FE, fatigue/loss of energy; IND, indecisiveness; ANX, feeling anxious.
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consistent with a recent study that showed 51.97% of
patients with MDD exhibited anhedonia symptoms with
unique psychological and clinical features in a Chinese
sample.68 Moreover, the reproducibility of the charac-
terisation in the current study was also verified in a
replication dataset.

Furthermore, the validity of the current subtyping
was supported by both symptom network structures and
www.thelancet.com Vol 116 June, 2025
neural activity profiles. We found that melancholic
depression differed from moderate anhedonic depres-
sion and severe anhedonic depression subtypes in
network structures, primarily in the association between
symptoms of loss of pleasure and weight/appetite loss. The
neuroimaging findings also indicated the differences
between melancholic and anhedonic subtypes as ALFF
and FC involved in reward-related regions (mPFC,69
15
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Fig. 5: A summary of the main findings. Five MDD subtypes were identified in the discovery dataset (N = 259) using latent profile analysis
(LPA). Significant differences between identified MDD subtypes in both network structures and neural activities, along with neural correlations
of clinical symptoms further support the validity of the classification. Replication analysis in the replication dataset (N = 86) confirmed the
reproducibility of the classification, with the following sample sizes: class 1 (n = 8), class 2 (n = 34), class 3 (n = 19), class 4 (n = 11), and class 5
(n = 12). Abbreviations: AD, atypical-like depression (n = 40); mMD, moderate melancholic depression (n = 100); sAnD, severe anhedonic
depression (n = 29); sMD, severe melancholic depression (n = 40); mAnD, moderate anhedonic depression (n = 50).
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insula, and globus pallidus70). These correlation analyses
supported the connection between the above-mentioned
brain alterations and loss of pleasure. The symptom of loss
of pleasure often encompasses multiple aspects,
including reduced sensitivity to primary reward (e.g.,
food, sex) and secondary reward (e.g., money, enter-
tainment).71 Appetite loss is one of the critical di-
mensions of loss of pleasure.70 However, they do not
always appear together, as appetite loss can occur without
having loss of pleasure, or vice versa.70 For instance, both
two melancholic subtypes showed significant weight/
appetite loss but low levels of loss of pleasure; this was not
the case for anhedonic subtypes. Low levels of weight/
appetite loss were observed among the two anhedonic
subtypes (especially in moderate anhedonic depression),
although patients in these two subtypes reported rela-
tively higher scores on the symptom of loss of pleasure.

It may be the case that weight/appetite loss symptoms
manifested in different subtypes may have different
underlying mechanisms. Correlation analyses suggested
that weight/appetite loss and loss of pleasure in anhedonic
depression were significantly correlated with reward-
related FCs, with key nodes mainly including the
middle cingulate cortex (MCC) and postcentral gyrus,
suggesting that these two symptoms in patients with
anhedonic depression may have a common neural basis.
In other words, weight/appetite loss may be one dimen-
sion of loss of pleasure symptoms among patients of
anhedonic subtype. Specifically, the MCC plays an
important role in decision-making, especially in relation
to reward.72 The postcentral gyrus is the site of the
primary somatosensory cortex with principal functions
in proprioception and touch sensations and appears
receptive to food stimuli.73 Abnormal FC in these areas
may be involved in abnormalities in the individual’s
anticipation and decision-making processing of reward
cues (including food reward). Thus, reduced sensitivity
to rewarding stimuli (delicious food) contributes to
weight/appetite loss symptoms. These results are consis-
tent with a recent review that concludes reward hypo-
sensitivity is related to the anhedonic subtype of MDD
being characterised by motivational deficits.74 These
differences in brain function, as well as differences in
global symptom network strengths also explain the
different manifestations in loss of pleasure and weight/
appetite loss between the two anhedonic subtypes.

However, weight/appetite loss in melancholic subtypes
may also be involved in other neural correlations.
Consistent with previous findings on the neural corre-
lates of weight/appetite changes,75–77 we found that
weight/appetite loss in melancholic subtypes was associ-
ated with the fALFF value of the praecuneus, which was
involved in self-referential processing.78 Although spec-
ulative, reduced spontaneous activity in the praecuneus
may potentially be linked to a diminished awareness of
internal bodily signals of hunger75 due to the fact that
patients with melancholic MDD tend to have a rumi-
native focus on sad mood.79 Brain function alterations in
these two melancholic depression subtypes were mainly
observed in the default mode network (DMN) and the
subcortical network, involving emotional processing. In
addition, we uncovered the difference in ALFF values
www.thelancet.com Vol 116 June, 2025
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between the two melancholic depression subtypes in the
right temporal pole/parahippocampal gyrus, which is a
part of the affective network80 and has been proven to be
closely associated with anxiety symptoms.81 Sponta-
neous neural activity differences in these regions
explained the difference in feeling anxious between the
two melancholic subtypes. Meanwhile, brain activity
involving the reward function also contributed to the
difference in loss of pleasure between the two melan-
cholic subtypes.

The definition of atypical-like depression in the cur-
rent study was attributable to lower scores on weight/
appetite loss and sleep reduction (close to 0). The atypical-
like depression subtype had a significantly different
symptom structure compared to the two anhedonic
depression subtypes, especially in the associations be-
tween loss of pleasure and other symptoms (such as
weight/appetite loss, sleep reduction, worthlessness/guilt,
etc.). We did not find differences in symptom network
structure between the melancholic subtype and the
atypical-like subtype. In part, this may be due to the fact
that we cannot directly measure atypical features, which
are the main differences between melancholic and
atypical depression subtypes. However, the neuro-
imaging results supported the distinction of this group
from others, suggesting this group may represent those
patients with atypical-like features. The brain functional
alterations of the atypical-like subtype mainly focus on
the FC of the salience/ventral attention network (espe-
cially in the insula) and the sensory cortex compared to
other subtypes. For example, atypical depression
significantly differed from severe melancholic depres-
sion in the FC of left frontal operculum/insula-right
visual cortex (calcarine/lingual) and differed from
moderate anhedonic depression in the FC of right
frontal operculum/insula-right somatomotor cortex
(pre/postcentral gyrus). The insula is a multimodal
integration region that receives afferents from sensory,
limbic, autonomic (also referred to as the ‘ingestive
cortex’), and frontal regions, integrating them to achieve
different functions through connections with other
systems,82 including sensorimotor processing, cognitive
functioning, and socio-emotional processing.83 Differ-
ences in connectivity of the insula-sensory cortex be-
tween atypical-like depression and other subtypes may
be associated with its reversed vegetative symptoms
(especially for weight/appetite) given the central role of
the insula in interoception is therefore key in obesity
and associated with both increased sensitivity to hunger
signals and decreased sensitivity to satiety signals.84 The
pathway from the insula to the sensory cortex might
constitute a neural pathway that is involved in the
integration of information pertinent to taste and food-
related reward processing. For instance, the FC of the
left frontal operculum/insula-right visual cortex signifi-
cantly correlated with weight/appetite loss, suggesting
that the higher the FC, the more severe the weight/
www.thelancet.com Vol 116 June, 2025
appetite loss. Moreover, atypical-like depression also
showed decreased FCs involved in reward-related re-
gions (e.g., caudate, nucleus accumbens, and globus
pallidus) compared with HC (refer to Suppl.
eFigure S8). These reward-related FC abnormalities
cannot be explained by loss of pleasure. Previous studies
suggested that abnormalities in the reward system may
underlie the clinical phenomenon of atypical MDD,
while the abnormal reward function in atypical-like
depression is characterised by abnormal reward sensi-
tivity (e.g., increased sensitivity to food cues) rather than
a blunted reward response that underlies anhedonia.85,86

Therefore, the consistency of symptom profiles and
neuroimaging findings suggests that this group may be
a subset of patients with atypical-like features. Further
validation is warranted to re-evaluate the presence of
this subtype by directly measuring atypical features.

It should be noted that due to the uneven distribu-
tion of the five subtypes obtained based on the data-
driven method, the imbalanced sample sizes between
the identified subtypes and between each subtype and
HC may introduce potential bias regarding the findings
derived from group comparisons, such as reduced sta-
tistical power (type II error) or skewed comparisons
(where larger groups dominate and distort conclusions
about smaller subgroups). Therefore, these results
should be interpreted with caution. It may also reflect
the natural distribution of MDD subtypes in the patient
population. Nonetheless, as the current findings had
undergone rigorous statistical corrections, especially for
the neural activity findings (both multiple comparison
corrections at the whole-brain level and the group level),
the present study provides robust results. The differ-
ences that survived such stringent corrections likely
represent the most distinctive neural activity patterns
among the identified subtypes. These observed differ-
ences in symptom network structure and neural activity
further support the actual existence and the validity of
the identified five subtypes in this study.

As previously noted, there have been a number of
studies conducted to parse out the heterogeneity of
depression by using a data-driven approach. Maglanoc
et al. (2019) used high-dimensional data-driven clus-
tering based on depressive and anxiety symptoms to
cluster the potential subgroups of depression and
compared their symptom centrality and brain functional
connectivity between subgroups.11 They identified five
subgroups in terms of symptom severity and the num-
ber of subjects with and without a history of depression,
but did not include those with severe MDD, limiting the
generalisability of the subtypes. Three other studies
identified biotypes of MDD based on fMRI. Liang et al.
(2020)34 identified two MDD biotypes with differing FC
profiles of DMN exhibiting increased and decreased
connectivity of DMN (hyperDMN and hypoDMN),
respectively. However, they did not find significant dif-
ferences in terms of demographic and clinical variables
17
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between the two biotypes. Drysdale et al.22 and Dunlop
et al.33 have employed commendable work in this field,
and promising results have been achieved. Drysdale
et al. (2017)22 discovered four biotypes by using fMRI
and these four biotypes with distinct patterns of
dysfunctional connectivity in limbic and frontostriatal
networks. These biotypes were associated with unique
clinical symptom profiles and were also predictive of
responsiveness to transcranial magnetic stimulation
therapy, highlighting the potential clinical significance
of such subgrouping. Recently, Dunlop et al. (2024) also
identified 3 robust and generalisable brain-behaviour
dimensions using resting-state fMRI that explained in-
dividual differences in depressed mood and anxiety,
anhedonia, and insomnia, indicating four biotypes of
depression.33 These two studies provide valid findings
and hold promise for their potential clinical value. In
fact, as Stoyanov et al.87 explained, in recent years, the
nomothetic network psychiatry paradigm (NNP) based
on high-dimensional data (such as multimodal neuro-
imaging and molecular data) has provided an innovative
and comprehensive framework for psychiatric classifi-
cation. These machine learning-based studies provide
more opportunities for both the differential diagnosis of
MDD from HC87 and the resolution of heterogeneity in
MDD.22,33,34 However, challenges are the difficulty in
obtaining individual-level MRI data and the high costs
associated with acquiring such data for identifying
depression subtypes. Consequently, clinicians may not
be able to directly benefit from the findings of MDD
biotypes in their practice. Our study is not positioned as
a competing approach to NNP but rather as a comple-
mentary effort. By identifying symptom subtypes
through LPA, future studies could also integrate these
findings with NNP methodologies to examine how
clinic-biological markers map onto symptom-defined
subtypes. In other words, the added value of this study
includes contributing to the literature of the identified
subtypes with distinct symptom patterns and their
unique associated neural activity alterations, and its in-
cremental value to clinical practice. Clinicians can use
easily accessible standard DSM depressive symptoms
combined with the model generated by the current
study, to identify a patient’s subtype and provide tar-
geted and specialised treatments by focussing on rele-
vant therapeutic targets based on the information
provided by neuroimaging characteristics of each sub-
type, thereby helping to achieve optimal personalised
treatments.

Future directions, strengths, and limitations
The results of this study offer the possibility for inte-
grating the parsing of MDD heterogeneity with clinical
practice even if it is a preliminary attempt. We used
validated clinically measured depressive symptoms
from DSM-5 that could help to address the challenges of
clinical implementation faced by prior studies that have
made it difficult to translate research findings into real-
world applications. Secondly, we adopted rigorous
methodological methods and employed a relatively large
sample of neuroimaging data to re-validate the actual
existence of these subtypes both at the symptomatology
(symptom structures) and neurophysiology (neural ac-
tivity profiles) levels. The associations between the core
symptoms of certain subtypes and specific neural ac-
tivities were discovered. The consistent findings across
different approaches and fields increase the credibility
of our findings and suggest their promising implica-
tions in clinical settings, which may facilitate the
implementation of precision and individualised treat-
ment for depression. Future research is warranted to
replicate the characterisation of MDD subtypes. This
study would also benefit from developing a user-friendly
interface to ease the characterisation of subtypes at the
individual level. Once possible clinical subtypes are
identified, targeted and specialised intervention and
treatment focussing on relevant therapeutic targets
based on the neuroimaging characteristics of each
subtype could help to yield optimal treatment outcomes.
For example, the treatment for anhedonic depression
may benefit from selecting therapy targeting reward
function (e.g., NMDA Antagonists88 or targeted psy-
chological interventions such as Positive Affect Treat-
ment89); the treatment for atypical depression may
benefit from selecting therapy that targets the somato-
motor cortex. This aligns with previous studies indi-
cating that atypical depression presented a distinct
motor cortical excitability pattern of decreased cortical
inhibition and increased cortical facilitation,90 and
responded better to monoamine oxidase inhibitors.91

Likewise, the melancholic depression treatment may
be enhanced by antidepressants that could normalise
connectivity between the DMN and mood regulatory
networks (e.g., ketamine, escitalopram).92 Additionally,
other symptom differences should also be considered in
the context of clinical management, such as higher
anxiety in moderate melancholic depression but lower
in severe melancholic depression. Despite the prom-
ising clinical relevance of our study, further research is
needed to ascertain the accuracy of MDD subtyping.

Several limitations are to be noted. First, the clas-
sification of atypical depression should be further
evaluated as the current study did not have direct
measures of atypical features. Second, the cross-
sectional nature of this study cannot infer the stabil-
ity of these subtypes over time and their response to
treatment. Longitudinal studies are warranted to test
the transition of MDD subtypes and their response to
treatment over time. Third, the current study was
drawn from a Chinese population of patients with
MDD. The generalisability of the identified MDD
subtypes needs to be validated in other populations
given that the ethnocultural differences may impact
MDD clinical manifestations.
www.thelancet.com Vol 116 June, 2025
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The current study employed robust data-driven ap-
proaches to unveil five distinct MDD subtypes. The
reproducibility of the classification was confirmed in an
independent dataset, and the validity of these subtypes
was supported by symptomatology (symptom structure)
and neurophysiology (neural activity). Notably, each
subtype was associated with core symptoms that
exhibited specific connections to brain function within
certain brain regions. Tailored treatment and manage-
ment strategies focussing on core symptoms of these
subtypes might benefit patients with different MDD
subtypes.
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