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Abstract: Visible light communications (VLC) is gaining interest as one of the enablers of short-
distance, high-data-rate applications, in future beyond 5G networks. Moreover, non-orthogonal
multiple-access (NOMA)-enabled schemes have recently emerged as a promising multiple-access
scheme for these networks that would allow realization of the target spectral efficiency and user
fairness requirements. The integration of NOMA in the widely adopted orthogonal frequency-
division multiplexing (OFDM)-based VLC networks would require an optimal resource allocation
for the pair or the cluster of users sharing the same subcarrier(s). In this paper, the max-min rate
of a multi-cell indoor centralized VLC network is maximized through optimizing user pairing,
subcarrier allocation, and power allocation. The joint complex optimization problem is tackled using
a low-complexity solution. At first, the user pairing is assumed to follow the divide-and-next-largest-
difference user-pairing algorithm (D-NLUPA) that can ensure fairness among the different clusters.
Then, subcarrier allocation and power allocation are solved iteratively through both the Simulated
Annealing (SA) meta-heuristic algorithm and the bisection method. The obtained results quantify
the achievable max-min user rates for the different relevant variants of NOMA-enabled schemes
and shed new light on both the performance and design of multi-user multi-carrier NOMA-enabled
centralized VLC networks.

Keywords: visible light communications (VLC); centralized light access network (C-LiAN); non-
orthogonal multiple access (NOMA); max-min user rate; subcarrier allocation; simulated annealing
(SA) algorithm; optimization

1. Introduction

Wireless optical communications, particularly visible light communications (VLC), has
emerged as a bandwidth-abundant, secure, and cost-effective communications technology.
It complements the existing radio frequency (RF) systems or even replaces them for some
indoor and outdoor applications, such as conference and exhibition halls, office rooms,
trains and airplane cabins, and so forth. It can also be deployed outdoors in vehicle-to-
vehicle (V2V) and vehicle-to-everything (V2X) applications, as well as applications which
are short-range, and which have a very high data rate in beyond-fifth generation (B5G)
networks. VLC is based on the principle of modulating light from light emitting diodes
(LEDs) without any adverse effects on the human eye and at the required illumination
levels to transmit data. Clearly, this provides an excellent opportunity to utilize the existing
illumination infrastructure for very high-speed and secure wireless communications [1].

In a conventional distributed VLC architecture, a set of L transmit LEDs communicate
with a set of N users in a way that each light emitting diode (LED) acts as an access point
(AP) that serves its own subset of the N users. Besides, all the access points (APs) contain
a base-band unit followed by an optical front-end and connect to each other through the
data backbone, as well as the electrical grid. While in centralized light access network
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(C-LiAN) architecture the base-band processing unit of each LED is retracted and grouped
in a central pool that is managed by a centralized controller, where the LEDs are only
responsible for the optical transmission/reception. In this way, the complexity and the
associated cost of each VLC-enabled LED can be reduced. In addition, efficient joint-
processing algorithms of signals from different LEDs can be implemented to enhance
resource management, scheduling, interference management, handover, and so forth in
the network. The centralized controller is responsible for collecting the channel state
information (CSI) of the users, the traffic load status of the LEDs, and the quality of service
(QoS) requirements of the users [2].

In the past generations of wireless networks, the wisdom of orthogonal multiple
access (OMA) schemes, such as time-division multiple-access (TDMA), frequency-division
multiple-access (FDMA), code-division multiple-access (CDMA), orthogonal frequency-
division multiple-access (OFDMA), and wavelength-division multiple-access (WDMA) in
both RF and VLC networks was dominant [3]. In these schemes, the different users are
allocated orthogonal frequency channels or time slots or spreading codes, or wavelengths
so that they do not interfere with one another as they access the network. However,
the orthogonality requirement poses a limit on the number of users that may access the
network resources, and hence reduces the overall spectral efficiency and increases the
network latency. On the other hand, non-orthogonal multiple access (NOMA) schemes
allow several users to share the same resource (e.g., a frequency/time resource block)
and separate these users in other domains with additional receiver complexity. When the
power domain is used to separate the users, it is referred to as the power-domain NOMA
(PD-NOMA) [4] scheme (in this paper, we refer to PD-NOMA and NOMA interchangeably.
Hence, wherever NOMA is used after this point in the paper, it always refers to PD-NOMA).
The NOMA concept was first introduced in [5] to enhance the spectral efficiency of wireless
cellular networks, and it has its roots in broadcast channels in multi-user information
theory [6], though with additional constraints on the users’ target rates in addition to the
typical transmit power constraint [7].

What makes NOMA interesting for adoption in indoor VLC networks are the follow-
ings [1,8]: (i) As the current off-the-shelf LEDs have limited bandwidth, this necessitates
the adoption of spectrally efficient schemes, like the NOMA-enabled schemes, to attain the
desired high data rates in VLC networks, (ii) under typical illumination constraints, VLC
experiences relatively high signal-to-noise ratio (SNR) conditions where it is well-known
that the NOMA scheme outperforms the orthogonal counterparts in that particular region,
and (iii) the quasi-static nature of the propagation channel in low mobility and indoor VLC
networks allows for more reliable estimation of the channel gains for subsequent NOMA
scheme power allocation in the LEDs.

It is worth noting that applying NOMA to a large number of users in a single carrier
system is not that feasible due to the error propagation, the high complexity of the architec-
ture, and the additional system overhead for coordinating the users’ CSI feedback. Hence,
multi-carrier NOMA-enabled systems with efficient user-pairing techniques have emerged,
where users are divided into clusters, and NOMA is applied among each cluster. Each
cluster can be served through one or more subcarriers. In this paper, user pairing, subcar-
rier allocation, and power allocation in direct-current biased optical-OFDM (DCO-OFDM)
indoor NOMA-enabled centralized VLC networks are investigated. Next, we provide a
discussion for the most-utilized methods that can solve user pairing, subcarrier allocation,
and power allocation problems, and we justify the use of the methods that we adopted in
our proposed heuristic-based solution.

In the NOMA literature, there are different proposed user-pairing algorithms, such as
(i) the random user-pairing algorithm [9], (ii) cognitive radio (CR)-inspired-NOMA pairing
algorithm [10], (iii) next-largest-difference user-pairing algorithm (NLUPA) [10], (iv) divide-
and-NLUPA (D-NLUPA) [9], (v) user-pairing algorithms that utilize the matching theory,
such as the Hungarian method and Gale-Shapley algorithm [11], and (vi) the exhaustive
search user-pairing algorithm [11]. Among these algorithms, the D-NLUPA algorithm is
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adopted in this work, as it is attractive for the max-min user rate requirement [9]. The
reason is that by re-distributing the rate gains between the clusters and achieving cluster
fairness, the rate gap between the users’ rates will reduce and this reduces the search space,
and thus the algorithm complexity, for reaching the max-min user rate point for all the
users in the network.

The subcarrier allocation problem is typically a non-deterministic polynomial-time
(NP)-hard optimization problem in both the number of users and the number of channels
to be allocated [12]. The optimal resource allocation problem is known to be an NP-hard
problem even for the single carrier case [12]. The NP class contains problems that have
the characteristic that only non-deterministic algorithms can solve them in polynomial-
time. However, we can verify a given solution to these problems in polynomial time.
The non-deterministic algorithms solve a problem by evaluating possible guesses of the
solution. A problem is NP-hard if it is at least as hard as the hardest problem in NP, and
all NP problems are reducible to it. In NP-hard problems, the search space size is so large
that an exhaustive search is infeasible. Therefore, we determine approximate solutions to
NP-hard problems. Evolutionary algorithms (EAs) are a popular approach to solve NP-
hard problems [13]. Simulated Annealing (SA) is a well-known EA that has demonstrated
excellent performance in solving optimization problems in various applications, including
wireless communications [13–16]. In this work, we use the SA algorithm to allocate the
subcarriers to user-pairs. For the power allocation, the bisection method is commonly used
to optimally solve the power allocation problem for max-min user rate optimization in the
NOMA literature [17,18].

Related Work

When it comes to rate-optimal NOMA-enabled VLC networks, the majority of works
have considered maximizing the system sum-rate metric [19–26], and this is detailed in
Table VIII of the survey by Maraqa et al. [7]. In particular, early works on rate-optimal
NOMA-enabled VLC networks have considered a single-LED, single-carrier setup as
in [19–23]. Then, the research evolved to consider a single-LED multi-carrier setup as
in [24,25]. Later, a few works have considered a multi-LED, multi-carrier setup as in [26–28].
Among those, only two works have considered the optimization of another common
fairness measure, which is the max-min achievable user rate alongside maximizing the
system sum-rate metric [27,28]. This is referred to as the reason that the optimization of the
max-min user rate tends to reduce the total throughput of the users, as compared to sum-
rate maximization; however, it guarantees fairness among the users. This is an appealing
feature for the operation of ultra-massive machine-type communication (umMTC) and
internet-of-everything (IoE) in B5G systems that need reliable connectivity with generally
low data-rate requirements [29]. The work in [27] has considered the maximization of the
minimum rate for NOMA-enabled VLC networks, where an approximation of the objective
function was utilized to convexify the optimization problem, and a gradient projection
(GP) algorithm is used to adjust the power allocation coefficients. The maximization of
the minimum user rate for the cell-edge users in NOMA-enabled VLC networks in [28],
using hybrid NOMA and/or linear zero-forcing (ZF) pre-coding schemes, was approached
by numerical convex optimization of the standard determinant maximization. However,
both aforementioned works have considered the optimization of both the power allocation
and user grouping. Neither of them has analyzed the effect of subcarrier allocation on
the max-min user rate performance of NOMA-enabled VLC networks, which is the main
objective of this work.

Our contributions can thus be summarized as follows:

• The optimization of the achievable max-min user rates for NOMA-enabled centralized
VLC is investigated through formulating a joint problem for the user pairing, the
subcarrier allocation, and the power allocation. Then, a low complexity solution
is proposed.

• The development of Simulated Annealing (SA)-assisted algorithm for tackling the



Sensors 2021, 21, 3705 4 of 23

subcarrier allocation in the max-min user rate optimization problem. The obtained
results are further verified using the Tabu-search (TS) algorithm.

• The implementation of both of the NOMA-imposed schemes, where all the users
are grouped into pairs, and the NOMA-not-imposed schemes; and besides these,
the investigation of the effect of the different network parameters on the achievable
max-min user rate.

The remainder of the paper is organized as follows. In Section 2, we provide the
system and channel models for the utilized C-LiAN architecture. The formulation of the
proposed max-min user rate optimization problem is analyzed in Section 3. In Section 4,
the details of the proposed heuristic-based solution for the formulated max-min user rate
optimization are explained. Finally, simulation results, paper conclusions, and future
research directions are given in Section 5, Section 6 and Section 7, respectively. Table 1
summarizes the notations used in this paper.

Table 1. List of used variables.

Variable Name Variable Description

System Model’s Variables

L= {l0, l1, ..., lL−1} A set to describe the total number of LEDs

L The total number of LEDs

K= {s0, s1, .., sK−1} A set to describe the total number of subcarriers

K The total number of subcarriers

N= {u0, u1, ..., uN−1} A set to describe the total number of users

N The total number of users

N0 The total number of users served by the LED l0

ϕl0 ,us The angle of irradiance between the LED l0 and the user us

ψl0 ,us The angle of incidence between the LED l0 and the user us

us and uw A strong user and a weak user of the LED l0

dl0 ,us The distance between the LED l0 and the user us

Ψ1/2 The field-of-view (FoV) semi-angle of the user us

m The order of Lambertian emission

φ1/2 The semi-angle of the LED l0

Ap The area of the photo-diode (PD) for the user us

Ts(ψl0 ,us ) The optical filter gain

χ The refractive index

hl0 ,us The channel gain between the LED l0 and the user us

as The power allocation coefficient for the strong user

aw The power allocation coefficient for the weak user

Pk
e The electrical signal power per subcarrier of a LED

Pe The electrical signal power of a LED

Po The optical transmit power at the output of a LED

ι = Po/
√

Pe The ratio between the electrical signal power and the optical transmit power

κ The optical to electrical conversion efficiency of the photo-diodes (PDs)

σ2
k = Zo BL/K The power of equivalent AWGN, where Zo denotes the noise power spectral density

and BL denotes the base-band modulation bandwidth
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Table 1. Cont.

Variable Name Variable Description

γk
s and Rs The SINR and the achievable rate of the strong user

γk
w and Rw The SINR and the achievable rate of the weak user

Rj
The achievable rate of an arbitrary user (j-th user) of an arbitrary LED in the network
(i.e., Rj can be a strong user or a weak user in an arbitrary user pair)

Sli ,k ∈ {0, 1} A binary variable to denote that a user is served by a LED li and a subcarrier k

Sk ∈ {0, 1} A binary variable to denote that a user is served by a subcarrier k

Sj
li
∈ {0, 1} A binary variable to denote the user uj is served by LED li

Γ(li) A set of all user-pair combinations for an arbitrary LED li

Kli The maximum number of subcarriers for an arbitrary LED li

Heuristic-based Solution’s Variables

λ(uj) The most suitable LED for a user uj ∈ N

f1(li) A function that returns the number of users assigned to the LED li

f2(uj)
A function that denotes the distance of the user uj from the LED to which it
is currently allocated

f3(uj) A function that denotes the maximum distance of uj from any LED

Nli , Nli A vector that store the users of LED li after binding, the number of users in Nli

Pj A pair of users in Γ(li)

X A decision matrix that represents the solution of subcarrier allocation

C ∈ [0, 1] A predefined constant

P1 and P2 The penalty factors of the penalty method

Simulated Annealing Algorithm’s Variables

T0 and T The initial temperature and the current temperature

α The rate of decrease in the temperature

M0 and M The initial and current value of the number of iterations in the Metropolis function

β The rate of increase in the number of iterations of the Metropolis function

X,Xcurrent, and Xbest The input solution, the current solution, and the best solution

ccurrent, cbest, and cnew
The costs (objection function value) of the current solution, the best solution,
and the new solution created in the Metropolis function

2. System and Channel Models

A multi-user NOMA-enabled C-LiAN architecture [2] is shown in Figure 1. In this
paper, we assume that the ceiling of the room contains uniformly distributed LEDs denoted
by L = {l0, l1, ..., lL−1}, where L is the number of LEDs. Each LED is assigned up to K
subcarriers that can be shared by several users, where the subcarriers of each LED are
denoted as K = {s0, s1, .., sK−1}. In addition, the users are randomly located in the room,
and denoted by U = {u0, u1, ..., uN−1}; where the total number of users in the network is N.
In multi-user systems, the transmission resources described in time, wavelength, and/or
space are divided into resource units. A key challenge is the allocation of the resource
units in a way that key performance metrics, such as user fairness and spectral efficiency,
are fulfilled. This motivates allowing the served users or a subset of them to share the
subcarriers or a subset of them. Hence, in each signaling interval, we assume that each pair
of users can occupy one or more subcarrier(s) in only one LED.
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Centralized 
Controller
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            LED l0

User uN0-1 
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User u0

User uN-1 

Figure 1. The C-LiAN architecture [2].

In this work, the line-of-sight (LoS) optical channel model is adopted, since in a typical
indoor environment, the strongest diffuse component is usually much weaker than the LoS
component [30]. Hence, the channel gain between the LED l0 and user us is given by [16]:

hl0,us =


(m+1)Apχ2Ts(ψl0,us )

2πd2
l0,us

sin2(Ψ1/2)
cosm(ϕl0,us) cos(ψl0,us) if

0 ≤ ψl0,us ≤ Ψ1/2

0, ψl0,us ≥ Ψ1/2

(1)

where ϕl0,us and ψl0,us denote, respectively, the angle of irradiance and angle of incidence
between the LED l0 and user us. As shown in Figure 2, dl0,us is the distance between the
LED l0 and user us. Ψ1/2 is the FoV semi-angle of the user us. m is the order of Lambertian
emission and is equal to −1

log2(cos(φ1/2))
, where φ1/2 is the semi-angle of the LED l0. Ap

is the area of the PD for user us, Ts(ψl0,us) is the optical filter gain, and χ denotes the
refractive index.

We assume that served users by LED l0 are ordered according to their channel gains
in ascending order as |hl0,u0 | ≤ |hl0,u1 | ≤ ... ≤ |hl0,uN0−1 |; where we assume here that the
total number of served users by LED l0 is N0. In general, if the user u0 (i.e., the user that
has the weakest instantaneous channel gain) of LED l0 occupies an arbitrary subcarrier (for
example, the k-th subcarrier), then the signal-to-noise-interference ratio (SINR) of the user
u0 can be expressed as:

γu0,k =
|hl0,u0 |

2κ2a0P2
o,k

I1 + I2 + ι2σ2
k

, (2)

where a0 represents the power allocation factors for the user u0 that is attached to LED l0.
Po,k is the LED optical transmit power per subcarrier and is equal to Po/(K− 2) according
to the DCO-OFDM principle, where Po denotes the optical transmit power at the output
of the LED. The ratio between the electrical signal power and the optical transmit power
can be expressed as ι = Po√

Pe
, where Pe denotes the electrical signal power. κ denotes the

optical-to-electrical conversion efficiency of the PDs, σ2
k is the power of the equivalent

additive Gaussian noise (practical indoor VLC networks are affected by both thermal noise
due to the receiver pre-amplifier, and ambient light shot noise due to the possible sun-light
through the windows and/or non-VLC indoor light sources. The total noise can be modeled
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as signal-independent Gaussian noise [31,32]), whose variance is the sum of the variances
of these two noise components and equals to ZoBL/K; where Zo denotes the noise power
spectral density. In the simulation section of this work, the value of Zo accounts for both
thermal noise and light shot noise. BL denotes the base-band modulation bandwidth. In
Equation (2), the first term in the denominator, I1 = ∑L−1

i=1 Sli ,k|hli ,u0 |
2κ2P2

o,k, represents the
interference induced from the users that utilize the k-th subcarrier in the interfering LEDs
(i.e., inter-LED interference) where Sli ,k ∈

{
0, 1
}

is a binary variable that denotes the user
has received an interfering signal from a LED li on a subcarrier k. Likewise, the second term
in the denominator, I2 = ∑N0−1

j=u1
|hl0,j|2κ2ajP2

o,k, represents the interference that remains
after successive interference cancellation (SIC) decoding (i.e., inter-user interference) where
aj represents the power allocation factors for the rest of the users that is attached to LED l0.
It is worthy to note that we assume in the above equation that multiple users can be served
by one subcarrier of LED l0 (i.e., multiple users per cluster). For the rest of the paper, we
consider the case where two users are served by the same subcarrier(s) (i.e., two users per
cluster). Studying the system performance while considering multiple users per cluster is
left for future research.

Figure 2. The LoS channel model between LED l0 and user us [33].

For the two-user pairing case, we use the divide-and-next-largest-difference user-
pairing algorithm (D-NLUPA) scheme for pairing the users, as mentioned in Section 1,
where the strong user (i.e., user us) is close to the LED with strong channel gain and the
weak user (i.e., user uw) is farther away from the LED with weak channel gain so that the
strong user can successfully decode and subtract the weak user signal before decoding
its own signal (i.e., performing SIC). In Figure 1, for LED l0, we can express the SINR of
the strong user, the SINR of the weak, and the achievable rates of the strong and the weak
users using a well-known lower bound for the capacity, given in [33,34], as

Rs =
BL
K

K−1

∑
k=0

Sk log2
(
1 +

e
2π

|hl0,us |2κ2asP2
o,k

∑L−1
i=1 Sli ,k|hli ,us |2κ2P2

o,k + ι2σ2
k

)
, (3)

Rw =
BL
K

K−1

∑
k=0

Sk log2
(
1 +

e
2π

|hl0,uw |2κ2awP2
o,k

∑L−1
i=1 Sli ,k|Hli ,uw |2κ2P2

o,k + |hl0,us |2κ2asP2
o,k + ι2σ2

k

)
, (4)



Sensors 2021, 21, 3705 8 of 23

where Sk ∈
{

0, 1
}

is a binary variable to denote that the user is served by a subcarrier k, and
it is assumed that the two-user pair (user us and user uw) occupies one or more subcarrier(s)
of the LED l0 and the power allocation factors satisfy the condition as + aw = 1. Noting
that the analysis in Equations (3) and (4) represents the rate equations for one user-pair of
LED l0, the rate equations for the rest of the user-pairs of LED l0 and for the user-pairs of
any other LED in the network can be analyzed similarly.

3. The Max-Min User Rate Optimization Problem

In this section, we formulate a joint optimization problem for user pairing, subcarrier
allocation, and power allocation that maximizes the minimum achievable rate of the served
users. Let Rj denote the achievable rate of an arbitrary user (i.e, j-th user) of an arbitrary
LED (i.e, LED li) in the network (i.e., Rj can be a strong user or a weak user in a user pair,
as described in Equations (3) and (4)). Then, the max-min optimization problem can be
expressed as:

maximin
Γ(li),K,as ,aw

Rj, (5)

subject to
K−1

∑
k=0

Sj
k ≥ 1, ∀j, 0 ≤ j ≤ Nli − 1 (6)

0 ≤ Kli ≤
K
2
− 1, (7)

L−1

∑
i=0

Sj
li
= 1, ∀j, 0 ≤ j ≤ Nli − 1 (8)

as + aw ≤ 1, ∀pair ∈ Γ(li) (9)

where Γ(li) is a set of all user-pair combinations of an arbitrary LED li. Sj
k ∈ {0, 1} and

Sj
li
∈ {0, 1} are binary variables to denote that the user uj is served by a subcarrier k and

the user uj is served by LED li, respectively. By Equation (6), we ensure that any user
attached to LED li is served by at least one subcarrier, noting that the weak user and
the strong user in a user-pair are served by the same number of subcarriers according
to the NOMA principle. By Equation (7), the maximum number of subcarriers per LED
is limited to K

2 − 1 to be aligned with the DCO-OFDM principle. By Equation (8), we
ensure that each user attached to LED li is served only by LED li. By Equation (9), we
limit the values of the power allocation coefficients in a user-pair. The above optimization
problem is of a combinatorial nature, for the user pairing and the subcarrier allocation,
and has a non-linear objective function, and hence a non-convex NP-hard optimization
problem [12,35]. The optimal values of the power allocation coefficients can be determined
using the bisection method [17].

4. The Heuristic-Based Solution for the Max-Min User Rate Optimization Problem

The optimization problem in Equations (5)–(9) is an involved optimization problem,
as stated before. Subsequently, the search space to handle the problem jointly is too large.
Noting that performing an exhaustive search to solve this problem jointly is infeasible
from a practical point of view, to reduce the complexity of this optimization problem, the
user pairing is assumed to follow the D-NLUPA algorithm, as mentioned before, where
that pairing algorithm is attractive for the max-min user rate requirement [9]. Hence,
the optimization problem in Equations (5)–(9) reduces to a joint subcarrier allocation and
power allocation problem, which is still an NP-hard problem because of the remainder of
the subcarrier allocation problem [12,35,36], though with less complexity as compared to
the original optimization problem. Consequently, the proposed heuristic-based solution,
that is discussed in this section, tackles the original optimization problem in three steps, as
in Algorithm 1:

1. Binding of users to LEDs.
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2. Determining the user-pairs for each LED (i.e., user pairing).
3. Optimizing subcarrier(s) allocation to user-pairs in each LED and power allocation

within each pair (i.e., subcarrier allocation and power allocation).

As stated before, the max-min optimization problem in Equations (5)–(9) involves
both subcarrier and power allocation; however, since each of the NOMA users in each
pair will share the same assigned subcarriers with a fixed power per subcarrier, then the
subcarrier allocation and the power allocation problems may be done in an iterative manner
through both the SA algorithm and the bisection method. This is discussed in detail later
in this section.

Algorithm 1: Overview of the proposed heuristic-based solution.

1 Binding of users to LEDs: Assign users to different LEDs in such a way that a
user cannot be assigned to more than one LED;

2 Determining the user-pairs for each LED: Apply the D-NLUPA algorithm to
determine the user-pairs per LED. Store the user-pairs in Γ(li);

3 Optimizing subcarrier(s) allocation to user-pairs in each LED and power
allocation within each pair: This task allocates the subcarriers to the user-pairs to
maximize the minimum achievable rate of the served users. We apply the SA
algorithm with an innovative objective function that allocates the users-pairs to the
subcarriers while ensuring an almost uniform data-rates for all the served users.

4.1. Binding of Users to LEDs

Although a user can receive data using any number of subcarriers, all subcarriers
should belong to a single LED. Therefore, it is necessary to bind users to LEDs. In the VLC
literature, there are different approaches to attach users to LEDs [28]. In this work, we
adopted the strategy to bind the users to the LEDs that have the channels of maximum
strength with the users. We denote the most suitable LED for a user uj ∈ N with λ(uj),
and its value can be determined using the following equation:

λ(uj) = argmax |hli ,uj
, uj|

∀li∈L
. (10)

The imposition is that the NOMA scheme, termed in this work as the NOMA-imposed-
scheme (i.e., two users should share the available subcarrier(s)), requires that the number
of users allocated to each LED should be even. Otherwise, it is not possible to impose
NOMA fully, and as a result, some subcarriers are allocated to only one user (this scheme
is termed in this work as the “NOMA-not-imposed scheme”). When the number of users
allocated to any LED is odd, we can formulate a linear constrained optimization problem
and solve it to ensure that each LED has an even number of users or zero users. Next, we
describe the optimization problem. In Equation (11), |.| denotes a complement operation,
and this operation returns one only when |λ(uj)− i| = 0. The function f1(li) returns the
number of users assigned to the LED li.

f1(li) =
N−1

∑
j=0
|λ(uj)− i|. (11)

The distance of the users from their allocated LEDs can be given by:

f2(uj) = d(uj, lλ(uj)
), (12)
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f3(uj) = max
i∈{0,1,...,L−1}

d(uj, li). (13)

In Equations (12) and (13), f2(uj) denotes the distance of the user uj from the LED to
which it is currently allocated, and f3(uj) denotes the maximum distance of uj from any
LED. The linear constrained optimization problem is shown below:

Minimize
N−1

∑
j=0

f2(uj)

f3(uj)
, (14)

subject to
L−1

∑
i=0

( f1(li) mod 2) = 0. (15)

The above linear-constrained optimization problem can be solved using many meth-
ods, and in our work, we employed an iterative greedy algorithm [37] to solve it. The
solution is represented by {λ(u0), λ(u1), ..., λ(uN−1)}, where λ(uj) ∈ {l0, l1, ..., lL−1}.
Algorithm 2 summarizes the aforementioned approach followed for binding users to LEDs.
The pseudo-code outlines an iterative method whose termination criterion could be the
maximum number of iterations (e.g., 1000 iterations). The iterative method makes a random
change in the current binding of users and only lets the new solution replace the current one
if the new binding is better than or equal to the current one using Equations (14) and (15).
The simulation results, shown in Section 5.1, illustrate that the above-described method is
efficient in preventing the LEDs from having an odd number of users with a relatively low
number of iterations.

Algorithm 2: Algorithm for binding users to LEDs.
Input: li ∈ L, uj ∈ N
Output: Nli = {uj, s.t. uj ∈ N , and, λ(uj) = li} (a vector that stores the users of

LED li),
Nli (the number of users in Nli )

1 Bind the users to the LEDs that have the channels of maximum strength with the
users based on Equation (10);

2 Store the set of users attached to each LED in a vector. For example, users attached
to LED li are stored in vector Nli , and their sum is stored in Nli ;

3 if NOMA-imposed scheme==TRUE && f1(li) is odd ∀li ∈ L then
4 while Stopping criterion is not reached do
5 Randomly choose a user currently attached to LED li and bind it to a new

LED lj (where, both LED li and LED lj are randomly chosen);
6 Determine the cost of the new solution using Equations (14) and (15);
7 if the cost of the new solution is worse than the previous one then
8 Revert the binding of the selected user to LED li
9 end

10 end
11 end
12 return Nli , Nli ;

4.2. Determining of the User-Pairs for Each LED

We used the D-NLUPA method [9] to determine the user-pairs for each LED. The
D-NLUPA method is efficient in finding user-pairs, and it creates pairs in which the first
user has a strong channel (or strongest among users not already part of any pair) with a
user of a relatively weaker channel. Algorithm 3 shows the D-NLUPA algorithm. The first
step is to sort the users with respect to their channel gains. The second step is a loop that
creates pairs of strong and weak users and stores them in Γ(li). The actions on lines 6–7
only execute if the NOMA-not-imposed scheme is deployed and the number of users under
any LED is odd. We should place the last user (i.e., the user having minimum channel
strength) into a pair whose weak user is null.
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Algorithm 3: Algorithm to implement the D-NLUPA method of user-pairing.
Input: li ∈ L, Nli , Nli
Output: Γ(li) (a set of all user-pair for the LED li)

1 Sort the elements in Nli in the descending order based on the strength of their
channels with LED li;

2 for j in 0 to
Nli
2 do

3 Create a pair Pj in which the user at index j is the strong user and the user at

index j +
Nli
2 is the weak user;

4 Insert Pj in Γ(li);
5 end
6 if NOMA-not-imposed scheme==TRUE && Nli is an odd number then
7 Create a pair in which the user at index Nli − 1 is the strong user and a null

value for the weak user, and insert it into Γ(li);
8 end
9 return Γ(li);

4.3. Optimizing Subcarrier(s) Allocation to User-Pairs in Each LED and Power Allocation within
Each Pair

In this subsection, we discuss the problem of allocating the subcarriers to user-pairs,
as well as a solution method. As we mentioned in the previous subsection, for each LED,
the user-pairs allocated to it are represented by Γ(li), and each LED has up to K subcarriers.
The allocation aims to maximize, as well as keep uniformness in the data-rates of the users.
We also propose a novel objective function to achieve the dual goals through applying a
single function. In the following, we first discuss our proposed objective function, and then
discuss a solution method using the SA algorithm. We represent the solution of subcarrier
allocation using the following notation:

X =


x0,0, x0,0, ..., x0,K−1
x1,0, x1,1, ..., x1,K−1

. . . , . . . , . . .
xL−1,0, xL−1,1, ..., xL−1,K−1

, (16)

where xi,k is an integer, and k ∈ {0, ..., K− 1}, i ∈ {0, ..., L− 1}, and xi,k denote the index
of the user-pair of Γ(li) assigned to the k-th subcarrier of the LED li. The objective of
the subcarrier allocation is to maximize the minimum achievable rate of the served users
through finding a decision matrix (X), and is given by

O(X) = min
j∈{0,1,...,N−1}

Rj, (17)

maximize O(X). (18)

We propose two new constraints into the above objective function (O(X)) to help
the iterative heuristics to obtain a solution in which the data-rates of all users have the
following features:

1. The data-rates of all users are closer to each other.
2. The users should not have a zero data-rate.
3. The data-rate should be as maximal as possible considering the above two conditions.

To include the above enhancements, we propose the objective function as follows:
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maximize
K,as ,aw

O(X), (19)

subject to
max

j∈{0,1,...,N−1}
Rj − min

j∈{0,1,...,N−1}
Rj

max
j∈{0,1,...,N−1}

Rj
− C ≤ 0, (20)

Rj > 0, ∀j ∈ {0, 1, ..., N − 1}. (21)

In the above equations, Equation (20) ensures that the percentage difference between
the maximum and minimum data-rates of any two users should be lesser than a predefined
constant C ∈ [0, 1]. Equation (21) ensures that no user suffers a service outage.

Finally, we convert the above constrained problem into an unconstrained optimization
problem using the penalty method [38,39], as follows:

fzero(Rj) =

{
1, if Rj = 0
0, otherwise

(22)

fcons(R0, R1, ..., RN−1) =
∑N−1

j=0 fzero(Rj)

N
, (23)

fmax(R0, R1, ..., RN−1) = max
j∈{0,1,...,N−1}

Rj, (24)

fmin(R0, R1, ..., RN−1) = min
j∈{0,1,...,N−1}

Rj, (25)

fdiff(R0, R1, ..., RN−1) =
fmax − fmin

fmax
− C. (26)

The new objective function can be given by:

O′(X) = O(X)−P1 fcons −P2 fdiff, (27)

maximize O′(X). (28)

In the above equation, P1 and P2 denote the penalty factors. The function O(X)
denotes a data-rate value of a user-pair, and hence it could be zero or positive, and the rates
can vary between different user pairs. Therefore, P1 is set for the avoidance of solutions
with zero minimum data-rates (i.e., fcons > 0), P2 is set for the avoidance of solutions
in which the difference among the data-rates of the users is more than the given value
(i.e., fdiff > 0). We prioritize the two constraints by setting P1 >> P2. The function (O′(X))
is a non-linear integer programming (NLIP) problem, which is NP-hard in general [40]. In
this work, we adopted the SA algorithm, which is a popular method of solving NP-hard
optimization problems [14–16].

Now, we briefly describe the SA algorithm for finding an allocation of subcarriers to
user-pairs in order to maximize the objective function Equation (28). Algorithm 4 shows
an overview of the SA algorithm. The input parameters are as follows: (i) T0 is the initial
temperature of the SA algorithm, and its value should be high; (ii) α is the cooling-rate and
its value should be between (0, 1), usually, its value is kept very close to 1, such as 0.97,
0.99; (iii) M indicates the number of iterations in the Metropolis function; (iv) β indicates
the increase in the value of M. The first four lines in the SA algorithm initialize the variable
and the current solution (Xcurrent). The ’while’ loop contains the main algorithm, and
the termination criterion could be the maximum time or iterations. The ’while’ loop in
each iteration calls the Metropolis function, which is responsible for exploring the current
solution’s neighborhood to improve the current solution (Xcurrent).

Algorithm 5 shows the Metropolis function. The Neighbor function in line 2 creates
a new solution by mutating the current solution. In this work, we employ the random
mutation that consists of the following two steps: (i) Randomly choose a LED and a
subcarrier of it; and (ii) change the user-pair already allocated to the selected subcarrier to
another user-pair attached to the same LED. The new solution (Xnew) could replace the
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current solution based on comparing its objective function values with that of the current
solution. The RANDOM in the pseudo-code indicates a random number between (0, 1).
The readers can refer to [13] for more details on the SA algorithm. For the optimal power
allocation, the bisection method has been utilized, which can be found in [17].

Algorithm 4: Overview of the SA algorithm.
Input: T0, α, β, M
Output: X

1 Initialize X to a random solution
2 T = T0, Xcurrent= X, Xbest= X
3 ccurrent = O′(X)
4 cbest= ccurrent
5 while stopping criterion is not reached do
6 Call Metropolis(Xcurrent, ccurrent, Xbest, cbest, T, M)
7 Replace M by β×M, and T by α× T
8 end
9 return Xbest

Algorithm 5: Metropolis function.
Input: ccurrent, Xcurrent, Xbest, cbest, T, M
Output: Xcurrent

1 while M > 0 do
2 Xnew= Neighbor(Xcurrent)
3 cnew= O′(Xnew)
4 ∆c= ccurrent − cnew
5 if cbest < cnew then
6 cbest = cnew, Xbest= Xnew
7 else
8 if RANDOM < e−

∆c
T then

9 Xcurrent = Xnew, ccurrent= cnew
10 end
11 end
12 Decrease M by 1
13 end
14 return Xcurrent

4.4. The Complexity Analysis of the Proposed Heuristic-Based Solution

In this section, we briefly discuss the time complexity of the algorithms used to ac-
complish different tasks of the proposed heuristic-based solution. The binding method,
discussed in Section 4.1, requires the determination of the maximum value in an array
which can be implemented using max-heap or linear determination [37]. The time complex-
ity of the operation to find the maximum value is O(L), and since the operation should be
repeated for each user, therefore, the total complexity of the binding method is O(NL). A
brief analysis of the time complexity of the algorithm to implement the D-NLUPA method,
discussed in Section 4.2, is as follows. The sorting can be accomplished using heapsort [37]
that has a complexity of O(NlogN), and the creation of user-pairs is a linear operation that
has complexity equal to O(N). The time complexity of this step is O(LNlogN) because
the heap-sort should be performed for each LED. The computation for each LED is inde-
pendent of the others. Therefore, we can perform parallel computations, and in that case,
the complexity reduces to O(NlogN). We optimized the allocation of user-pairs to the
subcarriers using the SA algorithm. The complexity of this algorithm is usually expressed
in terms of the number of iterations needed for it to converge to its best solution [41]. In the
Results and Discussions section, we analyzed the convergence aspects of the SA algorithm
in detail.

5. Results and Discussions

In this section, the obtained results for the achievable max-min user rates in a C-
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LiAN architecture are presented. The user pairing, the sub-carrier allocation, and the
power allocation were carried out using the D-NLUPA, the proposed SA algorithm, and
the bisection method, respectively, as detailed before. To assess the performance of the
proposed heuristic-based solution, the Monte-Carlo simulation that is averaged over 100
different users’ location realizations is used; specifically, each point in the performance
curves is an average of implementations of 100 different users’ location realizations. The
proposed heuristic-based solution was implemented in R and C++ using R version 4.0.2,
RStudio version 1.3.1, and Rcpp. We ran the simulations on a desktop computer with an
Intel 2.6 GHz processor and 128 GB of memory. In the simulations, an empty room was
considered, with a dimension of 5× 5× 3, unless otherwise stated. The room was equipped
with four LEDs, unless otherwise stated, mounted in the ceiling of the room with an equal
distance between adjacent LEDs, in a square lattice topology, similar to [16,42]. The users
were distributed in the room according to the uniform random distribution [43,44]. The LoS
optical channel model in Equation (1) was considered, where the electrical signal power of
each LED was set to 35 dBm unless otherwise stated, the default values for half the viewing
angle of the LEDs and the FoV of the PDs were set to 60◦ and 85◦, respectively, unless
otherwise stated. The PDs faced upward towards the ceiling with an area of 1 cm2 [33]. The
number of subcarriers in each LED was set to either 16 or 32 subcarriers, and the number
of users was set to 20 users, unless otherwise stated. All network parameters used in the
simulation are listed in Table 2. The SA algorithm parameters were chosen as, β = 1.0005,
α = 0.995, M = 50, and T0 = 1.0. The penalty factors P1 and P2, in (27), were set to 1× 105

and 10, respectively.

Table 2. Network parameters.

Parameter Name, Notation Value

The electrical power of the input signal, Pe [30, 35, 40, 45, 50, 55] dBm [2,26,33]
Total number of users, N [10, 20, 30, 40]
Total number of LEDs, L [4, 9] [33,42]
Total number of subcarriers, K [16, 32] [16,33]
Room height [3, 5, 7, 9] meters
Semi-angle at half illumination of the LEDs, φ1/2 60◦ [16]
FoV of the PDs, Ψ1/2 85◦ [33,45]
The base-band modulation bandwidth of each
LED, BL

20 MHz [33]

Electrical to optical conversion efficiency, ι 3.2 [16]
Area of the PD, Ap 1.0 cm2 [33,46]
Optical to electrical conversion efficiency, κ 0.53 A/W [42]
Equivalent noise power spectral density, Zo 1× 10−19 A2/Hz [42,47]
Refractive index, χ 1.5 [42,48]
Gain of optical filter, Ts(ψ) 1.0 [16]

5.1. Validation and Convergence of the Proposed Heuristic-Based Solution

In this subsection, to validate the results that the SA algorithm produces for the
subcarrier allocation problem, the subcarrier allocation problem is solved using another
well-known meta-heuristic, which is the TS algorithm that is also efficient in solving
non-linear optimization problems [49]. For validation purposes, both the SA and the TS
algorithms are simulated under the same common parameters. It is worth mentioning
that there are two specific parameters to the TS algorithm: (i) The “Tabu-search list” that
includes the most recently visited solutions and set to be 10, and (ii) the “Tabu-search-
candidate list” that contains the examined subset of neighborhood solutions and set to
be 4. In addition, we provide the convergence curves of the SA algorithm for both the
NOMA-imposed and the NOMA-not-imposed schemes. Figure 3 represents a comparison
figure between the Simulated Annealing and the Tabu-search algorithms for both the
NOMA-imposed and the NOMA-not-imposed schemes, while changing the total number
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of users in the network. From this Figure, it can be noticed that the obtained results of
both algorithms are similar. This can verify that the design, the chosen parameters, and the
obtained results for the Simulated Annealing algorithm are suitable and accurate.
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Figure 3. The achievable max-min user rate validation curve between the simulated annealing
and the Tabu-search algorithms for both the NOMA-imposed scheme and the NOMA-not-imposed
scheme obtained while changing the total number of users in the network. (Pe = 35 dBm, L = 4,
φ1/2 = 60◦, Ψ1/2 = 85◦).

Figure 4a,b shows the optimization convergence curves (i.e., objective function versus
iterations) of the SA algorithm, for the parameter value just mentioned, for both the NOMA-
imposed scheme and NOMA-not-imposed scheme, respectively. The curves indicate
that the search process successfully skips through several locally optimal solutions and
converges to a good-quality solution. The curve contains negative values due to the
violation of constraints. The equations of the objective function Equations (27) and (28)
show that the violation of constraints causes it to return negative values. It should be
noted that the number of iterations along the x-axis is equivalent to the number of function
evaluations because we computed the objective function once in every iteration. The
number of function evaluations is a metric used in evolutionary algorithms (EAs) to denote
the convergence and time relationship of EAs [41,50].
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(a) NOMA-imposed scheme.
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(b) NOMA-not-imposed scheme.
Figure 4. The optimization curves of the SA algorithm for both the NOMA-imposed scheme and the NOMA-not-imposed
scheme for one users’ location realization. (Pe = 35 dBm, L = 4, N = 10, K = 16, φ1/2 = 60◦, Ψ1/2 = 85◦).

In Figure 5, the convergence analysis of the user-binding iterative greedy algorithm is
provided. As discussed in Section 4.1, this algorithm takes place only when the NOMA-
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imposed scheme is in operation to make sure that the number of users under each LED in
the network is even for forming NOMA user-pairs. In Figure 5a, box-plot type is used to
show the results; therefore, for the reader’s convenience, it is necessary to briefly describe
the main elements of the box-plot: (i) The median of the number of iterations needed for
convergence (y-axis values) is shown by the red line in the middle of the boxes, (ii) the
ends of the boxes show the lower (Q1) and the upper (Q3) percentile of the y-axis values,
(iii) the small horizontal lines above and beneath the boxes, called the whiskers, show the
lowest and the highest value of the number of iterations needed for convergence excluding
the outlier points, (iv) the outlier points are denoted here in a red plus sign and refer to
the unexpected values. In Figure 5a, the number of iterations needed for convergence
considering a different number of users in the network, [10,20,30,40] users, is demonstrated.
One can observe from the figure that for all considered cases, the algorithm successfully
prevents the LEDs from having an odd number of users with a relatively low number of
iteration. Comparing the number of iterations needed for convergence in the SA algorithm,
provided in Figure 4, and the number of iterations needed here, we can see that this
algorithm converges with a much lower number of iterations. This is related to the reason
that the search space for the sub-carrier allocation is much larger than the search space for
user-binding. In Figure 5b we provide a detailed look into the number of iterations needed
for convergence for the test case of N = 10. In this Figure, the convergence is verified using
a histogram plot, for 100 users’ location realizations, where the number of iterations needed
for convergence is shown in the x-axis versus the number of users’ location realizations
depicted in the y-axis. For example, when the x-axis value equals zero, this indicates that
around 17 (out of 100) user realizations have an even number of users under each LED
from the beginning (the iterative greedy algorithm is not needed). Next, when the x-axis
value equals one, this indicates that 5 (out of 100) user realizations need only one iteration
in the iterative greedy algorithm to converge, and so on. This figure consolidates that the
greedy algorithm always converges with a small number of iterations for all the considered
100 uniform random user realizations.
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Figure 5. (a) Convergence analysis of the user-binding iterative greedy algorithm. (b) A detailed look into the number
of iterations needed for convergence for the test case of N = 10 in Figure 5a. (Pe = 35 dBm, L = 4, K = 16, φ1/2 = 60◦,
Ψ1/2 = 85◦, 100 different users’ location realizations).

5.2. The Performance of the Proposed NOMA Schemes

Figure 6a,b illustrates the achievable max-min user rate for the different total number
of users, [10, 20, 30, 40] users, and different total number of LEDs, [4, 9], in the network. The
LEDs are deployed in a square lattice topology, that is, 2× 2 and 3× 3. The first observation
here, and in the other max-min user rate curves in the other figures (i.e., Figures 7–10), is
that the NOMA-imposed scheme tends to achieve lower rates as compared to the NOMA-
not-imposed scheme. The reason for this is that the NOMA scheme’s imposition might
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pair some users with their second-best LED in order to impose the NOMA scheme fully.
The advantage of implementing the NOMA-imposed scheme comes from its ability to
utilize the resources more efficiently (i.e., serving the users with fewer resources) than the
NOMA-not-imposed scheme that might serve one user in a cluster. The second observation
here is that as the number of users in the network increases, the achievable max-min user
rate decreases. This is expected, as serving more users by the same resources increases the
inter-LED interference in the network and results in decreasing the achievable max-min
user rates. The third observation here is that the achievable max-min user rates with
32 subcarriers available per LED are less than the achievable max-min user rates with
16 subcarriers. This is because (i) the effect of the subcarrier allocation with 16 subcarriers
is more apparent on the achievable max-min user rates compared to the network with
32 subcarriers; and (ii) there is a trade-off between the high utilization of subcarriers in
the LEDs and the interference in the network, in which, if we allocate a high number of
subcarriers to users, then the interference in the network will be high, and subsequently,
the achievable max-min user rate would decrease. The proposed subcarrier allocation
with the SA algorithm takes into account this trade-off and eventually, for our setup,
the simulations show that the SINR and the user rates are better with 16 subcarriers
compared to 32 subcarriers. Notably, this observation is valid for small to medium values
of LEDs’ electrical signal power (i.e., Pe < 45 dBm); however, this trend will change for
large Pe values, as discussed later in the discussion of Figure 9. Finally, one can observe
from Figure 6b that the achievable max-min user rate decreases, again, as the number of
subcarriers increases, leading to a more interference-limited scenario. Additionally, the
performance of both the NOMA-imposed and the NOMA-not-imposed schemes become
closer to each other compared to Figure 6a, which is due to the fact that for a larger number
of active LEDs in the room, each user can receive strong channels from multiple LEDs,
as LEDs become closer to each other. Subsequently, in the NOMA-imposed scheme, the
binding of a user to another adjacent LED will not change its channel gain, and hence its
data rate, much.

10 20 30 40

Total Number of Users in the Network

0

0.5

1

1.5

2

2.5

3

3.5

4

A
c
h

ie
v
a
b

le
 M

a
x
-M

in
 U

s
e
r 

R
a
te

 (
M

b
p

s
)

NOMA-imposed scheme (32 Subcarriers)

NOMA-not-imposed scheme (32 Subcarriers)

NOMA-imposed scheme (16 Subcarriers)

NOMA-not-imposed scheme (16 Subcarriers)

(a) For L = 4.

10 20 30 40

Total Number of Users in the Network

0

0.5

1

1.5

2

2.5

3

3.5

4

A
c
h

ie
v
a
b

le
 M

a
x
-M

in
 U

s
e
r 

R
a
te

 (
M

b
p

s
) NOMA-imposed scheme (32 Subcarriers)

NOMA-not-imposed scheme (32 Subcarriers)

NOMA-imposed scheme (16 Subcarriers)

NOMA-not-imposed scheme (16 Subcarriers)

(b) For L = 9.
Figure 6. The achievable max-min user rate of the NOMA-imposed scheme and the NOMA-not-imposed scheme obtained
while changing the total number of users in the network. (Pe = 35 dBm, φ1/2 = 60◦, Ψ1/2 = 85◦).

Figures 7 and 8 show the achievable max-min user rate performance while changing
the semi-angle at half illumination of the LEDs and changing the FoV of the PDs, respec-
tively, for both the NOMA-imposed scheme and the NOMA-not-imposed scheme. In both
figures, as the viewing semi-angle of the LED and the FoV of the PDs increase, a slight
decrease in the max-min user rate is observed. This is because, when the viewing semi-
angle of the LED, as in Figure 7, is increased, the coverage region of that LED increases,
and hence the possibility of binding users that are far from the LED increases. On the other
hand, in Figure 8, as the FoV of the PDs increases, the possibility of binding a user with
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a LED that is far from the user increases. Besides, with a large LED viewing angle, the
signal intensity that the user receives from the LED is reduced. Likewise, with a large user
FoV, the user becomes more susceptible to interference from neighbor LEDs. A similar
trend (i.e., as the FoV increases the achievable rate decreases) is reported in [26] for the
one-to-many case considering the sum-rate performance metric (in this paper, we consider
the max-min user rate metric) in a multi-user VLC network.
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Figure 7. The achievable max-min user rate of the NOMA-imposed scheme and the NOMA-
not-imposed scheme obtained while changing the semi-angle at half illumination of the LEDs.
(Pe = 35 dBm, L = 4, N = 20, Ψ1/2 = 85◦).
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imposed scheme obtained while changing the FoV of the PDs. (Pe = 35 dBm, L = 4, N = 20,
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φ1/2 = 60◦, Ψ1/2 = 85◦).
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Figure 10. The achievable max-min user rate of the NOMA-imposed scheme and the NOMA-not-
imposed scheme obtained while changing the room height. (Pe = 35 dBm, L = 4, N = 20, φ1/2 = 60◦,
Ψ1/2 = 85◦).

In Figure 9, we present the achievable max-min user rate performance while chang-
ing the LEDs’ electrical signal power (i.e., Pe = [30, 35, 40, 45, 50, 55] dBm) for both the
NOMA-imposed scheme and the NOMA-not-imposed scheme. In this Figure, on the
x-axis, we show the electrical signal power Pe but the users’ SINR and rate equations
(i.e., Equations (3) and (4)) are written in terms of the LED optical transmit power Po.
Therefore, we transform the electrical signal power values to optical transmit power values
through the following relation ι = Po√

Pe
to substitute these values in the simulations. From

Figure 9, one can observe that for small to medium Pe (i.e., Pe < 45 dBm) both NOMA-
imposed and NOMA-not-imposed schemes with 16 subcarriers have a better achievable
max-min user rate performance compared to the equivalent schemes with 32 subcarriers,
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while the opposite is true for large Pe values (i.e., Pe ≥ 45 dBm). The reason is that as the
power of the interfering signals gets larger, the achievable max-min user rate tends to have
a larger decrease for a smaller number of the allocated subcarriers. A similar trend in RF
channels, for the secrecy user rate metric, was reported in [18].

Finally, in Figure 10, we illustrate the achievable max-min user rate performance while
changing the room height. It is intuitive to see that when the room height increases, the
channel gains of the users get weaker and subsequently, the achievable max-min user rate
decreases. Besides, with a large room height, the achievable max-min user rates become
comparable for both the NOMA-imposed scheme or the NOMA-not-imposed scheme and
with 32 subcarriers per LED or with 16 subcarriers per LED. This is in view of the fact that
the users become prone to weak signal power and weak interference power due to the
comparable weaker channel gains.

6. Conclusions

As both VLC technology and NOMA-enabled schemes are envisioned to be among the
enablers of a high data rate and low-latency future wireless networks, the achievable max-
min user rates of NOMA-enabled centralized multi-carrier VLC networks were investigated
in this paper. The D-NLUPA and the bisection method were utilized for user pairing and
the power allocation per pair, respectively, and a simulated annealing-based algorithm
was developed for the subcarrier allocation. The obtained results, for two variants of the
proposed NOMA-enabled scheme, have quantified the maximum achievable max-min
user rates and shed lights on the effect of the different network parameters, such as: (i) The
number of served users, (ii) the number of LEDs in the room, (iii) the semi-angle at half
illumination of the LEDs, (iv) the FoV of the PDs, (v) the LED power, and (vi) the indoor
space dimensions on the achievable max-min user rates.

7. Extensions and Future Work

The current work in this paper can be extended in the following different directions:

• By exploiting illuminating LED-arrays, one can enable the utilization of multiple-input
multiple-output (MIMO) in indoor VLC networks to extend the network coverage,
and further increase the system capacity [51]. Investigating the max-min user rate op-
timization for indoor MIMO-VLC networks can be considered as a possible direction
of future research. However, the performance gains may be limited due to the effect
of the peak-to-average power ratio (PAPR) problem [52].

• An important practical consideration in indoor VLC networks is user mobility. The
Random Way-Point model (RWP) is the most commonly used one for user mobility in
indoor VLC literature [53]. In indoor multi-user centralized VLC networks, there are
different solutions worth studying which can be adopted to accommodate user mobil-
ity: (i) Horizontal handover while adopting fractional frequency reuse (FFR) scheme
or the use of red, green, and blue (RGB) LEDs, or allowing for a coordinated multi-
point (CoMP) transmission scheme between different LEDs, (ii) vertical handover
that involves RF/VLC network or WiFi/VLC network or power line communication
(PLC)/VLC network, (iii) cell-zooming strategies that dynamically adjust the coverage
areas of the LEDs based on user mobility profiles, and (iv) utilizing algorithms that
can accommodate for user mobility by determining solutions within the coherence
time of the channel [16].

• A consequence of user mobility in indoor VLC networks is LoS link blockage [53].
Thus, some novel solutions need to be adopted—for example, a multi-directional
receiver or omni-directional receiver where PDs are embedded at different sides or
all sides, respectively, of a smartphone. Another possible solution for the LoS link
blockage can be considered by utilizing intelligent reflecting surfaces (IRSs) inside
the indoor environment. Investigating the max-min user rate optimization with such
solutions can be an interesting direction of future research.
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